1
|
Núñez C, López-Pliego L, Ahumada-Manuel CL, Castañeda M. Genetic Regulation of Alginate Production in Azotobacter vinelandii a Bacterium of Biotechnological Interest: A Mini-Review. Front Microbiol 2022; 13:845473. [PMID: 35401471 PMCID: PMC8988225 DOI: 10.3389/fmicb.2022.845473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by β (1–4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carlos Leonel Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel Castañeda,
| |
Collapse
|
2
|
Sun X, Zhang J. Bacterial exopolysaccharides: Chemical structures, gene clusters and genetic engineering. Int J Biol Macromol 2021; 173:481-490. [PMID: 33493567 DOI: 10.1016/j.ijbiomac.2021.01.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
In recent decades, the composition, structure, biosynthesis, and function of bacterial extracellular polysaccharides (EPS) have been extensively studied. EPS are synthesized through different biosynthetic pathways. The genes responsible for EPS synthesis are usually clustered on the genome or large plasmids of bacteria. Generally, different EPS synthesis gene clusters direct the synthesis of EPS with different chemical structures and biological activities. A better understanding of the gene functions involved in EPS biosynthesis is critical for the production of EPS with special biological activities. Genetic engineering methods are usually used to study EPS synthesis related genes. This review organizes the available information on EPS, including their structures, synthesis of related genes, and highlights the research progress of modifying EPS gene clusters through gene-editing methods.
Collapse
Affiliation(s)
- Xiaqing Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
3
|
Respiration in Azotobacter vinelandii and its relationship with the synthesis of biopolymers. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Gene expression abundance dictated exopolysaccharide modification in Rhizobium radiobacter SZ4S7S14 as the cell's response to salt stress. Int J Biol Macromol 2020; 164:4339-4347. [PMID: 32931833 DOI: 10.1016/j.ijbiomac.2020.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
A molecular and metabolic behaviour of EPS-producing and salt-tolerant bacterium Rhizobium radiobacter SZ4S7S14 along with its practical application in salt-stress was investigated. The research target was identification and expression profiles of a large EPS biosynthesis gene cluster, possible structural modification of EPS under salt-stress effect and analysis of the gene(s) relative expression and structural modification correlation. As expected, transposons insertions were identified within or near the coding regions of exoK and exoM, previously known large gene cluster that is required for EPS I synthesis. Different expression levels of exoK and exoM in different salt-stress models resulted in structural modification of EPS, which was seen basically in monomers molar ratio. As a result of downregulation of the genes the strain produced EPS samples with monomers ratio: (1) Glu:Man:Gal:Xyl:Ara:Rha:Rib = 31.21:3.02:2.77:1:0.91:0.64:0.41 (in 0.25% NaCl); (2) Glu:Man:Gal:Xyl:Ara:Rha:Rib = 7.65:1:0.69:0.22:0.2:0.16:0.1 (in 0.5% NaCl); (3) Glu:Man:Gal:Ara:Xyl:Rha:Rib = 9.39:1.89:1:0.58:0.52:0.46:0.26 (in 1% NaCl); and (4) Glu:Man:Ara:Xyl:Rib:Gal = 7.9:2:2:1.58:1.1:1 (in 2.0% NaCl), whereas in control (without NaCl): Glc:Man:Gal:Xyl:Ara:Rha:Rib = 11.66:1:0.90:0.37:0.37:0.15:0.14. It was found that, salt-stress not only leads to downregulation of a large EPS biosynthesis gene cluster, including exoK and exoM genes, but also impacting on their relative expression degree, re-groups of the monomers within the EPS matrix and dictates molar ratio of the monosaccharides in the final metabolite.
Collapse
|
5
|
Bertsova YV, Baykov AA, Bogachev AV. A simple strategy to differentiate between H +- and Na +-transporting NADH:quinone oxidoreductases. Arch Biochem Biophys 2020; 681:108266. [PMID: 31953132 DOI: 10.1016/j.abb.2020.108266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
We describe here a simple strategy to characterize transport specificity of NADH:quinone oxidoreductases, using Na+-translocating (NQR) and H+-translocating (NDH-1) enzymes of the soil bacterium Azotobactervinelandii as the models. Submillimolar concentrations of Na+ and Li+ increased the rate of deaminoNADH oxidation by the inverted membrane vesicles prepared from the NDH-1-deficient strain. The vesicles generated carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-resistant electric potential difference and CCCP-stimulated pH difference (alkalinization inside) in the presence of Na+. These findings testified a primary Na+-pump function of A. vinelandii NQR. Furthermore, ΔpH measurements with fluorescent probes (acridine orange and pyranine) demonstrated that A. vinelandii NQR cannot transport H+ under various conditions. The opposite results obtained in similar measurements with the vesicles prepared from the NQR-deficient strain indicated a primary H+-pump function of NDH-1. Based on our findings, we propose a package of simple experiments that are necessary and sufficient to unequivocally identify the pumping specificity of a bacterial Na+ or H+ transporter. The NQR-deficient strain, but not the NDH-1-deficient one, exhibited impaired growth characteristics under diazotrophic condition, suggesting a role for the Na+ transport in nitrogen fixation by A. vinelandii.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
6
|
Glucose uptake in Azotobacter vinelandii occurs through a GluP transporter that is under the control of the CbrA/CbrB and Hfq-Crc systems. Sci Rep 2017; 7:858. [PMID: 28404995 PMCID: PMC5429807 DOI: 10.1038/s41598-017-00980-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 12/03/2022] Open
Abstract
Azotobacter vinelandii, a strict aerobic, nitrogen fixing bacterium in the Pseudomonadaceae family, exhibits a preferential use of acetate over glucose as a carbon source. In this study, we show that GluP (Avin04150), annotated as an H+-coupled glucose-galactose symporter, is the glucose transporter in A. vinelandii. This protein, which is widely distributed in bacteria and archaea, is uncommon in Pseudomonas species. We found that expression of gluP was under catabolite repression control thorugh the CbrA/CbrB and Crc/Hfq regulatory systems, which were functionally conserved between A. vinelandii and Pseudomonas species. While the histidine kinase CbrA was essential for glucose utilization, over-expression of the Crc protein arrested cell growth when glucose was the sole carbon source. Crc and Hfq proteins from either A. vinelandii or P. putida could form a stable complex with an RNA A-rich Hfq-binding motif present in the leader region of gluP mRNA. Moreover, in P. putida, the gluP A-rich Hfq-binding motif was functional and promoted translational inhibition of a lacZ reporter gene. The fact that gluP is not widely distributed in the Pseudomonas genus but is under control of the CbrA/CbrB and Crc/Hfq systems demonstrates the relevance of these systems in regulating metabolism in the Pseudomonadaceae family.
