1
|
Panich J, Dudebout EM, Wadhwa N, Blair DF. Swashing motility: A novel propulsion-independent mechanism for surface migration in Salmonella and E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609010. [PMID: 39229098 PMCID: PMC11370582 DOI: 10.1101/2024.08.21.609010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bacterial motility over surfaces is crucial for colonization, biofilm formation, and pathogenicity. Surface motility in Escherichia coli and Salmonella enterica is traditionally believed to rely on flagellar propulsion. Here, we report a novel mode of motility, termed "swashing," where these bacteria migrate on agar surfaces without functional flagella. Mutants lacking flagellar filaments and motility proteins exhibit rapid surface migration comparable to wild-type strains. Unlike previously described sliding motility, swashing is inhibited by surfactants and requires fermentable sugars. We propose that the fermentation of sugars at the colony edge produces osmolytes, creating local osmotic gradients that draw water from the agar, forming a fluid bulge that propels the colony forward. Our findings challenge the established view that flagellar propulsion is required for surface motility in E. coli and Salmonella, and highlight the role of a fermentation in facilitating bacterial spreading. This discovery expands our understanding of bacterial motility, offering new insights into bacterial adaptive strategies in diverse environments.
Collapse
Affiliation(s)
- Justin Panich
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Eric M. Dudebout
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Navish Wadhwa
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287
| | - David F. Blair
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Aguilera M, Tobar-Calfucoy E, Rojas-Martínez V, Norambuena R, Serrano MJ, Cifuentes O, Zamudio MS, San Martín D, Lara P, Sabag A, Zabner M, Tichy D, Camejo P, León L, Pino M, Ulloa S, Rojas F, Pieringer C, Muster C, Castillo D, Ferreira N, Avendaño C, Canaval M, Pieringer H, Cifuentes P, Cifuentes Muñoz N. Development and characterization of a bacteriophage cocktail with high lytic efficacy against field-isolated Salmonella enterica. Poult Sci 2023; 102:103125. [PMID: 37879168 PMCID: PMC10618821 DOI: 10.1016/j.psj.2023.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Salmonella spp. is a prevalent pathogen that causes great public health concern worldwide. Bacteriophage-based cocktails have arisen as an alternative to antibiotics to inhibit the growth of Salmonella. However, the bactericidal effect of bacteriophage cocktails in vivo largely differs from their observed effect in vitro. This is partly because in vitro developments of cocktails do not always consider the bacterial diversity nor the environmental conditions where bacteriophages will have to replicate. Here, we isolated and sequenced 47 bacteriophages that showed variable degrees of lytic activity against 258 Salmonella isolates from a commercial broiler company in Brazil. Three of these bacteriophages were characterized and selected to assemble a cocktail. In vitro quantitative assays determined the cocktail to be highly effective against multiple serovars of Salmonella, including Minnesota and Heidelberg. Remarkably, the in vitro lytic activity of the cocktail was retained or improved in conditions that more closely resembled the chicken gut, such as anaerobiosis, 42°C, and Salmonella mono-strain biofilms. Analysis of bacterial cross-resistance between the 3 bacteriophages composing the cocktail revealed limited or no generation of cross-resistance. Our results highlight the relevance of an optimized flux of work to develop bacteriophage cocktails against Salmonella with high lytic efficacy and strong potential to be applied in vivo in commercial broiler farms.
Collapse
Affiliation(s)
- Matías Aguilera
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Eduardo Tobar-Calfucoy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Victoria Rojas-Martínez
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Rodrigo Norambuena
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Jesús Serrano
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Onix Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Sofía Zamudio
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel San Martín
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pabla Lara
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Andrea Sabag
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Marcela Zabner
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Tichy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pamela Camejo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Luis León
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Michael Pino
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Soledad Ulloa
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Felipe Rojas
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Christian Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Cecilia Muster
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Castillo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Ferreira
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Camilo Avendaño
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Mauro Canaval
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Hans Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pablo Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Cifuentes Muñoz
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile..
