1
|
Ceciliani F, Maggiolino A, Biscarini F, Dadi Y, De Matos L, Cremonesi P, Landi V, De Palo P, Lecchi C. Heat stress has divergent effects on the milk microbiota of Holstein and Brown Swiss cows. J Dairy Sci 2024:S0022-0302(24)00957-3. [PMID: 38908697 DOI: 10.3168/jds.2024-24976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Heat stress (HS) is one of the pivotal causes of economic losses in dairy industries and affects welfare and performance, but its effect on milk microbiota remains elusive. It is also unclear if and how different breeds may cope with HS in sustaining productive performance. The objectives of this study were to compare a) the performance of 2 dairy breeds, namely Holstein and Brown Swiss, subjected to HS and b) the different effects of HS on the milk microbiota of the 2 breeds in thermal comfort conditions and HS. The study was carried out on 36 dairy cows, 18 per breed. The HS was induced by switching off the cooling system during a natural heat wave for 4 d. Besides the Temperature Humidity Index (THI), the animal stress was confirmed by measuring respiratory frequency and rectal temperature twice daily at 4 a.m. and 3 p.m. The HS differently impacted the 2 breeds. Rectal temperatures were higher in Holstein cows, while no changes in rectal temperature were found in Brown Swiss. Milk yield recording and sampling were performed during the morning milking of d 1 (at 4.00 a.m.) and afternoon milking of d 4 (at 5.00 p.m.). Productive parameters were also different: milk yield, fat-corrected milk, energy-corrected milk, protein and casein content, and renneting parameters were decreased in Holstein but remained unaffected in Brown Swiss. The HS also modified the milk microbiota of the 2 breeds differently. During HS, the Brown Swiss milk microbiota was richer (α diversity) than the Holstein one. Comparing the time points before and during HS within breeds showed that Brown Swiss milk microbiota was less affected by HS than Holstein's. Under the same thermal comfort condition, milk microbiota did not discriminate between Brown Swiss and Holstein. Consistently with α and β diversity, the number of operational taxonomic units (OTUs) at the genus level that changed their abundance during HS was higher in Holstein (74 OTUs) than in Brown Swiss (only 20 OTUs). The most significant changes in abundance affected Acinetobacter, Chryseobacterium, Cutibacterium, Enterococcus, Lactococcus, Prevotella-9, Serratia, and Streptococcus. In conclusion, the present report confirms and extends previous studies by demonstrating that Brown Swiss cows regulate their body temperature better than the Holstein breed. The relative thermal tolerance to HS compared with Holstein is also confirmed by changes in milk uncultured microbiota, which were more evident in Holstein than in Brown Swiss.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - A Maggiolino
- Department of Veterinary Medicine, Università degli Studi di Bari A. Moro, SP per Casamassima, km 3, 70010 - Valenzano BA
| | - F Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Y Dadi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - L De Matos
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - P Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - V Landi
- Department of Veterinary Medicine, Università degli Studi di Bari A. Moro, SP per Casamassima, km 3, 70010 - Valenzano BA
| | - P De Palo
- Department of Veterinary Medicine, Università degli Studi di Bari A. Moro, SP per Casamassima, km 3, 70010 - Valenzano BA
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| |
Collapse
|
2
|
She Y, Liu J, Su M, Li Y, Guo Y, Liu G, Deng M, Qin H, Sun B, Guo J, Liu D. A Study on Differential Biomarkers in the Milk of Holstein Cows with Different Somatic Cells Count Levels. Animals (Basel) 2023; 13:2446. [PMID: 37570255 PMCID: PMC10417570 DOI: 10.3390/ani13152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Dairy cow mastitis is one of the common diseases of dairy cows, which will not only endanger the health of dairy cows but also affect the quality of milk. Dairy cow mastitis is an inflammatory reaction caused by pathogenic microorganisms and physical and chemical factors in dairy cow mammary glands. The number of SCC in the milk of dairy cows with different degrees of mastitis will increase in varying degrees. The rapid diagnosis of dairy cow mastitis is of great significance for dairy cow health and farm economy. Based on the results of many studies on the relationship between mastitis and somatic cell count in dairy cows, microflora, and metabolites in the milk of Holstein cows with low somatic cell level (SCC less than 200,000), medium somatic cell level (SCC up to 200,000 but less than 500,000) and high somatic cell level (SCC up to 5000,00) were analyzed by microbiome and metabolic group techniques. The results showed that there were significant differences in milk microbiota and metabolites among the three groups (p < 0.05), and there was a significant correlation between microbiota and metabolites. Meanwhile, in this experiment, 75 differential metabolites were identified in the H group and L group, 40 differential metabolites were identified in the M group and L group, and six differential microorganisms with LDA scores more than four were found in the H group and L group. These differential metabolites and differential microorganisms may become new biomarkers for the diagnosis, prevention, and treatment of cow mastitis in the future.
