1
|
Akahori M, Miyazaki A, Koinuma H, Tokuda R, Iwabuchi N, Kitazawa Y, Maejima K, Namba S, Yamaji Y. Use of the 23S rRNA gene as a target template in the universal loop-mediated isothermal amplification (LAMP) of genomic DNA from phytoplasmas. Microbiol Spectr 2024; 12:e0010624. [PMID: 38534170 PMCID: PMC11064480 DOI: 10.1128/spectrum.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.
Collapse
Affiliation(s)
- Mako Akahori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akio Miyazaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Yu SS, Zhu AN, Che HY, Song WW. Molecular Identification of ' Candidatus Phytoplasma malaysianum'-Related Strains Associated with Areca catechu Palm Yellow Leaf Disease and Phylogenetic Diversity of the Phytoplasmas Within the 16SrXXXII Group. PLANT DISEASE 2024; 108:1331-1343. [PMID: 37953232 DOI: 10.1094/pdis-11-23-2275-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Areca catechu palm is an important cash plant in Hainan Island of China and also in the tropical regions of the world. A. catechu palm yellow leaf (AcYL) disease caused by phytoplasmas is a devastating disease for plant production. In the study, the phytoplasmas associated with the AcYL disease were identified and characterized based on their conserved genes, and genetic variation and phylogenetic relationship of the phytoplasma strains in the 16SrXXXII group were demonstrated. The results indicated that A. catechu palm plants showing yellow leaf symptoms were infected by 'Candidatus Phytoplasma malaysianum'-related strains belonging to the 16SrXXXII-D subgroup. BLAST and multiple sequence alignment analysis based on 16S rRNA and secA genes showed that the AcYL phytoplasmas shared 100% sequence identity and 100% homology with the 'Ca. P. malaysianum'-related strains. Phylogenetic analysis indicated that the AcYL phytoplasmas and 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group clustered into one clade with a 100% bootstrap value. Based on computer-simulated digestions, six kinds of restriction fragment length polymorphism patterns within the 16SrXXXII group were obtained, and a novel subgroup in the 16Sr group was recommended to propose and describe the relevant strains in this 16Sr subgroup. To our knowledge, this is the first study to report that A. catechu palm showing yellow leaf symptoms was infected by 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group. A novel 16Sr subgroup, 16SrXXXII-F, was proposed based on the systematical analysis of genetic variation of all phytoplasmas within the 16SrXXXII group. The findings of this study will support references for monitoring the epidemiology and developing effective prevention strategies for AcYL disease.
Collapse
Affiliation(s)
- Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| | - An-Na Zhu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
- College of Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Hai-Yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Wei-Wei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| |
Collapse
|
3
|
Hemmati C, Nikooei M, Al-Subhi AM, Al-Sadi AM. History and Current Status of Phytoplasma Diseases in the Middle East. BIOLOGY 2021; 10:226. [PMID: 33804178 PMCID: PMC8000475 DOI: 10.3390/biology10030226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022]
Abstract
Phytoplasmas that are associated with fruit crops, vegetables, cereal and oilseed crops, trees, ornamental, and weeds are increasing at an alarming rate in the Middle East. Up to now, fourteen 16Sr groups of phytoplasma have been identified in association with more than 164 plant species in this region. Peanut witches' broom phytoplasma strains (16SrII) are the prevalent group, especially in the south of Iran and Gulf states, and have been found to be associated with 81 host plant species. In addition, phytoplasmas belonging to the 16SrVI, 16SrIX, and 16SrXII groups have been frequently reported from a wide range of crops. On the other hand, phytoplasmas belonging to 16SrIV, 16SrV, 16SrX, 16SrXI, 16SrXIV, and 16SrXXIX groups have limited geographical distribution and host range. Twenty-two insect vectors have been reported as putative phytoplasma vectors in the Middle East, of which Orosius albicinctus can transmit diverse phytoplasma strains. Almond witches' broom, tomato big bud, lime witches' broom, and alfalfa witches' broom are known as the most destructive diseases. The review summarizes phytoplasma diseases in the Middle East, with specific emphasis on the occurrence, host range, and transmission of the most common phytoplasma groups.