| |
Collapse
|
3
|
Tan W, Tian Y, Zhang Q, Miao S, Wu W, Miao X, Kuang H, Yang W. Antioxidant and antibacterial activity of Apis laboriosa honey against Salmonella enterica serovar Typhimurium. Front Nutr 2023; 10:1181492. [PMID: 37252242 PMCID: PMC10211265 DOI: 10.3389/fnut.2023.1181492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen that commonly causes gastroenteritis in humans and animals. Apis laboriosa honey (ALH) harvested in China has significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. We hypothesize that ALH has antibacterial activity against S. Typhimurium. The physicochemical parameters, minimum inhibitory and bactericidal concentrations (MIC and MBC) and the possible mechanism were determined. The results showed that there were significantly different physicochemical parameters, including 73 phenolic compounds, among ALH samples harvested at different times and from different regions. Their antioxidant activity was affected by their components, especially total phenol and flavonoid contents (TPC, TFC), which had a high correlation with antioxidant activities except for the O2- assay. The MIC and MBC of ALH against S. Typhimurium were 20-30% and 25-40%, respectively, which were close to those of UMF5+ manuka honey. The proteomic experiment revealed the possible antibacterial mechanism of ALH1 at IC50 (2.97%, w/v), whose antioxidant activity reduced the bacterial reduction reaction and energy supply, mainly by inhibiting the citrate cycle (TCA cycle), amino acid metabolism pathways and enhancing the glycolysis pathway. The results provide a theoretical basis for the development of bacteriostatic agents and application of ALH.
Collapse
Affiliation(s)
- Weihua Tan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyuan Tian
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
| | - Qingya Zhang
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siwei Miao
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
| | - Wenrong Wu
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoqing Miao
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
| | - Haiou Kuang
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
- Research Institute of Eastern Honeybee, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
| |
Collapse
|
4
|
Alegbeleye O, Sant'Ana AS. Survival of Salmonella spp. under varying temperature and soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163744. [PMID: 37142008 DOI: 10.1016/j.scitotenv.2023.163744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Soils can serve as suitable reservoirs for or barriers against microbial contamination of water resources and plant produce. The magnitude of water or food contamination risks through soil depends on several factors, including the survival potential of microorganisms in the soil. This study assessed and compared the survival/persistence of 14 Salmonella spp. strains in loam and sandy soils at 5, 10, 20, 25, 30, 35, 37 °C and under uncontrolled ambient temperature conditions in Campinas Sao Paulo. The ambient temperature ranged from 6 °C (minimum) to 36 °C (maximum). Bacterial population densities were determined by the conventional culture method (plate counts) and monitored for 216 days. Statistical differences among the test parameters were determined by Analysis of Variance, while relationships between temperature and soil type were evaluated using Pearson correlation analysis. Similarly, relationships between time and temperature for survival of the various strains were evaluated using Pearson correlation analysis. Results obtained indicate that temperature and soil type influence the survival of Salmonella spp. in soils. All 14 strains survived for up to 216 days in the organic-rich loam soil under at least three of the temperature conditions evaluated. However, comparatively lower survival rates were recorded in sandy soil, especially at lower temperature. The optimum temperature for survival varied among the strains, where some survived best at 5 °C and others between 30 and 37 °C. Under uncontrolled temperature conditions, the Salmonella strains survived better in loam than in sandy soils. Bacterial growth over post inoculation storage period was overall more impressive in loam soil. In general, the results indicate that temperature and soil type can interact to influence the survival of Salmonella spp. strains in soil. For the survival of some strains, there were significant correlations between soil type and temperature, while for some others, no significant relationship between soil and temperature was determined. A similar trend was observed for the correlation between time and temperature.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Carrillo-Gómez JK, Durán Acevedo CM, García-Rico RO. Detection of the bacteria concentration level in pasteurized milk by using two different artificial multisensory methods. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
6
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
7
|
Carneiro DG, Almeida FA, Aguilar AP, Vieira NM, Pinto UM, Mendes TAO, Vanetti MCD. Salmonella enterica Optimizes Metabolism After Addition of Acyl-Homoserine Lactone Under Anaerobic Conditions. Front Microbiol 2020; 11:1459. [PMID: 32849316 PMCID: PMC7401450 DOI: 10.3389/fmicb.2020.01459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Acyl-homoserine lactones (AHLs) are quorum sensing (QS) signaling molecules that mediate cell-to-cell communication in Gram-negative bacteria. Salmonella does not produce AHL, however, it can recognize AHLs produced by other species through SdiA protein modulating important cellular functions. In this work, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on glucose consumption, metabolic profile, and gene expression of Salmonella throughout the cultivation time in Tryptic Soy Broth (TSB) under anaerobic conditions was evaluated. Analysis of the supernatant culture in high-performance liquid chromatography (HPLC) revealed lower glucose uptake after 4 and 6 h of the addition of C12-HSL. Gas chromatography-mass spectrometry (GC-MS) based analysis of the intracellular metabolites revealed C12-HSL perturbation in the abundance levels of metabolites related to the metabolic pathways of glycerolipids, purines, amino acids, and aminoacyl-tRNA biosynthesis. The real-time quantitative PCR (RT-qPCR) indicated that Salmonella increase expression of genes associated with nucleoside degradation and quantification of metabolites supported the induction of pentose phosphate pathway to ensure growth under lower glucose consumption. The obtained data suggest an important role of C12-HSL in the optimization of metabolism at a situation of high population densities.