Collapse
Affiliation(s)
- Yuanhang She
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Jianying Liu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Minqiang Su
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Yaokun Li
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Yongqing Guo
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Guangbin Liu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Ming Deng
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Hongxian Qin
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Baoli Sun
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Jianchao Guo
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Dewu Liu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
3
|
Ahmadi A, Khezri A, Nørstebø H, Ahmad R. A culture-, amplification-independent, and rapid method for identification of pathogens and antibiotic resistance profile in bovine mastitis milk. Front Microbiol 2023; 13:1104701. [PMID: 36687564 PMCID: PMC9852903 DOI: 10.3389/fmicb.2022.1104701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Rapid and accurate diagnosis of causative pathogens in mastitis would minimize the imprudent use of antibiotics and, therefore, reduce the spread of antimicrobial resistance. Whole genome sequencing offers a unique opportunity to study the microbial community and antimicrobial resistance (AMR) in mastitis. However, the complexity of milk samples and the presence of a high amount of host DNA in milk from infected udders often make this very challenging. Methods Here, we tested 24 bovine milk samples (18 mastitis and six non-mastitis) using four different commercial kits (Qiagens' DNeasy® PowerFood® Microbial, Norgens' Milk Bacterial DNA Isolation, and Molzyms' MolYsis™ Plus and Complete5) in combination with filtration, low-speed centrifugation, nuclease, and 10% bile extract of male bovine (Ox bile). Isolated DNA was quantified, checked for the presence/absence of host and pathogen using PCR and sequenced using MinION nanopore sequencing. Bioinformatics analysis was performed for taxonomic classification and antimicrobial resistance gene detection. Results The results showed that kits designed explicitly for bacterial DNA isolation from food and dairy matrices could not deplete/minimize host DNA. Following using MolYsis™ Complete 5 + 10% Ox bile + micrococcal nuclease combination, on average, 17% and 66.5% of reads were classified as bovine and Staphylococcus aureus reads, respectively. This combination also effectively enriched other mastitis pathogens, including Escherichia coli and Streptococcus dysgalactiae. Furthermore, using this approach, we identified important AMR genes such as Tet (A), Tet (38), fosB-Saur, and blaZ. We showed that even 40 min of the MinION run was enough for bacterial identification and detecting the first AMR gene. Conclusion We implemented an effective method (sensitivity of 100% and specificity of 92.3%) for host DNA removal and bacterial DNA enrichment (both gram-negative and positive) directly from bovine mastitis milk. To the best of our knowledge, this is the first culture- and amplification-independent study using nanopore-based metagenomic sequencing for real-time detection of the pathogen (within 5 hours) and the AMR profile (within 5-9 hours), in mastitis milk samples. These results provide a promising and potential future on-farm adaptable approach for better clinical management of mastitis.
Collapse
Affiliation(s)
- Asal Ahmadi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway,Institute of Clinical Medicine, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway,*Correspondence: Rafi Ahmad,
| |
Collapse
|
4
|
Ogrodowczyk AM, Jeż M, Wróblewska B. The Manifold Bioactivity and Immunoreactivity of Microbial Proteins of Cow and Human Mature Milk in Late Lactation. Animals (Basel) 2022; 12:ani12192605. [PMID: 36230344 PMCID: PMC9558504 DOI: 10.3390/ani12192605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary The debate over the validity and benefits of breastfeeding children after the age of 1 and the superiority of human over cow’s milk is still ongoing. The recommendation of exclusive breastfeeding for about 6 months, followed by continued breastfeeding as a complementary food source for 1 year or longer, seems justified under many circumstances. The microbiological parameters of the milk play a vital role in this respect. So far, the focus has been on the qualitative profile of the microbiota, bacterial interactions with milk compounds, and the metabolites produced by bacteria. However, the role of bacterial proteins in milk, according to the authors’ knowledge, has been analyzed. It is reported that due to the disruption of the regulatory axis of the immune system in the course of hypersensitivity, organisms may give rise to decreased IgA-mediated (physiological) and increased IgE-mediated (hypersensitive) responses even to host gut microbiota proteins. In this publication, the aim was to compare whether the bacterial proteins in the mature human milk of late lactation and cow’s milk of different breeds can determine the different immunoreactive and bioactive properties of milk. Abstract (1) Human milk (HM) is a source of many microorganisms, whose structure contains microbial protein (MP). In addition to the known health-promoting properties of HM, many activities, including immunoreactivity, may result from the presence of MP. Cow’s milk (CM)-derived MP may be 10 times more abundant than MP derived from HM. (2) Raw cow’s milk samples of Holstein and Jersey breeds, commercially available pasteurized milk, and milk from three human donors in the late lactation phase were