Collapse
Affiliation(s)
- Chamran Hemmati
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Muscat 123, Oman; (C.H.); (A.M.A.-S.)
- Minab Higher Education Center, Department of Agriculture, University of Hormozgan, Bandar Abbas 3995, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Mehrnoosh Nikooei
- Minab Higher Education Center, Department of Agriculture, University of Hormozgan, Bandar Abbas 3995, Iran;
| | - Ali M. Al-Subhi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Muscat 123, Oman; (C.H.); (A.M.A.-S.)
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Seeb, Muscat 123, Oman; (C.H.); (A.M.A.-S.)
| |
Collapse
|
4
|
Jonson GB, Matres JM, Ong S, Tanaka T, Choi IR, Chiba S. Reemerging Rice Orange Leaf Phytoplasma with Varying Symptoms Expressions and Its Transmission by a New Leafhopper Vector- Nephotettix virescens Distant. Pathogens 2020; 9:pathogens9120990. [PMID: 33256154 PMCID: PMC7761223 DOI: 10.3390/pathogens9120990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
Rice orange leaf phytoplasma (ROLP) belongs to the "Candidatus Phytoplasma asteris" 16SrI-B subgroup, which is solely transmitted by the zigzag-striped leafhopper (Recilia dorsalis Motchulsky) and the green leafhopper (Nephotettix cincticeps Uhler) (Hemiptera: Cicadellidae). Recently, rice plants showing orange leaf discoloration have become ubiquitous in several paddies of two provinces in the Philippines. In total of 98 symptomatic rice plants, 82% (Laguna) and 95% (Mindanao) were ROLP-positive by nested PCR detection. These plants showed more varying symptoms than previously reported. The vector insect R. dorsalis was scarcely present but green paddy leafhopper, N. virescens Distant (Hemiptera: Cicadellidae), was commonly observed in the paddies, thus the ability of N. virescens to transmit ROLP was thoroughly investigated. Newly emerged adult N. virescens, which fed on ROLD-source rice plants, were used to inoculate a susceptible rice seedling and was serially transferred into a new healthy seedling. Resultant positive transmission rates varied from 5.1% to 17.8%. The transmission ability of the insects was generally decreased over time. These findings suggest that N. virescens is an alternative vector of ROLP in the Philippines. Altogether, this study highlighted the increasing importance of ROLD-reemergence in Southeast and East Asia and proved the need for careful management of this alternative vector insect.
Collapse
Affiliation(s)
- Gilda B. Jonson
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna 4031, Philippines; (G.B.J.); (J.M.M.); (I.-R.C.)
| | - Jerlie M. Matres
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna 4031, Philippines; (G.B.J.); (J.M.M.); (I.-R.C.)
| | - Socheath Ong
- Department of Crop Protection, Faculty of Agronomy, Royal University of Agriculture, Ministry of Agriculture, Forestry and Fisheries, Chamkar Duang, Dangkor District, Phnom Penh 370, Cambodia;
- Nagoya University Asian Satellite Campuses Institute—Cambodian Campus, Royal University of Agriculture, Phnom Penh 2696, Cambodia
| | - Toshiharu Tanaka
- Plant Pathology Lab., Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna 4031, Philippines; (G.B.J.); (J.M.M.); (I.-R.C.)
