1
|
Joo H, Eom H, Cho Y, Rho M, Song WJ. Discovery and Characterization of Polymyxin-Resistance Genes pmrE and pmrF from Sediment and Seawater Microbiome. Microbiol Spectr 2023; 11:e0273622. [PMID: 36602384 PMCID: PMC9927302 DOI: 10.1128/spectrum.02736-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are the last-line antibiotics used to treat Gram-negative pathogens. Thus, the discovery and biochemical characterization of the resistance genes against polymyxins are urgently needed for diagnosis, treatment, and novel antibiotic design. Herein, we report novel polymyxin-resistance genes identified from sediment and seawater microbiome. Despite their low sequence identity against the known pmrE and pmrF, they show in vitro activities in UDP-glucose oxidation and l-Ara4N transfer to undecaprenyl phosphate, respectively, which occur as the part of lipid A modification that leads to polymyxin resistance. The expression of pmrE and pmrF also showed substantially high MICs in the presence of vanadate ions, indicating that they constitute polymyxin resistomes. IMPORTANCE Polymyxins are one of the last-resort antibiotics. Polymyxin resistance is a severe threat to combat multidrug-resistant pathogens. Thus, up-to-date identification and understanding of the related genes are crucial. Herein, we performed structure-guided sequence and activity analysis of five putative polymyxin-resistant metagenomes. Despite relatively low sequence identity to the previously reported polymyxin-resistance genes, at least four out of five discovered genes show reactivity essential for lipid A modification and polymyxin resistance, constituting antibiotic resistomes.
Collapse
Affiliation(s)
- Hwanjin Joo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Youna Cho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Mucoid switch in Burkholderia cepacia complex bacteria: Triggers, molecular mechanisms and implications in pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:113-140. [PMID: 31128746 DOI: 10.1016/bs.aambs.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria produce a vast range of exopolysaccharides (EPSs) to thrive in diverse environmental niches and often display a mucoid phenotype in solid media. One such exopolysaccharide, cepacian, is produced by bacteria of the genus Burkholderia and is of interest due to its role in pathogenesis associated with lung infections in cystic fibrosis (CF) patients. Cepacian is a repeat-unit polymer that has been implicated in biofilm formation, immune system evasion, interaction with host cells, resistance against antimicrobials, and virulence. Its biosynthesis proceeds through the Wzy-dependent polymerization and secretion mechanism, which requires a multienzymatic complex. Key aspects of its structure, genetic organization, and the regulatory network involved in mucoid switch and regulation of cepacian biosynthesis at transcriptional and posttranscriptional levels are reviewed. It is also evaluated the importance of cepacian biosynthesis/regulation key players as evolutionary targets of selection and highlighted the complexity of the regulatory network, which allows cells to coordinate the expression of metabolic functions to the ones of the cell wall, in order to be successful in ever changing environments, including in the interaction with host cells.
Collapse
|
3
|
Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025288. [PMID: 27503996 DOI: 10.1101/cshperspect.a025288] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance among pathogenic bacteria is an ever-increasing issue worldwide. Unfortunately, very little has been achieved in the pharmaceutical industry to combat this problem. This has led researchers and the medical field to revisit past drugs that were deemed too toxic for clinical use. In particular, the cyclic cationic peptides polymyxin B and colistin, which are specific for Gram-negative bacteria, have been used as "last resort" antimicrobials. Before the 1980s, these drugs were known for their renal and neural toxicities; however, new clinical practices and possibly improved manufacturing have made them safer to use. Previously suggested to primarily attack the membranes of Gram-negative bacteria and to not easily select for resistant mutants, recent research exploring resistance and mechanisms of action has provided new perspectives. This review focuses primarily on the proposed alternative mechanisms of action, known resistance mechanisms, and how these support the alternative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrik Mlynárčik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Loutet SA, El-Halfawy OM, Jassem AN, López JMS, Medarde AF, Speert DP, Davies JE, Valvano MA. Identification of synergists that potentiate the action of polymyxin B against Burkholderia cenocepacia. Int J Antimicrob Agents 2015; 46:376-80. [PMID: 26187366 DOI: 10.1016/j.ijantimicag.2015.