Collapse
Affiliation(s)
- Deisy G Carneiro
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Felipe A Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Ananda P Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nívea M Vieira
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Uelinton M Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
8
|
Behera P, Nikhil KC, Kumar A, Gali JM, De A, Mohanty AK, Ali MA, Sharma B. Comparative proteomic analysis of Salmonella Typhimurium wild type and its isogenic fnr null mutant during anaerobiosis reveals new insight into bacterial metabolism and virulence. Microb Pathog 2019; 140:103936. [PMID: 31862389 DOI: 10.1016/j.micpath.2019.103936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022]
Abstract
AIM The aim of this study was to understand the role of anaerobic regulator FNR (Fumarate Nitrate Reduction) in Salmonella Typhimurium through proteomic approach. METHODS AND RESULTS We did label free quantitative proteomic analysis of Salmonella Typhimurium PM45 wild type and the fnr null mutant cultured under anaerobic conditions. The data revealed 153 significantly differentially expressed proteins (DEPs) in the mutant out of 1798 total proteins identified. Out of 153 DEPs, 94 proteins were up-regulated (repressed by FNR) and 59 proteins were down-regulated (activated by FNR) in the mutant. The network analysis indicated up-regulation of TCA cycle, electron transport chain and ethanolamine metabolism and down regulation of pyruvate metabolism and glycerol and glycerophospholipid metabolism. CONCLUSIONS Our study showed that FNR represses ethanolamine utilization. The different metabolic pathways such as pyruvate metabolism, glycerol metabolism and glycerophospholipid metabolism were activated by FNR. Further, FNR positively regulated the DNA binding protein Fis, one of the global regulators of virulence in Salmonella Typhimurium. Thus, our finding highlights the pivotal role of FNR in regulating bacterial metabolism and virulence during anaerobiosis for systemic infection of the host.
Collapse
Affiliation(s)
- Parthasarathi Behera
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India.
| | - K C Nikhil
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jagan Mohanarao Gali
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - A De
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., R. K. Nagar, West Tripura, Tripura, 799008, India
| | - A K Mohanty
- Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - M Ayub Ali
- Department of Veterinary Physiology & Biochemistry, College of Veterinary Sciences & A.H., Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Bhaskar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
9
|
Das Q, Lepp D, Yin X, Ross K, McCallum JL, Warriner K, Marcone MF, Diarra MS. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS One 2019; 14:e0219163. [PMID: 31269043 PMCID: PMC6608956 DOI: 10.1371/journal.pone.0219163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry (Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute’s guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Ontario, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Kelly Ross
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Jason L. McCallum
- Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Ontario, Canada
| | | | - Moussa S. Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
First insights into the pleiotropic role of vrf (yedF), a newly characterized gene of Salmonella Typhimurium. Sci Rep 2017; 7:15291. [PMID: 29127378 PMCID: PMC5681696 DOI: 10.1038/s41598-017-15369-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
Salmonella possesses virulence determinants that allow replication under extreme conditions and invasion of host cells, causing disease. Here, we examined four putative genes predicted to encode membrane proteins (ydiY, ybdJ, STM1441 and ynaJ) and a putative transcriptional factor (yedF). These genes were identified in a previous study of a S. Typhimurium clinical isolate and its multidrug-resistant counterpart. For STM1441 and yedF a reduced ability to interact with HeLa cells was observed in the knock-out mutants, but an increase in this ability was absent when these genes were overexpressed, except for yedF which phenotype was rescued when yedF was restored. In the absence of yedF, decreased expression was seen for: i) virulence-related genes involved in motility, chemotaxis, attachment and survival inside the host cell; ii) global regulators of the invasion process (hilA, hilC and hilD); and iii) factors involved in LPS biosynthesis. In contrast, an increased expression was observed for anaerobic metabolism genes. We propose yedF is involved in the regulation of Salmonella pathogenesis and contributes to the activation of the virulence machinery. Moreover, we propose that, when oxygen is available, yedF contributes sustained repression of the anaerobic pathway. Therefore, we recommend this gene be named vrf, for virulence-related factor.