- Nagoya University Asian Satellite Campuses Institute—Cambodian Campus, Royal University of Agriculture, Phnom Penh 2696, Cambodia
| | - Sotaro Chiba
- Plant Pathology Lab., Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
- Correspondence:
| |
Collapse
|
5
|
Spatiotemporal dynamics and quantitative analysis of phytoplasmas in insect vectors. Sci Rep 2020; 10:4291. [PMID: 32152370 PMCID: PMC7062745 DOI: 10.1038/s41598-020-61042-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
Phytoplasmas are transmitted by insect vectors in a persistent propagative manner; however, detailed movements and multiplication patterns of phytoplasmas within vectors remain elusive. In this study, spatiotemporal dynamics of onion yellows (OY) phytoplasma in its vector Macrosteles striifrons were investigated by immunohistochemistry-based 3D imaging, whole-mount fluorescence staining, and real-time quantitative PCR. The results indicated that OY phytoplasmas entered the anterior midgut epithelium by seven days after acquisition start (daas), then moved to visceral muscles surrounding the midgut and to the hemocoel at 14-21 daas; finally, OY phytoplasmas entered into type III cells of salivary glands at 21-28 daas. The anterior midgut of the alimentary canal and type III cells of salivary glands were identified as the major sites of OY phytoplasma infection. Fluorescence staining further revealed that OY phytoplasmas spread along the actin-based muscle fibers of visceral muscles and accumulated on the surfaces of salivary gland cells. This accumulation would be important for phytoplasma invasion into salivary glands, and thus for successful insect transmission. This study demonstrates the spatiotemporal dynamics of phytoplasmas in insect vectors. The findings from this study will aid in understanding of the underlying mechanism of insect-borne plant pathogen transmission.
Collapse
|
6
|
Pradit N, Rodriguez-Saona C, Kawash J, Polashock J. Phytoplasma Infection Influences Gene Expression in American Cranberry. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
NAMBA S. Molecular and biological properties of phytoplasmas. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:401-418. [PMID: 31406061 PMCID: PMC6766451 DOI: 10.2183/pjab.95.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phytoplasmas, a large group of plant-pathogenic, phloem-inhabiting bacteria were discovered by Japanese scientists in 1967. They are transmitted from plant to plant by phloem-feeding insect hosts and cause a variety of symptoms and considerable damage in more than 1,000 plant species. In the first quarter century following the discovery of phytoplasmas, their tiny cell size and the difficulty in culturing them hampered their biological classification and restricted research to ecological studies such as detection by electron microscopy and identification of insect vectors. In the 1990s, however, tremendous advances in molecular biology and related technologies encouraged investigation of phytoplasmas at the molecular level. In the last quarter century, molecular biology has revealed important properties of phytoplasmas. This review summarizes the history and current status of phytoplasma research, focusing on their discovery, molecular classification, diagnosis of phytoplasma diseases, reductive evolution of their genomes, characteristic features of their plasmids, molecular mechanisms of insect transmission, virulence factors, and chemotherapy.
Collapse
Affiliation(s)
- Shigetou NAMBA
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: S. Namba, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (e-mail: )
| |
Collapse
|
8
|
Li S, Hao W, Lu G, Huang J, Liu C, Zhou G. Occurrence and Identification of a New Vector of Rice Orange Leaf Phytoplasma in South China. PLANT DISEASE 2015; 99:1483-1487. [PMID: 30695964 DOI: 10.1094/pdis-12-14-1243-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice orange leaf disease (ROLD) is caused by rice orange leaf phytoplasma (ROLP) and occurs sporadically in rice-growing areas in countries of eastern and southeastern Asia. ROLD caused severe damage to rice production in South China in the 1980s. Although its impact subsequently declined in South China, it has reemerged as a serious threat recently. Our study showed that ROLD occurrence varies in different seasons and fields. It was more severe in summer-grown crops (from July to October) than in spring-grown crops (from March to July). In most fields, the incidence was less than 10%, and diseased plants were scattered throughout the fields. In 20% of fields, the incidence was between 10 and 30%. In some fields, over 90% of plants were affected, causing crop failure. Typical symptoms of ROLD include orange-colored leaves and poor growth. Diseased plants were determined as positive for ROLP but negative for Rice tungro bacilliform virus, Rice tungro spherical virus, and Rice transitory yellowing virus through polymerase chain reaction and reverse-transcription polymerase chain reaction. Phytoplasma bodies but not virus-like particles were observed by electron microscopy in phloem tissue of diseased leaves. The leafhopper Inazuma dorsalis, previously identified as the unique vector for ROLP, was rare in the affected fields. Another leafhopper, Nephotettix cincticeps, previously considered a nonvector for this phytoplasma, was very common. Transmission tests revealed that this insect could also transmit ROLP; therefore, it might represent a new vector responsible for the recent incidence of ROLD.