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/19/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Burkholderia cenocepacia and other members of the Burkholderia cepacia complex (BCC) are highly multidrug-resistant bacteria that cause severe pulmonary infections in patients with cystic fibrosis. A screen of 2686 compounds derived from marine organisms identified molecules that could synergise with polymyxin B (PMB) to inhibit the growth of B. cenocepacia. At 1 μg/mL, five compounds synergised with PMB and inhibited the growth of B. cenocepacia by ≥70% compared with growth in PMB alone. Follow-up testing revealed that one compound from the screen, the aminocoumarin antibiotic novobiocin, synergised with PMB and colistin against tobramycin-resistant clinical isolates of B. cenocepacia and Burkholderia multivorans. In parallel, we show that novobiocin sensitivity is common among BCC species and that these bacteria are even more susceptible to an alternative aminocoumarin, clorobiocin, which also had an additive effect with PMB against B. cenocepacia. These studies support using aminocoumarin antibiotics to treat BCC infections and show that synergisers can be found to increase the efficacy of antimicrobial peptides and polymyxins against BCC bacteria.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Omar M El-Halfawy
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Agatha N Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - David P Speert
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Julian E Davies
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Miguel A Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants. mBio 2015; 6:e00679. [PMID: 26045541 PMCID: PMC4462625 DOI: 10.1128/mbio.00679-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that "virulence" depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. IMPORTANCE Virulence and pathogenicity are properties ascribed to microbes, which actually require careful consideration of the host. Using the term "pathogen" to define a microbe without considering its host has recently been debated, since the microbe's capacity to establish a niche in a given host is a critical feature associated with infection. Opportunistic bacteria are a perfect example of microbes whose ability to cause disease is intimately related to the host's ability to recognize and respond to the infection. Here, we use the opportunistic bacterium Burkholderia cenocepacia and the host plant Arabidopsis thaliana to investigate the role of bacterial surface molecules, namely, lipopolysaccharide and flagellin, in contributing to infection and also in eliciting a host response. We reveal that both molecules can be modified by glycosylation, and although the modifications are critical for the bacteria to establish an infection, they do not impact the host's ability to recognize the pathogen.
Collapse
|
6
|
Duan XC, Lu AM, Gu B, Cai ZP, Ma HY, Wei S, Laborda P, Liu L, Voglmeir J. Functional characterization of the UDP-xylose biosynthesis pathway in Rhodothermus marinus. Appl Microbiol Biotechnol 2015; 99:9463-72. [PMID: 26033773 DOI: 10.1007/s00253-015-6683-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
UDP-glucuronic acid dehydrogenase (UGD) and UDP-xylose synthase (UXS) are the two enzymes responsible for the biosynthesis of UDP-xylose from UDP-glucose. Several UGDs from bacterial sources, which oxidize UDP-glucose to glucuronic acid, have been found and functionally characterized whereas only few reports on bacterial UXS isoforms exist. Rhodothermus marinus, a halothermophilic bacterium commonly found in hot springs, proved to be a valuable source of carbohydrate active enzymes of biotechnological interest, such as xylanases, mannanases, and epimerases. However, no enzymes of R. marinus involved in the biosynthesis or modification of nucleotide sugars have been reported yet. Herein, we describe the cloning and characterization of two putative UGD (RmUGD1 and RmUGD2) and one UXS (RmUXS) isoform from this organism. All three enzymes could be expressed in recombinant form and purified to near homogeneity. UPLC- and NMR-based activity tests showed that RmUGD1 and RmUXS are indeed active enzymes, whereas no enzymatic activity could be detected by RmUGD2. Both RmUGD1 and RmUXS showed a temperature optimum of 60 °C, with almost no loss of activity after 1 h exposure at 70 °C. No metal ions were required for enzymatic activities. Zn(2+) ions strongly inhibited both enzymes. RmUGD1 showed higher salt tolerance and had a higher pH optimum than RmUXS. Furthermore, RmUGD1 was inhibited by UDP-xylose at higher concentrations. By coupling recombinant RmUXS and RmUGD1, UDP-xylose could be successfully synthesized directly from UDP-glucose. The high activity of the herein described enzymes make RmUGD1 and RmUXS the first thermo-tolerant biocatalysts for the synthesis of UDP-glucuronic acid and UDP-xylose.