Collapse
|
7
|
Complete genome sequence of Defluviimonas alba cai42T, a microbial exopolysaccharides producer. J Biotechnol 2016; 239:9-12. [DOI: 10.1016/j.jbiotec.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
|
8
|
The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii. Appl Microbiol Biotechnol 2016; 101:1521-1534. [PMID: 27796435 DOI: 10.1007/s00253-016-7931-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.
Collapse
|
9
|
Alginate Biosynthesis inAzotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability. INT J POLYM SCI 2016. [DOI: 10.1155/2016/2062360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative bacteriumAzotobacter vinelandiican synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.
Collapse
|
10
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
11
|
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6:637-50. [PMID: 24034361 PMCID: PMC3815931 DOI: 10.1111/1751-7915.12076] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
12
|
Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl Microbiol Biotechnol 2012; 97:2503-12. [PMID: 22878844 DOI: 10.1007/s00253-012-4329-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Azotobacter vinelandii, a soil nitrogen fixing bacterium, produces alginate a polysaccharide with industrial and medical relevant applications. In this work, we characterized a miniTn5 mutant, named GG101, that showed a 14-fold increase in the specific production of alginate when grown diazotrophically on solid minimal medium comparing to the parental E strain (also named AEIV). Quantitative real-time reverse transcription PCR analysis indicated that this increased alginate production was due to higher expression levels of several biosynthetic alg genes such as algD. Sequencing of the locus interrupted in GG101 indicated that the miniTn5 was inserted in the positive strand, and 10 bp upstream the start codon of the gene ubiA, encoding the enzyme for the second step in the biosynthesis of ubiquinone (Q8). Both the transcription of ubiA and the content of Q8 are decreased in the mutant GG101 when compared to the wild-type strain E. Genetic complementation of mutant GG101 with a wild-type copy of the ubiCA genes restored the content of Q8 and reduced the production of alginate to levels similar to those of the parental E strain. Furthermore, respirometric analysis showed a reproducible decrease of about 8 % in the respiratory capacity of mutant GG101, at exponential phase of growth in liquid minimal medium. Collectively, our data show that a decreased content in Q8 results in higher levels of alginate in A. vinelandii.
Collapse
|
13
|
Gaytán I, Peña C, Núñez C, Córdova MS, Espín G, Galindo E. Azotobacter vinelandii lacking the Na+-NQR activity: a potential source for producing alginates with improved properties and at high yield. World J Microbiol Biotechnol 2012; 28:2731-40. [DOI: 10.1007/s11274-012-1084-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022]
|
14
|
Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 2011; 12:51. [PMID: 21251255 PMCID: PMC3032703 DOI: 10.1186/1471-2164-12-51] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. RESULTS We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. CONCLUSIONS Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1587-605. [PMID: 20599680 DOI: 10.1016/j.bbabio.2010.06.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/23/2022]
Abstract
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K(1), a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
16
|
Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:738-46. [PMID: 20056102 DOI: 10.1016/j.bbabio.2009.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 11/20/2022]
Abstract
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) is a component of the respiratory chain of various bacteria. This enzyme is an analogous but not homologous counterpart of mitochondrial Complex I. Na+-NQR drives the same chemistry and also uses released energy to translocate ions across the membrane, but it pumps Na+ instead of H+. Most likely the mechanism of sodium pumping is quite different from that of proton pumping (for example, it could not accommodate the Grotthuss mechanism of ion movement); this is why the enzyme structure, subunits and prosthetic groups are completely special. This review summarizes modern knowledge on the structural and catalytic properties of bacterial Na+-translocating NADH:quinone oxidoreductases. The sequence of electron transfer through the enzyme cofactors and thermodynamic properties of those cofactors is discussed. The resolution of the intermediates of the catalytic cycle and localization of sodium-dependent steps are combined in a possible molecular mechanism of sodium transfer by the enzyme.
Collapse
|