Collapse
Affiliation(s)
- Shu Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weijia Hao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guanghua Lu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Natural Resources and Environment, South China Agricultural University
| |
Collapse
|
9
|
Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol 2015; 15:193. [PMID: 26424332 PMCID: PMC4589916 DOI: 10.1186/s12866-015-0522-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 11/17/2022] Open
Abstract
Background Phytoplasmas are bacterial plant pathogens (class Mollicutes), transmitted by phloem feeding leafhoppers, planthoppers and psyllids in a persistent/propagative manner. Transmission of phytoplasmas is under the control of behavioral, environmental and geographical factors, but molecular interactions between membrane proteins of phytoplasma and vectors may also be involved. The aim of the work was to provide experimental evidence that in vivo interaction between phytoplasma antigenic membrane protein (Amp) and vector proteins has a role in the transmission process. In doing so, we also investigated the topology of the interaction at the gut epithelium and at the salivary glands, the two barriers encountered by the phytoplasma during vector colonization. Methods Experiments were performed on the ‘Candidatus Phytoplasma asteris’ chrysanthemum yellows strain (CYP), and the two leafhopper vectors Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum. To specifically address the interaction of CYP Amp at the gut epithelium barrier, insects were artificially fed with media containing either the recombinant phytoplasma protein Amp, or the antibody (A416) or both, and transmission, acquisition and inoculation efficiencies were measured. An abdominal microinjection protocol was employed to specifically address the interaction of CYP Amp at the salivary gland barrier. Phytoplasma suspension was added with Amp or A416 or both, injected into healthy E. variegatus adults and then infection and inoculation efficiencies were measured. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with A416 antibody. The organs were then either observed in confocal microscopy or subjected to DNA extraction and phytoplasma quantification by qPCR, to visualize and quantify possible differences among treatments in localization/presence/number of CYP cells. Results Artificial feeding and abdominal microinjection protocols were developed to address the two barriers separately. The in vivo interactions between Amp of ‘Candidatus Phytoplasma asteris’ Chrysanthemum yellows strain (CYP) and vector proteins were studied by evaluating their effects on phytoplasma transmission by Euscelidius variegatus and Macrosteles quadripunctulatus leafhoppers. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with anti-Amp antibody. To visualize possible differences among treatments in localization/presence of CYP cells, the organs were observed in confocal microscopy. Pre-feeding of E. variegatus and M. quadripunctulatus on anti-Amp antibody resulted in a significant decrease of acquisition efficiencies in both species. Inoculation efficiency of microinjected E. variegatus with CYP suspension and anti-Amp antibody was significantly reduced compared to that of the control with phytoplasma suspension only. The possibility that this was due to reduced infection efficiency or antibody-mediated inhibition of phytoplasma multiplication was ruled out. These results provided the first indirect proof of the role of Amp in the transmission process. Conclusion Protocols were developed to assess the in vivo role of the phytoplasma native major antigenic membrane protein in two phases of the vector transmission process: movement through the midgut epithelium and colonization of the salivary glands. These methods will be useful also to characterize other phytoplasma-vector combinations. Results indicated for the first time that native CYP Amp is involved in vivo in specific crossing of the gut epithelium and salivary gland colonization during early phases of vector infection. