1
|
Moore CJ, Bornemann TLV, Figueroa-Gonzalez PA, Esser SP, Moraru C, Soares AR, Hinzke T, Trautwein-Schult A, Maaß S, Becher D, Starke J, Plewka J, Rothe L, Probst AJ. Time-series metaproteogenomics of a high-CO 2 aquifer reveals active viruses with fluctuating abundances and broad host ranges. MICROLIFE 2024; 5:uqae011. [PMID: 38855384 PMCID: PMC11162154 DOI: 10.1093/femsml/uqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO2 and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO2 cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed "infect to keep in check" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO2 environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.
Collapse
Affiliation(s)
- Carrie Julia Moore
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Cristina Moraru
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - André Rodrigues Soares
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Tjorven Hinzke
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, 17489 Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Sandra Maaß
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Joern Starke
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Julia Plewka
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Lousia Rothe
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
2
|
Boden JS, Zhong J, Anderson RE, Stüeken EE. Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics. Nat Commun 2024; 15:3703. [PMID: 38697988 PMCID: PMC11066067 DOI: 10.1038/s41467-024-47914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Phosphorus plays a crucial role in controlling biological productivity, but geological estimates of phosphate concentrations in the Precambrian ocean, during life's origin and early evolution, vary over several orders of magnitude. While reduced phosphorus species may have served as alternative substrates to phosphate, their bioavailability on the early Earth remains unknown. Here, we reconstruct the phylogenomic record of life on Earth and find that phosphate transporting genes (pnas) evolved in the Paleoarchean (ca. 3.6-3.2 Ga) and are consistent with phosphate concentrations above modern levels ( > 3 µM). The first gene optimized for low phosphate levels (pstS; <1 µM) appeared around the same time or in the Mesoarchean depending on the reconstruction method. Most enzymatic pathways for metabolising reduced phosphorus emerged and expanded across the tree of life later. This includes phosphonate-catabolising CP-lyases, phosphite-oxidising pathways and hypophosphite-oxidising pathways. CP-lyases are particularly abundant in dissolved phosphate concentrations below 0.1 µM. Our results thus indicate at least local regions of declining phosphate levels through the Archean, possibly linked to phosphate-scavenging Fe(III), which may have limited productivity. However, reduced phosphorus species did not become widely used until after the Paleoproterozoic Great Oxidation Event (2.3 Ga), possibly linked to expansion of the biosphere at that time.
Collapse
Affiliation(s)
- Joanne S Boden
- School of Earth and Environmental Sciences, University of St. Andrews, Bute Building, Queen's terrace, St. Andrews, Fife, United Kingdom.
| | - Juntao Zhong
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rika E Anderson
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Eva E Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, Bute Building, Queen's terrace, St. Andrews, Fife, United Kingdom
| |
Collapse
|
3
|
Jin C, Sengupta A. Microbes in porous environments: from active interactions to emergent feedback. Biophys Rev 2024; 16:173-188. [PMID: 38737203 PMCID: PMC11078916 DOI: 10.1007/s12551-024-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Microbes thrive in diverse porous environments-from soil and riverbeds to human lungs and cancer tissues-spanning multiple scales and conditions. Short- to long-term fluctuations in local factors induce spatio-temporal heterogeneities, often leading to physiologically stressful settings. How microbes respond and adapt to such biophysical constraints is an active field of research where considerable insight has been gained over the last decades. With a focus on bacteria, here we review recent advances in self-organization and dispersal in inorganic and organic porous settings, highlighting the role of active interactions and feedback that mediates microbial survival and fitness. We discuss open questions and opportunities for using integrative approaches to advance our understanding of the biophysical strategies which microbes employ at various scales to make porous settings habitable.
Collapse
Affiliation(s)
- Chenyu Jin
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
- Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l’Université, Esch-sur-Alzette, L-4365 Luxembourg
| |
Collapse
|
4
|
Beaver RC, Neufeld JD. Microbial ecology of the deep terrestrial subsurface. THE ISME JOURNAL 2024; 18:wrae091. [PMID: 38780093 PMCID: PMC11170664 DOI: 10.1093/ismejo/wrae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The terrestrial subsurface hosts microbial communities that, collectively, are predicted to comprise as many microbial cells as global surface soils. Although initially thought to be associated with deposited organic matter, deep subsurface microbial communities are supported by chemolithoautotrophic primary production, with hydrogen serving as an important source of electrons. Despite recent progress, relatively little is known about the deep terrestrial subsurface compared to more commonly studied environments. Understanding the composition of deep terrestrial subsurface microbial communities and the factors that influence them is of importance because of human-associated activities including long-term storage of used nuclear fuel, carbon capture, and storage of hydrogen for use as an energy vector. In addition to identifying deep subsurface microorganisms, recent research focuses on identifying the roles of microorganisms in subsurface communities, as well as elucidating myriad interactions-syntrophic, episymbiotic, and viral-that occur among community members. In recent years, entirely new groups of microorganisms (i.e. candidate phyla radiation bacteria and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoloarchaeota, Nanoarchaeota archaea) have been discovered in deep terrestrial subsurface environments, suggesting that much remains unknown about this biosphere. This review explores the historical context for deep terrestrial subsurface microbial ecology and highlights recent discoveries that shape current ecological understanding of this poorly explored microbial habitat. Additionally, we highlight the need for multifaceted experimental approaches to observe phenomena such as cryptic cycles, complex interactions, and episymbiosis, which may not be apparent when using single approaches in isolation, but are nonetheless critical to advancing our understanding of this deep biosphere.
