1
|
Besteman SB, Bogaert D, Bont L, Mejias A, Ramilo O, Weinberger DM, Dagan R. Interactions between respiratory syncytial virus and Streptococcus pneumoniae in the pathogenesis of childhood respiratory infections: a systematic review. THE LANCET. RESPIRATORY MEDICINE 2024; 12:915-932. [PMID: 38991585 DOI: 10.1016/s2213-2600(24)00148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024]
Abstract
Lower respiratory tract infections, commonly caused by respiratory syncytial virus (RSV) or Streptococcus pneumoniae (pneumococcus), pose a substantial global health burden, especially in children younger than 5 years of age. A deeper understanding of the relationship between RSV and pneumococcus would aid the development of health-care approaches to disease prevention and management. We completed a systematic review to identify and assess evidence pertaining to the relationship between RSV and pneumococcus in the pathogenesis of childhood respiratory infections. We found mechanistic evidence for direct pathogen-pathogen interactions and for indirect interactions involving host modulation. We found a strong seasonal epidemiological association between these two pathogens, which was recently confirmed by a parallel decrease and a subsequent resurgence of both RSV and pneumococcus-associated disease during the COVID-19 pandemic. Importantly, we found that pneumococcal vaccination was associated with reduced RSV hospitalisations in infants, further supporting the relevance of their interaction in modulating severe disease. Overall evidence supports a broad biological and clinical interaction between pneumococcus and RSV in the pathogenesis of childhood respiratory infections. We hypothesise that the implementation of next-generation pneumococcal and RSV vaccines and monoclonal antibodies targeting RSV will act synergistically to reduce global morbidity and mortality related to childhood respiratory infections.
Collapse
Affiliation(s)
- Sjanna B Besteman
- Department of Pediatrics, Onze Lieve Vrouwe Gasthuis Ziekenhuis, Amsterdam, Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Louis Bont
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Ron Dagan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Wu ZB, Meng KF, Ding LG, Wu S, Han GK, Zhai X, Sun RH, Yu YY, Ji W, Xu Z. Dynamic Interaction Between Mucosal Immunity and Microbiota Drives Nose and Pharynx Homeostasis of Common Carp ( Cyprinus carpio) After SVCV Infection. Front Immunol 2021; 12:769775. [PMID: 34804060 PMCID: PMC8601392 DOI: 10.3389/fimmu.2021.769775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
The crosstalk between the immune system and microbiota drives an amazingly complex mutualistic symbiosis. In mammals, the upper respiratory tract acts as a gateway for pathogen invasion, and the dynamic interaction between microbiota and mucosal immunity on its surface can effectively prevent disease development. However, the relationship between virus-mediated mucosal immune responses and microbes in lower vertebrates remains uncharacterized. In this study, we successfully constructed an infection model by intraperitoneally injecting common carp (Cyprinus carpio) with spring viremia of carp virus (SVCV). In addition to the detection of the SVCV in the nose and pharynx of common carp, we also identified obvious histopathological changes following viral infection. Moreover, numerous immune-related genes were significantly upregulated in the nose and pharynx at the peak of SVCV infection, after which the expression levels decreased to levels similar to those of the control group. Transcriptome sequencing results revealed that pathways associated with bacterial infection in the Toll-like receptor pathway and the Nod-like receptor pathway were activated in addition to the virus-related Rig-I-like receptor pathway after SVCV infection, suggesting that viral infection may be followed by opportunistic bacterial infection in these mucosal tissues. Using 16S rRNA gene sequencing, we further identified an upward trend in pathogenic bacteria on the mucosal surface of the nose and pharynx 4 days after SVCV infection, after which these tissues eventually reached new homeostasis. Taken together, our results suggest that the dynamic interaction between mucosal immunity and microbiota promotes the host to a new ecological state.
Collapse
Affiliation(s)
- Zheng-Ben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li-Guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Sha Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ru-Han Sun
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei Ji
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Di Caprio A, Coccolini E, Zagni P, Vaccina E, Lucaccioni L, Lugli L, Iughetti L, Berardi A. Pneumococcal septic shock after neonatal respiratory syncytial virus bronchiolitis: A case report and literature review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021111. [PMID: 33944814 PMCID: PMC8142759 DOI: 10.23750/abm.v92is1.11209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bronchiolitis is a common cause of hospitalisation of infants less than a year old, with most infants recovering without complications. Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis. Antimicrobial stewardship programmes do not recommend antibiotics for viral infections in neonates unless documented evidence of secondary bacterial infection is present. CASE REPORT We present the case of a 7-day-old infant admitted to hospital with chest retractions and fever. The baby was hospitalised, empirical antibiotic therapy was administered, and non-invasive ventilation was started. When the viral aetiology was identified and clinical conditions improved, antibiotics were discontinued. However, after 48 hours, the newborn's condition worsened because of pneumococcal septic shock. Intravenous fluids, catecholamine support, and wide-spectrum antibiotics were administered. Non-invasive ventilation was re-started and continued until the full recovery. CONCLUSIONS There is increasing evidence that RSV and S. pneumoniae co-infect and interact with each other, thus increasing respiratory diseases' severity. We provide a brief overview of the main international guidelines for managing bronchiolitis. Guidelines suggest avoidance of antibiotics use when the diagnosis of viral bronchiolitis is confirmed. We discuss the uncertainties regarding antibiotic use, especially in younger infants, who are more exposed to risks of bacterial superinfection.
Collapse
Affiliation(s)
- Antonella Di Caprio
- Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, 41124 Modena, Italy.
| | - Elena Coccolini
- Terapia Intensiva Pediatrica e Neonatale, Ospedale M. Bufalini, 47521 Cesena, Italy; .
| | - Paola Zagni
- Terapia Intensiva Neonatale, Ospedale Fatebenefratelli P.O. Macedonio Melloni, 20129 Milano, Italy;.
| | - Eleonora Vaccina
- Scuola di Specializzazione in Pediatria, Università di Modena e Reggio Emilia, 41124 Modena, Italy.
| | - Laura Lucaccioni
- UO di Pediatria, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, AOU Policlinico di Modena, Modena.
| | - Licia Lugli
- UO di Terapia Intensiva Neonatale, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, AOU Policlinico di Modena, Modena.
| | - Lorenzo Iughetti
- UO di Pediatria, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, AOU Policlinico di Modena, Modena.
| | - Alberto Berardi
- UO di Terapia Intensiva Neonatale, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, AOU Policlinico di Modena, Modena.
| |
Collapse
|
4
|
Affiliation(s)
- Gavin H. Thomas
- Department of Biology, University of York, York, YO10 5YW, UK
| |
Collapse
|