Collapse
|
11
|
Lamas A, Miranda JM, Vázquez B, Cepeda A, Franco CM. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Int J Food Microbiol 2016; 238:63-67. [PMID: 27592071 DOI: 10.1016/j.ijfoodmicro.2016.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (P<0.05) in aerobiosis than in microaerobiosis and anaerobiosis. Cellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.
Collapse
Affiliation(s)
- A Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - J M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - B Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - A Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - C M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
12
|
Molina-Quiroz RC, Silva CA, Molina CF, Leiva LE, Reyes-Cerpa S, Contreras I, Santiviago CA. Exposure to sub-inhibitory concentrations of cefotaxime enhances the systemic colonization of Salmonella Typhimurium in BALB/c mice. Open Biol 2016; 5:rsob.150070. [PMID: 26468132 PMCID: PMC4632510 DOI: 10.1098/rsob.150070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been proposed that sub-inhibitory concentrations of antibiotics play a role in virulence modulation. In this study, we evaluated the ability of Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) to colonize systemically BALB/c mice after exposure to a sub-inhibitory concentration of cefotaxime (CTX). In vivo competition assays showed a fivefold increase in systemic colonization of CTX-exposed bacteria when compared to untreated bacteria. To identify the molecular mechanisms involved in this phenomenon, we carried out a high-throughput genetic screen. A transposon library of S. Typhimurium mutants was subjected to negative selection in the presence of a sub-inhibitory concentration of CTX and genes related to anaerobic metabolism, biosynthesis of purines, pyrimidines, amino acids and other metabolites were identified as needed to survive in this condition. In addition, an impaired ability for oxygen consumption was observed when bacteria were cultured in the presence of a sub-inhibitory concentration of CTX. Altogether, our data indicate that exposure to sub-lethal concentrations of CTX increases the systemic colonization of S. Typhimurium in BALB/c mice in part by the establishment of a fitness alteration conducive to anaerobic metabolism.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile Center for Adaptation Genetics and Drugs Resistance, Molecular Biology and Microbiology Faculty, Tufts University, Boston, MA, USA
| | - Cecilia A Silva
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | - Lorenzo E Leiva
- Centro de InmunoBioTecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Laboratorio de Virología, Centro de Biotecnología Acuícola (CBA), Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Inés Contreras
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation. Microbiol Res 2016; 192:203-210. [PMID: 27664738 DOI: 10.1016/j.micres.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022]
Abstract
In this work, Trichosporon fermentans CICC 1368, which has been shown to accumulate cellular lipids efficiently using industry-agricultural wastes, was subjected to preliminary genome analysis, yielding a genome size of 31.3 million bases and 12,702 predicted protein-coding genes. Our analysis also showed a high degree of gene duplications and unique genes compared with those observed in other oleaginous yeasts, with 3-4-fold more genes related to fatty acid elongation and degradation compared with those in Rhodosporidium toruloides NP11 and Yarrowia lipolytica CLIB122. Phylogenetic analysis with other oleaginous microbes suggested that the lipogenic capacity of T. fermentans was obtained during evolution after the divergence of genera. Thus, our study provided the first draft genome and comparative analysis of T. fermentans, laying the foundation for its genetic improvement to facilitate cost-effective lipid production.