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0522-5) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Miura C, Komatsu K, Maejima K, Nijo T, Kitazawa Y, Tomomitsu T, Yusa A, Himeno M, Oshima K, Namba S. Functional characterization of the principal sigma factor RpoD of phytoplasmas via an in vitro transcription assay. Sci Rep 2015; 5:11893. [PMID: 26150080 PMCID: PMC4493692 DOI: 10.1038/srep11893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Phytoplasmas (class, Mollicutes) are insect-transmissible and plant-pathogenic bacteria that multiply intracellularly in both plants and insects through host switching. Our previous study revealed that phytoplasmal sigma factor rpoD of OY-M strain (rpoDOY) could be a key regulator of host switching, because the expression level of rpoDOY was higher in insect hosts than in plant hosts. In this study, we developed an in vitro transcription assay system to identify RpoDOY-dependent genes and the consensus promoter elements. The assay revealed that RpoDOY regulated some housekeeping, virulence, and host–phytoplasma interaction genes of OY-M strain. The upstream region of the transcription start sites of these genes contained conserved –35 and –10 promoter sequences, which were similar to the typical bacterial RpoD-dependent promoter elements, while the –35 promoter elements were variable. In addition, we searched putative RpoD-dependent genes based on these promoter elements on the whole genome sequence of phytoplasmas using in silico tools. The phytoplasmal RpoD seems to mediate the transcription of not only many housekeeping genes as the principal sigma factor, but also the virulence- and host-phytoplasma interaction-related genes exhibiting host-specific expression patterns. These results indicate that more complex mechanisms exist than previously thought regarding gene regulation enabling phytoplasmas to switch hosts.
Collapse
Affiliation(s)
- Chihiro Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takamichi Nijo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yugo Kitazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tatsuya Tomomitsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akira Yusa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenro Oshima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
11
|
Neriya Y, Maejima K, Nijo T, Tomomitsu T, Yusa A, Himeno M, Netsu O, Hamamoto H, Oshima K, Namba S. Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiol Lett 2014; 361:115-22. [PMID: 25302654 DOI: 10.1111/1574-6968.12620] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022] Open
Abstract
Adhesins are microbial surface proteins that mediate the adherence of microbial pathogens to host cell surfaces. In Mollicutes, several adhesins have been reported in mycoplasmas and spiroplasmas. Adhesins P40 of Mycoplasma agalactiae and P89 of Spiroplasma citri contain a conserved amino acid sequence known as the Mollicutes adhesin motif (MAM), whose function in the host cell adhesion remains unclear. Here, we show that phytoplasmas, which are plant-pathogenic mollicutes transmitted by insect vectors, possess an adhesion-containing MAM that was identified in a putative membrane protein, PAM289 (P38), of the 'Candidatus Phytoplasma asteris,' OY strain. P38 homologs and their MAMs were highly conserved in related phytoplasma strains. While P38 protein was expressed in OY-infected insect and plant hosts, binding assays showed that P38 interacts with insect extract, and weakly with plant extract. Interestingly, the interaction of P38 with the insect extract depended on MAM. These results suggest that P38 is a phytoplasma adhesin that interacts with the hosts. In addition, the MAM of adhesins is important for the interaction between P38 protein and hosts.
Collapse
Affiliation(s)
- Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Himeno M, Kitazawa Y, Yoshida T, Maejima K, Yamaji Y, Oshima K, Namba S. Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Sci Rep 2014; 4:4111. [PMID: 24531261 PMCID: PMC3925944 DOI: 10.1038/srep04111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Plants exhibit a wide variety of disease symptoms in response to pathogen attack. In general, most plant symptoms are recognized as harmful effects on host plants, and little is known about positive aspects of symptoms for infected plants. Herein, we report the beneficial role of purple top symptoms, which are characteristic of phytoplasma-infected plants. First, by using plant mutants defective in anthocyanin biosynthesis, we demonstrated that anthocyanin accumulation is directly responsible for the purple top symptoms, and is associated with reduction of leaf cell death caused by phytoplasma infection. Furthermore, we revealed that phytoplasma infection led to significant activation of the anthocyanin biosynthetic pathway and dramatic accumulation of sucrose by about 1000-fold, which can activate the anthocyanin biosynthetic pathway. This is the first study to demonstrate the role and mechanism of the purple top symptoms in plant-phytoplasma interactions.