Collapse
Affiliation(s)
- Xu C Duan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ai M Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bin Gu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhi P Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hong Y Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuang Wei
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Pedro Laborda
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an 'old' class of antibiotics. Future Microbiol 2013; 8:711-24. [PMID: 23701329 DOI: 10.2217/fmb.13.39] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing antibiotic resistance in Gram-negative bacteria, particularly in Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae, presents a global medical challenge. No new antibiotics will be available for these 'superbugs' in the near future due to the dry antibiotic discovery pipeline. Colistin and polymyxin B are increasingly used as the last-line therapeutic options for treatment of infections caused by multidrug-resistant Gram-negative bacteria. This article surveys the significant progress over the last decade in understanding polymyxin chemistry, mechanisms of antibacterial activity and resistance, structure-activity relationships and pharmacokinetics/pharmacodynamics. In the 'Bad Bugs, No Drugs' era, we must pursue structure-activity relationship-based approaches to develop novel polymyxin-like lipopeptides targeting polymyxin-resistant Gram-negative 'superbugs'. Before new antibiotics become available, we must optimize the clinical use of polymyxins through the application of pharmacokinetic/pharmacodynamic principles, thereby minimizing the development of resistance.
Collapse
Affiliation(s)
- Tony Velkov
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade Parkville 3052, Victoria, Australia
| | | | | | | | | |
Collapse
|
8
|
Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells. PLoS One 2013; 8:e68874. [PMID: 23844246 PMCID: PMC3700957 DOI: 10.1371/journal.pone.0068874] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/03/2013] [Indexed: 01/05/2023] Open
Abstract
The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.
Collapse
|
9
|
Sousa SA, Feliciano JR, Pinheiro PF, Leitão JH. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase. PLoS One 2013; 8:e56902. [PMID: 23460819 PMCID: PMC3584063 DOI: 10.1371/journal.pone.0056902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - Joana R. Feliciano
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - Pedro F. Pinheiro
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | - Jorge H. Leitão
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
- Department of Bioenginneering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
10
|
Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance inBurkholderia cenocepacia†. Mol Microbiol 2012; 85:962-74. [DOI: 10.1111/j.1365-2958.2012.08154.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Rosales-Reyes R, Saldías MS, Aubert DF, El-Halfawy OM, Valvano MA. The suhB gene of Burkholderia cenocepacia is required for protein secretion, biofilm formation, motility and polymyxin B resistance. MICROBIOLOGY-SGM 2012; 158:2315-2324. [PMID: 22767545 DOI: 10.1099/mic.0.060988-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of Gram-negative opportunistic pathogens that cause severe lung infections in patients with cystic fibrosis and display extreme intrinsic resistance to antibiotics, including antimicrobial peptides. B. cenocepacia BCAL2157 encodes a protein homologous to SuhB, an inositol-1-monophosphatase from Escherichia coli, which was suggested to participate in post-transcriptional control of gene expression. In this work we show that a deletion of the suhB-like gene in B. cenocepacia (ΔsuhB(Bc)) was associated with pleiotropic phenotypes. The ΔsuhB(Bc) mutant had a growth defect manifested by an almost twofold increase in the generation time relative to the parental strain. The mutant also had a general defect in protein secretion, motility and biofilm formation. Further analysis of the type II and type VI secretion systems (T2SS and T6SS) activities revealed that these secretion systems were inactive in the ΔsuhB(Bc) mutant. In addition, the mutant exhibited increased susceptibility to polymyxin B but not to aminoglycosides such as gentamicin and kanamycin. Together, our results demonstrate that suhB(Bc) deletion compromises general protein secretion, including the activity of the T2SS and the T6SS, and affects polymyxin B resistance, motility and biofilm formation. The pleiotropic effects observed upon suhB(Bc) deletion demonstrate that suhB(Bc) plays a critical role in the physiology of B. cenocepacia.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., C.P. 02200 México.,Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - María Soledad Saldías
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Daniel F Aubert
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Omar M El-Halfawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
12
|
Ferreira AS, Silva IN, Oliveira VH, Cunha R, Moreira LM. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front Cell Infect Microbiol 2011; 1:16. [PMID: 22919582 PMCID: PMC3417362 DOI: 10.3389/fcimb.2011.00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022] Open
Abstract
The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico Lisboa, Portugal
| | | | | | | | | |
Collapse
|
13
|
Loutet SA, Di Lorenzo F, Clarke C, Molinaro A, Valvano MA. Transcriptional responses of Burkholderia cenocepacia to polymyxin B in isogenic strains with diverse polymyxin B resistance phenotypes. BMC Genomics 2011; 12:472. [PMID: 21955326 PMCID: PMC3190405 DOI: 10.1186/1471-2164-12-472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/29/2011] [Indexed: 12/04/2022] Open