Collapse
|
14
|
Laurenceau R, Krasteva PV, Diallo A, Ouarti S, Duchateau M, Malosse C, Chamot-Rooke J, Fronzes R. Conserved Streptococcus pneumoniae spirosomes suggest a single type of transformation pilus in competence. PLoS Pathog 2015; 11:e1004835. [PMID: 25876066 PMCID: PMC4398557 DOI: 10.1371/journal.ppat.1004835] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
The success of S. pneumoniae as a major human pathogen is largely due to its remarkable genomic plasticity, allowing efficient escape from antimicrobials action and host immune response. Natural transformation, or the active uptake and chromosomal integration of exogenous DNA during the transitory differentiated state competence, is the main mechanism for horizontal gene transfer and genomic makeover in pneumococci. Although transforming DNA has been proposed to be captured by Type 4 pili (T4P) in Gram-negative bacteria, and a competence-inducible comG operon encoding proteins homologous to T4P-biogenesis components is present in transformable Gram-positive bacteria, a prevailing hypothesis has been that S. pneumoniae assembles only short pseudopili to destabilize the cell wall for DNA entry. We recently identified a micrometer-sized T4P-like pilus on competent pneumococci, which likely serves as initial DNA receptor. A subsequent study, however, visualized a different structure--short, 'plaited' polymers--released in the medium of competent S. pneumoniae. Biochemical observation of concurrent pilin secretion led the authors to propose that the 'plaited' structures correspond to transformation pili acting as peptidoglycan drills that leave DNA entry pores upon secretion. Here we show that the 'plaited' filaments are not related to natural transformation as they are released by non-competent pneumococci, as well as by cells with disrupted pilus biogenesis components. Combining electron microscopy visualization with structural, biochemical and proteomic analyses, we further identify the 'plaited' polymers as spirosomes: macromolecular assemblies of the fermentative acetaldehyde-alcohol dehydrogenase enzyme AdhE that is well conserved in a broad range of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Raphaël Laurenceau
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Petya V. Krasteva
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- * E-mail: (PVK); (RF)
| | - Amy Diallo
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sahra Ouarti
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Magalie Duchateau
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, Paris, France
- Plate-Forme de Protéomique, Institut Pasteur, Paris, France
| | - Christian Malosse
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, Paris, France
- Plate-Forme de Protéomique, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, Paris, France
- Plate-Forme de Protéomique, Institut Pasteur, Paris, France
| | - Rémi Fronzes
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- * E-mail: (PVK); (RF)
| |
Collapse
|
15
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
16
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
17
|
Condell O, Power KA, Händler K, Finn S, Sheridan A, Sergeant K, Renaut J, Burgess CM, Hinton JCD, Nally JE, Fanning S. Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network. Front Microbiol 2014; 5:373. [PMID: 25136333 PMCID: PMC4117984 DOI: 10.3389/fmicb.2014.00373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/03/2014] [Indexed: 12/04/2022] Open
Abstract
Chlorhexidine is one of the most widely used biocides in health and agricultural settings as well as in the modern food industry. It is a cationic biocide of the biguanide class. Details of its mechanism of action are largely unknown. The frequent use of chlorhexidine has been questioned recently, amidst concerns that an overuse of this compound may select for bacteria displaying an altered susceptibility to antimicrobials, including clinically important anti-bacterial agents. We generated a Salmonella enterica serovar Typhimurium isolate (ST24(CHX)) that exhibited a high-level tolerant phenotype to chlorhexidine, following several rounds of in vitro selection, using sub-lethal concentrations of the biocide. This mutant showed altered suceptibility to a panel of clinically important antimicrobial compounds. Here we describe a genomic, transcriptomic, proteomic, and phenotypic analysis of the chlorhexidine tolerant S. Typhimurium compared with its isogenic sensitive progenitor. Results from this study describe a chlorhexidine defense network that functions in both the reference chlorhexidine sensitive isolate and the tolerant mutant. The defense network involved multiple cell targets including those associated with the synthesis and modification of the cell wall, the SOS response, virulence, and a shift in cellular metabolism toward anoxic pathways, some of which were regulated by CreB and Fur. In addition, results indicated that chlorhexidine tolerance was associated with more extensive modifications of the same cellular processes involved in this proposed network, as well as a divergent defense response involving the up-regulation of additional targets such as the flagellar apparatus and an altered cellular phosphate metabolism. These data show that sub-lethal concentrations of chlorhexidine induce distinct changes in exposed Salmonella, and our findings provide insights into the mechanisms of action and tolerance to this biocidal agent.