subjected to chemical and microbiological analyzes. Microorganisms from the milk material were recovered, cultured, and their activities were tested. MPs were extracted and their immunoreactivity was tested with human high IgE pooled sera. The milk types were subjected to simulated digestion. Milk and microbial proteins were identified with LCMS and subjected to an in silico analysis of their activities. Their antioxidant potential was analysed with the DPPH method. (3) The MP of HM shows a stronger IgE and IgG immunoreactivity in the tests with human sera compared to the MP of CM (p = 0.001; p = 0.02, respectively). There were no significant differences between the microbes in the MP of different cattle breeds. The MS-identification and in silico tests of milk and microbial proteins confirmed the presence of MP with immunoreactivity and antioxidant potential. (4) MPs possess a broad bioactive effect, which was determined by an in silico tools. The balance between an MP’s individual properties probably determines the raw material’s safety, which undoubtedly requires further research.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-523-46-57
| | - Maja Jeż
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemical and Physical Properties of Food, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
5
|
Du B, Meng L, Liu H, Zheng N, Zhang Y, Zhao S, Wang J. Single Molecule Real-Time Sequencing and Traditional Cultivation Techniques Reveal Complex Community Structures and Regional Variations of Psychrotrophic Bacteria in Raw Milk. Front Microbiol 2022; 13:853263. [PMID: 35222348 PMCID: PMC8866939 DOI: 10.3389/fmicb.2022.853263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the species composition and diversity of psychrotrophic bacteria in raw milk from Heilongjiang, Inner Mongolia, Gansu, Henan, Anhui, Jiangsu, Chongqing, and Hunan provinces in China using traditional cultivation and PacBio Single Molecule Real-Time sequencing methods. The isolated psychrotrophic bacteria were highly diverse, which composed of 21 genera and 59 species. Pseudomonas accounted for 58.9% of the total genera while Stenotrophomonas and Enterococcus were also highly represented (above 5.0%). In particular, P. azotoformans occurred at a level of 16.9% and P. paralactis, P. lactis, E. faecalis, and P. marginalis were present in relatively high proportions (above 4.0%). Regional differences were found significantly among the test regions except samples from Heilongjiang and Inner Mongolia were similar. Additionally, differences were observed between days in Henan, Anhui, and Jiangsu samples. Therefore, control strategies must be implemented on regional and season basis.
Collapse
Affiliation(s)
- Bingyao Du
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiaqi Wang,
| |
Collapse
|
6
|
Xu Y, Lei B, Zhang Q, Lei Y, Li C, Li X, Yao R, Hu R, Liu K, Wang Y, Cui Y, Wang L, Dai J, Li L, Ni W, Zhou P, Liu ZX, Hu S. ADDAGMA: A Database for Domestic Animal Gut Microbiome Atlas. Comput Struct Biotechnol J 2022; 20:891-898. [PMID: 35222847 PMCID: PMC8858777 DOI: 10.1016/j.csbj.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
We curated all publicly available high-throughput sequencing data on gut microbiomes for four domestic animal species. We compiled data for multiple levels of microbial taxa and classified the associated animal phenotypes in detail. Exhibiting the dynamic changes of animal gut microbes under different conditions. We developed a user-friendly website for browsing, searching, and displaying dynamic changes in animal gut microbes under different conditions.
Animal gut microbiomes play important roles in the health, diseases, and production of animal hosts. The volume of animal gut metagenomic data, including both 16S amplicon and metagenomic sequencing data, has been increasing exponentially in recent years, making it increasingly difficult for researchers to query, retrieve, and reanalyze experimental data and explore new hypotheses. We designed a database called the domestic animal gut microbiome atlas (ADDAGMA) to house all publicly available, high-throughput sequencing data for the gut microbiome in domestic animals. ADDAGMA enhances the availability and accessibility of the rapidly growing body of metagenomic data. We annotated microbial and metadata from four domestic animals (cattle, horse, pig, and chicken) from 356 published papers to construct a comprehensive database that is equipped with browse and search functions, enabling users to make customized, complicated, biologically relevant queries. Users can quickly and accurately obtain experimental information on sample types, conditions, and sequencing platforms, and experimental results including microbial relative abundances, microbial taxon-associated host phenotype, and P-values for gut microbes of interest. The current version of ADDAGMA includes 290,422 quantification events (changes in abundance) for 3215 microbial taxa associated with 48 phenotypes. ADDAGMA presently covers gut microbiota sequencing data from pig, cattle, horse, and chicken, but will be expanded to include other domestic animals. ADDAGMA is freely available at (http://addagma.omicsbio.info/).
Collapse
Affiliation(s)
- Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bingbing Lei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunjiao Lei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lei Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832003, China
- Corresponding authors.
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Corresponding authors.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
- Corresponding authors.
| |
Collapse
|