Collapse
Affiliation(s)
- Misako Himeno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yugo Kitazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.512191] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Miura C, Sugawara K, Neriya Y, Minato N, Keima T, Himeno M, Maejima K, Komatsu K, Yamaji Y, Oshima K, Namba S. Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma. Gene 2012; 510:107-12. [PMID: 22982017 DOI: 10.1016/j.gene.2012.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/24/2012] [Accepted: 09/01/2012] [Indexed: 11/26/2022]
Abstract
The rapid production of huge amounts of reactive oxygen species (ROS) is one of the responses of animal and plant cells induced under stress conditions, such as pathogenic bacterial infection. To protect against the cytotoxic ROS, it is important for pathogenic bacteria to inactivate ROS by employing their antioxidant enzymes like superoxide dismutase (SOD). Here, we cloned and characterized the sodA gene from the plant pathogenic bacterium, 'Candidatus Phytoplasma asteris' OY-W strain. This is the first description of gene expression and antioxidant enzymatic activity of SOD from a phytoplasma. We also demonstrated the sodA gene product (OY-SOD) functions as Mn-type SOD. Since other Mollicutes bacteria such as mycoplasmas do not possess sodA probably due to reductive evolution, it is intriguing that phytoplasmas possess sodA despite their lack of many metabolic genes, suggesting that OY-SOD may play an important role in the phytoplasma colonization of plants and insects. Moreover, Western blot analysis and real-time PCR revealed that OY-SOD is expressed when the phytoplasma is grown in both plant and insect hosts, suggesting it is functioning in both hosts. Possible role of SOD in protection against damage by host-derived ROS is discussed.
Collapse
Affiliation(s)
- Chihiro Miura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sugio A, Hogenhout SA. The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol 2012; 15:247-54. [DOI: 10.1016/j.mib.2012.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
16
|
Neriya Y, Sugawara K, Maejima K, Hashimoto M, Komatsu K, Minato N, Miura C, Kakizawa S, Yamaji Y, Oshima K, Namba S. Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch-inducing phytoplasma (PoiBI). FEMS Microbiol Lett 2011; 324:38-47. [PMID: 22092762 DOI: 10.1111/j.1574-6968.2011.02384.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 11/26/2022] Open
Abstract
Poinsettia branch-inducing phytoplasma (PoiBI) is a phytopathogenic bacterium that infects poinsettia, and is associated with the free-branching morphotype (characterized by many axillary shoots and flowers) of many commercially grown poinsettias. The major membrane proteins of phytoplasmas are classified into three general types, that is, immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). These membrane proteins are often used as targets for the production of antibodies used in phytoplasma detection. Herein, we cloned and sequenced the imp and idpA genes of PoiBI strains from 26 commercial poinsettia cultivars. Although the amino acid sequences of the encoded IdpA proteins were invariant, those of the encoded Imp varied among the PoiBI isolates, with no synonymous nucleotide substitution. Western blotting and immunohistochemical analyses revealed that the amount of Imp expressed exceeded that of IdpA, in contrast to the case of a related phytoplasma-disease, western X-disease, for which the major membrane protein appears to be IdpA, not Imp. These results suggest that even phylogenetically close phytoplasmas express different types of major membrane proteins.
Collapse
Affiliation(s)
- Yutaro Neriya
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S. Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS One 2011; 6:e23242. [PMID: 21858041 PMCID: PMC3156718 DOI: 10.1371/journal.pone.0023242] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/08/2011] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls.
Collapse
Affiliation(s)
- Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Ishii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Kakizawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoko Sugawara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaro Neriya
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misako Himeno
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nami Minato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Miura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Shiraishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 2011; 6:e22571. [PMID: 21799902 PMCID: PMC3143171 DOI: 10.1371/journal.pone.0022571] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022] Open
Abstract
Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.