Collapse
Affiliation(s)
- Orla Condell
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
- European Program for Public Health Microbiology Training, European Centre for Disease Prevention and ControlStockholm, Sweden
| | - Karen A. Power
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
| | - Kristian Händler
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College DublinDublin, Ireland
| | - Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
| | - Aine Sheridan
- Food Safety Department, Teagasc Food Research CentreAshtown, Dublin, Ireland
| | - Kjell Sergeant
- Department of Environment and Agrobiotechnologies (EVA), Centre de Recherche Public-Gabriel LippmannBelvaux, Luxembourg
| | - Jenny Renaut
- Department of Environment and Agrobiotechnologies (EVA), Centre de Recherche Public-Gabriel LippmannBelvaux, Luxembourg
| | | | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College DublinDublin, Ireland
- Institute of Integrative Biology, University of LiverpoolLiverpool, UK
| | - Jarlath E. Nally
- School of Veterinary Medicine, University College DublinBelfield, Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
- Institute for Global Food Security, Queen's University BelfastBelfast, Northern Ireland
| |
Collapse
|
18
|
Chilton CH, Gharbia SE, Fang M, Misra R, Poxton IR, Borriello SP, Shah HN. Comparative proteomic analysis of Clostridium difficile isolates of varying virulence. J Med Microbiol 2014; 63:489-503. [DOI: 10.1099/jmm.0.070409-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The soluble proteome of three Clostridium difficile strains of varying pathogenic potential, designated B-1, Tra 5/5 and 027 SM, were compared using differential in-gel electrophoresis in which the proteins of each strain were labelled with CyDyes. This enabled visual inspection of the 2D profiles of strains and identification of differentially expressed proteins using image analysis software. Unlabelled protein reference maps of the predominant proteins were then generated for each strain using 2D gel electrophoresis followed by protein sequencing of each spot using a Reflectron matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. Increased coverage of the proteome was achieved using 1D gel electrophoresis in a bottom-up approach using LC-MS/MS of 1 cm gel slices. A total of 888 different proteins were detected by comparative analysis of isolates grown in parallel for 64 h on blood agar plates. Of these, only 38 % were shared between all isolates. One hundred and ten proteins were identified as showing ≥2-fold difference in expression between strains. Differential expression was shown in a number of potential virulence and colonization factors. Toxin B was detected in the more virulent strains B-1 and 027 SM, but not in the lower virulent strain Tra 5/5, despite all strains possessing an intact pathogenicity locus. The S-layer protein (Cwp2) was identified in strains 027 SM and Tra 5/5 but not strain B-1, and differences in the post-translational modification of SlpA were noted for strain B-1. The variant S-layer profile of strain B-1 was confirmed by genomic comparison, which showed a 58 kb insertion in the S-layer operon of strain B-1. Differential post-translation modification events were also noted in flagellar proteins, thought to be due to differential glycosylation. This study highlights genomic and proteomic variation of different Clostridium difficile strains and suggests a number of factors may play a role in mediating the varying virulence of these different strains.
Collapse
Affiliation(s)
- C. H. Chilton
- Leeds Institute for Biomedical and Clinical Sciences, University of Leeds, Leeds LS1 3EX, UK
| | - S. E. Gharbia
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| | - M. Fang
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| | - R. Misra
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| | - I. R. Poxton
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - S. P. Borriello
- Veterinary Medicines Directorate, Addlestone, Surrey KT15 3NB, UK
| | - H. N. Shah
- Public Health England, Centre for Infections, London NW9 5EQ, UK
| |
Collapse
|
19
|
Proteome analysis of Escherichia coli periplasmic proteins in response to over-expression of recombinant human interferon α2b. Biotechnol Lett 2014; 36:1479-84. [PMID: 24652546 DOI: 10.1007/s10529-014-1504-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
The periplasmic proteome of recombinant E. coli cells expressing human interferon-α2b (INF-α2b) was analysed by 2D-gel electrophoresis to find the most altered proteins. Of some unique up- and down-regulated proteins in the proteome, ten were identified by MS. The majority of the proteins belonged to the ABC transporter protein family. Other affected proteins were ones involved in the regulation of transcription such as DNA-binding response regulator, stress-related proteins and ecotin. Thus, the production of INF-α2b acts as a stress on the cells and results in the induction of various transporters and stress related proteins.