Abstract
Background Burkholderia cenocepacia is a Gram-negative opportunistic pathogen displaying high resistance to antimicrobial peptides and polymyxins. We identified mechanisms of resistance by analyzing transcriptional changes to polymyxin B treatment in three isogenic B. cenocepacia strains with diverse polymyxin B resistance phenotypes: the polymyxin B-resistant parental strain K56-2, a polymyxin B-sensitive K56-2 mutant strain with heptoseless lipopolysaccharide (LPS) (RSF34), and a derivative of RSF34 (RSF34 4000B) isolated through multiple rounds of selection in polymyxin B that despite having a heptoseless LPS is highly polymyxin B-resistant. Results A heptoseless LPS mutant of B. cenocepacia was passaged through multiple rounds of selection to regain high levels of polymyxin B-resistance. This process resulted in various phenotypic changes in the isolate that could contribute to polymyxin B resistance and are consistent with LPS-independent changes in the outer membrane. The transcriptional response of three B. cenocepacia strains to subinhibitory concentrations of polymyxin B was analyzed using microarray analysis and validated by quantitative Real Time-PCR. There were numerous baseline changes in expression between the three strains in the absence of polymyxin B. In both K56-2 and RSF34, similar transcriptional changes upon treatment with polymyxin B were found and included upregulation of various genes that may be involved in polymyxin B resistance and downregulation of genes required for the synthesis and operation of flagella. This last result was validated phenotypically as both swimming and swarming motility were impaired in the presence of polymyxin B. RSF34 4000B had altered the expression in a larger number of genes upon treatment with polymyxin B than either K56-2 or RSF34, but the relative fold-changes in expression were lower. Conclusions It is possible to generate polymyxin B-resistant isolates from polymyxin B-sensitive mutant strains of B. cenocepacia, likely due to the multifactorial nature of polymyxin B resistance of this bacterium. Microarray analysis showed that B. cenocepacia mounts multiple transcriptional responses following exposure to polymyxin B. Polymyxin B-regulated genes identified in this study may be required for polymyxin B resistance, which must be tested experimentally. Exposure to polymyxin B also decreases expression of flagellar genes resulting in reduced swimming and swarming motility.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, the University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol 2011; 1:6. [PMID: 22919572 PMCID: PMC3417367 DOI: 10.3389/fcimb.2011.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, Ontario, Canada
| | | |
Collapse
|
15
|
Loutet SA, Valvano MA. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Front Microbiol 2011; 2:159. [PMID: 21811491 PMCID: PMC3143681 DOI: 10.3389/fmicb.2011.00159] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 01/04/2023] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, ON, Canada
| | | |
Collapse
|
16
|
Fang K, Zhao H, Sun C, Lam CMC, Chang S, Zhang K, Panda G, Godinho M, Martins dos Santos VAP, Wang J. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC SYSTEMS BIOLOGY 2011; 5:83. [PMID: 21609491 PMCID: PMC3123600 DOI: 10.1186/1752-0509-5-83] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. RESULTS We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. CONCLUSIONS As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.
Collapse
Affiliation(s)
- Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Structure of Burkholderia cepacia UDP-glucose dehydrogenase (UGD) BceC and role of Tyr10 in final hydrolysis of UGD thioester intermediate. J Bacteriol 2011; 193:3978-87. [PMID: 21602353 DOI: 10.1128/jb.01076-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Burkholderia cepacia complex (BCC) are serious respiratory pathogens in immunocompromised individuals and in patients with cystic fibrosis (CF). They are exceptionally resistant to many antimicrobial agents and have the capacity to spread between patients, leading to a decline in lung function and necrotizing pneumonia. BCC members often express a mucoid phenotype associated with the secretion of the exopolysaccharide (EPS) cepacian. There is much evidence supporting the fact that cepacian is a major virulence factor of BCC. UDP-glucose dehydrogenase (UGD) is responsible for the NAD-dependent 2-fold oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronic acid (UDP-GlcA), which is a key step in cepacian biosynthesis. Here, we report the structure of BceC, determined at 1.75-Å resolution. Mutagenic studies were performed on the active sites of UGDs, and together with the crystallographic structures, they elucidate the molecular mechanism of this family of sugar nucleotide-modifying enzymes. Superposition with the structures of human and other bacterial UGDs showed an active site with high structural homology. This family contains a strictly conserved tyrosine residue (Y10 in BceC; shown in italics) within the glycine-rich motif (GXGYXG) of its N-terminal Rossmann-like domain. We constructed several BceC Y10 mutants, revealing only residual dehydrogenase activity and thus highlighting the importance of this conserved residue in the catalytic activity of BceC. Based on the literature of the UGD/GMD nucleotide sugar 6-dehydrogenase family and the kinetic and structural data we obtained for BceC, we determined Y10 as a key catalytic residue in a UGD rate-determining step, the final hydrolysis of the enzymatic thioester intermediate.