Collapse
|
19
|
Petrzik K, Krawczyk K, Zwolinska A. Two high-copy plasmids found in plants associated with strains of "Candidatus Phytoplasma asteris". Plasmid 2011; 66:122-7. [PMID: 21723316 DOI: 10.1016/j.plasmid.2011.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 11/25/2022]
Abstract
Complete sequences for two plasmids associated with two strains of "Candidatus Phytoplasma asteris" have been obtained. The plasmid named pPARG1 was found in Rehmannia glutinosa L. associated with phytoplasma classified in the 16Sr I-C subgroup. Plasmid pPABN1 was from phytoplasma associated with infected winter oilseed rape and classified in the 16Sr I-B subgroup. The plasmids pPARG1 (4371 nt) and pPABN1 (3529 nt) have high A+T content of about 75%, similar to that of phytoplasma genomes. Six and five open reading frames longer than 100 amino acids and organized on the same strand were recognized on pPARG1 and pPABN1, respectively. A segment about 1.6 kbp long sharing high sequence identity with the Onion yellows phytoplasma genome was found in pPABN1.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | | |
Collapse
|
20
|
Saccardo F, Cettul E, Palmano S, Noris E, Firrao G. On the alleged origin of geminiviruses from extrachromosomal DNAs of phytoplasmas. BMC Evol Biol 2011; 11:185. [PMID: 21711564 PMCID: PMC3154185 DOI: 10.1186/1471-2148-11-185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background Several phytoplasmas, wall-less phloem limited plant pathogenic bacteria, have been shown to contain extrachromosomal DNA (EcDNA) molecules encoding a replication associated protein (Rep) similar to that of geminiviruses, a major group of single stranded (ss) DNA plant viruses. On the basis of that observation and of structural similarities between the capsid proteins of geminiviruses and the Satellite tobacco necrosis virus, it has been recently proposed that geminiviruses evolved from phytoplasmal EcDNAs by acquiring a capsid protein coding gene from a co-invading plant RNA virus. Results Here we show that this hypothesis has to be rejected because (i) the EcDNA encoded Rep is not of phytoplasmal origin but has been acquired by phytoplasmas through horizontal transfer from a geminivirus or its ancestor; and (ii) the evolution of geminivirus capsid protein in land plants implies missing links, while the analysis of metagenomic data suggests an alternative scenario implying a more ancient evolution in marine environments. Conclusion The hypothesis of geminiviruses evolving in plants from DNA molecules of phytoplasma origin contrasts with other findings. An alternative scenario concerning the origin and spread of Rep coding phytoplasmal EcDNA is presented and its implications on the epidemiology of phytoplasmas are discussed.
Collapse
Affiliation(s)
- Federica Saccardo
- Dipartimento di Biologia e Protezione delle Piante, Università di Udine, via Scienze 208, 33100 Udine, Italy
| | | | | | | | | |
Collapse
|
21
|
Ishii Y, Oshima K, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Namba S. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 2009; 446:51-7. [PMID: 19631261 DOI: 10.1016/j.gene.2009.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/01/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022]
Abstract
A non-insect-transmissible phytoplasma strain (OY-NIM) was obtained from insect-transmissible strain OY-M by plant grafting using no insect vectors. In this study, we analyzed for the gene structure of plasmids during its maintenance in plant tissue culture for 10 years. OY-M strain has one plasmid encoding orf3 gene which is thought to be involved in insect transmissibility. The gradual loss of OY-NIM plasmid sequence was observed in subsequent steps: first, the promoter region of orf3 was lost, followed by the loss of then a large region including orf3, and finally the entire plasmid was disappeared. In contrast, no mutation was found in a pseudogene on OY-NIM chromosome in the same period, indicating that OY-NIM plasmid evolved more rapidly than the chromosome-encoded gene tested. Results revealed an actual evolutionary process of OY plasmid, and provide a model for the stepwise process in reductive evolution of plasmids by environmental adaptation. Furthermore, this study indicates the great plasticity of plasmids throughout the evolution of phytoplasma.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|