Collapse
|
20
|
Giaouris E, Samoilis G, Chorianopoulos N, Ercolini D, Nychas GJ. Differential protein expression patterns between planktonic and biofilm cells of Salmonella enterica serovar Enteritidis PT4 on stainless steel surface. Int J Food Microbiol 2013; 162:105-13. [PMID: 23376784 DOI: 10.1016/j.ijfoodmicro.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the proteome of a strain of S. enterica serovar Enteritidis PT4, grown either as biofilm on stainless steel surface or as free-floating (planktonic) in Brain Heart (BH) broth, was investigated in order to detect the strong differences in whole-cell protein expression patterns between the two growth styles. The proteins extracted from both types of cells were subjected to 2-D PAGE, followed by in-gel tryptic digestion, extraction, subsequent MALDI-TOF mass spectrometry (MS) analysis and finally database searches for protein identification. Using this approach, 30 proteins were identified as differentially expressed between the two growth modes on an "on-off" basis, that is, proteins that were detected in one case but not in the other. In particular, 20 and 10 proteins were identified in biofilm and planktonic-grown cells, respectively. The group of proteins whose expression was visible only during biofilm growth included proteins involved in global regulation and stress response (ArcA, BtuE, Dps, OsmY, SspA, TrxA, YbbN and YhbO), nutrient transport (Crr, DppA, Fur and SufC), degradation and energy metabolism (GcvT, GpmA, RibB), detoxification (SseA and YibF), DNA metabolism (SSB), curli production (CsgF), and murein synthesis (MipA). To summarize, this study demonstrates that biofilm growth of S. Enteritidis causes distinct changes in protein expression and offers valuable new data regarding some of the proteins presumably involved in this process. The putative role of these proteins in the maintenance of a biofilm community in Salmonella and other bacteria is discussed.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakeim 2, Myrina, 81400 Lemnos, Greece.
| | | | | | | | | |
Collapse
|
21
|
Collado-Romero M, Martins RP, Arce C, Moreno Á, Lucena C, Carvajal A, Garrido JJ. An in vivo proteomic study of the interaction between Salmonella Typhimurium and porcine ileum mucosa. J Proteomics 2012; 75:2015-26. [DOI: 10.1016/j.jprot.2012.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 11/29/2022]
|
22
|
Clair G, Armengaud J, Duport C. Restricting fermentative potential by proteome remodeling: an adaptive strategy evidenced in Bacillus cereus. Mol Cell Proteomics 2012; 11:M111.013102. [PMID: 22232490 DOI: 10.1074/mcp.m111.013102] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pathogenesis hinges on successful colonization of the gastrointestinal (GI) tract by pathogenic facultative anaerobes. The GI tract is a carbohydrate-limited environment with varying oxygen availability and oxidoreduction potential (ORP). How pathogenic bacteria are able to adapt and grow in these varying conditions remains a key fundamental question. Here, we designed a system biology-inspired approach to pinpoint the key regulators allowing Bacillus cereus to survive and grow efficiently under low ORP anoxic conditions mimicking those encountered in the intestinal lumen. We assessed the proteome components using high throughput nanoLC-MS/MS techniques, reconstituted the main metabolic circuits, constructed ΔohrA and ΔohrR mutants, and analyzed the impacts of ohrA and ohrR disruptions by a novel round of shotgun proteomics. Our study revealed that OhrR and OhrA are crucial to the successful adaptation of B. cereus to the GI tract environment. Specifically, we showed that B. cereus restricts its fermentative growth under low ORP anaerobiosis and sustains efficient aerobic respiratory metabolism, motility, and stress response via OhrRA-dependent proteome remodeling. Finally, our results introduced a new adaptive strategy where facultative anaerobes prefer to restrict their fermentative potential for a long term benefit.
Collapse
Affiliation(s)
- Gérémy Clair
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | | | | |
Collapse
|
23
|
Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE, Boshoff HI. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 2011; 7:e1002287. [PMID: 21998585 PMCID: PMC3188519 DOI: 10.1371/journal.ppat.1002287] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/12/2011] [Indexed: 12/12/2022] Open
Abstract
Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD(+). This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO(2) incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope ((13)C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from (13)C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis.
Collapse
Affiliation(s)
- Shinya Watanabe
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Michael B. Goodwin
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 2011; 12:51. [PMID: 21251255 PMCID: PMC3032703 DOI: 10.1186/1471-2164-12-51] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. RESULTS We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. CONCLUSIONS Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Ge X, Kitten T, Munro CL, Conrad DH, Xu P. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis. PLoS One 2010; 5:e11666. [PMID: 20668678 PMCID: PMC2909906 DOI: 10.1371/journal.pone.0011666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 06/21/2010] [Indexed: 02/04/2023] Open
Abstract
Background Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. Methods and Findings We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. Conclusions The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.
Collapse
Affiliation(s)
- Xiuchun Ge
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Todd Kitten
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Cindy L. Munro
- Department of Adult Health Nursing, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|