Collapse
Affiliation(s)
- Rachel C Beaver
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Herzig M, Hyötyläinen T, Vettese GF, Law GTW, Vierinen T, Bomberg M. Altering environmental conditions induce shifts in simulated deep terrestrial subsurface bacterial communities-Secretion of primary and secondary metabolites. Environ Microbiol 2024; 26:e16552. [PMID: 38098179 DOI: 10.1111/1462-2920.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.
Collapse
Affiliation(s)
- Merja Herzig
- Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, EnForce, Environment and Health and Systems Medicine, Örebro University, Örebro, Sweden
| | - Gianni F Vettese
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Gareth T W Law
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Taavi Vierinen
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
6
|
Dopson M, Rezaei Somee M, González-Rosales C, Lui LM, Turner S, Buck M, Nilsson E, Westmeijer G, Ashoor K, Nielsen TN, Mehrshad M, Bertilsson S. Novel candidate taxa contribute to key metabolic processes in Fennoscandian Shield deep groundwaters. ISME COMMUNICATIONS 2024; 4:ycae113. [PMID: 39421601 PMCID: PMC11484514 DOI: 10.1093/ismeco/ycae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The continental deep biosphere contains a vast reservoir of microorganisms, although a large proportion of its diversity remains both uncultured and undescribed. In this study, the metabolic potential (metagenomes) and activity (metatranscriptomes) of the microbial communities in Fennoscandian Shield deep subsurface groundwaters were characterized with a focus on novel taxa. DNA sequencing generated 1270 de-replicated metagenome-assembled genomes and single-amplified genomes, containing 7 novel classes, 34 orders, and 72 families. The majority of novel taxa were affiliated with Patescibacteria, whereas among novel archaea taxa, Thermoproteota and Nanoarchaeota representatives dominated. Metatranscriptomes revealed that 30 of the 112 novel taxa at the class, order, and family levels were active in at least one investigated groundwater sample, implying that novel taxa represent a partially active but hitherto uncharacterized deep biosphere component. The novel taxa genomes coded for carbon fixation predominantly via the Wood-Ljungdahl pathway, nitrogen fixation, sulfur plus hydrogen oxidation, and fermentative pathways, including acetogenesis. These metabolic processes contributed significantly to the total community's capacity, with up to 9.9% of fermentation, 6.4% of the Wood-Ljungdahl pathway, 6.8% of sulfur plus 8.6% of hydrogen oxidation, and energy conservation via nitrate (4.4%) and sulfate (6.0%) reduction. Key novel taxa included the UBA9089 phylum, with representatives having a prominent role in carbon fixation, nitrate and sulfate reduction, and organic and inorganic electron donor oxidation. These data provided insights into deep biosphere microbial diversity and their contribution to nutrient and energy cycling in this ecosystem.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Maryam Rezaei Somee
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Lauren M Lui
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Kamal Ashoor
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Torben N Nielsen
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| |
Collapse
|
7
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Nuppunen-Puputti M, Kietäväinen R, Kukkonen I, Bomberg M. Implications of a short carbon pulse on biofilm formation on mica schist in microcosms with deep crystalline bedrock groundwater. Front Microbiol 2023; 14:1054084. [PMID: 36819068 PMCID: PMC9932282 DOI: 10.3389/fmicb.2023.1054084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface. In this study, we examined further how a short pulse of low-molecular-weight carbon compounds impacts the formation and structure of sessile microbial communities on mica schist surfaces over an incubation period of ∼3.5 years in microcosms containing deep subsurface groundwater from the depth of 500 m, from Outokumpu, Finland. The marker gene copy counts in the water and rock phases were estimated with qPCR, which showed that bacteria dominated the mica schist communities with a relatively high proportion of epilithic sulfate-reducing bacteria in all microcosms. The dominant bacterial phyla in the microcosms were Proteobacteria, Firmicutes, and Actinobacteria, whereas most fungal genera belonged to Ascomycota and Basidiomycota. Dissimilarities between planktic and sessile rock surface microbial communities were observed, and the supplied carbon substrates led to variations in the bacterial community composition.
Collapse
Affiliation(s)
- Maija Nuppunen-Puputti
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland,*Correspondence: Maija Nuppunen-Puputti,
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|