Collapse
|
18
|
Jassem AN, Zlosnik JEA, Henry DA, Hancock REW, Ernst RK, Speert DP. In vitro susceptibility of Burkholderia vietnamiensis to aminoglycosides. Antimicrob Agents Chemother 2011; 55:2256-64. [PMID: 21321142 PMCID: PMC3088185 DOI: 10.1128/aac.01434-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/01/2011] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia complex (BCC) bacteria are opportunistic pathogens that can cause severe disease in cystic fibrosis (CF) patients and other immunocompromised individuals and are typically multidrug resistant. Here we observed that unlike other BCC species, most environmental and clinical Burkholderia vietnamiensis isolates were intrinsically susceptible to aminoglycosides but not to cationic antimicrobial peptides or polymyxin B. Furthermore, strains acquired aminoglycoside resistance during chronic CF infection, a phenomenon that could be induced under tobramycin or azithromycin pressure in vitro. In comparing susceptible and resistant B. vietnamiensis isolates, no gross differences in lipopolysaccharide structure were observed, all had lipid A-associated 4-amino-4-deoxy-L-arabinose residues, and all were resistant to the permeabilizing effects of aminoglycosides, a measure of drug entry via self-promoted uptake. However, susceptible isolates accumulated 5 to 6 times more gentamicin than a resistant isolate, and aminoglycoside susceptibility increased in the presence of an efflux pump inhibitor. B. vietnamiensis is therefore unusual among BCC bacteria in its susceptibility to aminoglycosides and capacity to acquire resistance. Aminoglycoside resistance appears to be due to decreased cellular accumulation as a result of active efflux.
Collapse
Affiliation(s)
- Agatha N. Jassem
- Departments of Pathology and Laboratory Medicine
- Centre for Understanding and Preventing Infection in Children, University of British Columbia, Vancouver, British Columbia, Canada
| | - James E. A. Zlosnik
- Pediatrics
- Centre for Understanding and Preventing Infection in Children, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah A. Henry
- Pediatrics
- Centre for Understanding and Preventing Infection in Children, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland
| | - David P. Speert
- Departments of Pathology and Laboratory Medicine
- Pediatrics
- Centre for Understanding and Preventing Infection in Children, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Chen YY, Ko TP, Lin CH, Chen WH, Wang AHJ. Conformational change upon product binding to Klebsiella pneumoniae UDP-glucose dehydrogenase: a possible inhibition mechanism for the key enzyme in polymyxin resistance. J Struct Biol 2011; 175:300-10. [PMID: 21536136 DOI: 10.1016/j.jsb.2011.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/22/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Cationic modification of lipid A with 4-amino-4-deoxy-L-arabinopyranose (L-Ara4N) allows the pathogen Klebsiella pneumoniae to resist the antibiotic polymyxin and other cationic antimicrobial peptides. UDP-glucose dehydrogenase (Ugd) catalyzes the NAD⁺-dependent twofold oxidation of UDP-glucose (UPG) to produce UDP-glucuronic acid (UGA), a requisite precursor in the biosynthesis of L-Ara4N and bacterial exopolysaccharides. Here we report five crystal structures of K. pneumoniae Ugd (KpUgd) in its apo form, in complex with UPG, UPG/NADH, two UGA molecules, and finally with a C-terminal His₆-tag. The UGA-complex structure differs from the others by a 14° rotation of the N-terminal domain toward the C-terminal domain, and represents a closed enzyme conformation. It also reveals that the second UGA molecule binds to a pre-existing positively charged surface patch away from the active site. The enzyme is thus inactivated by moving the catalytically important residues C253, K256 and D257 from their original positions. Kinetic data also suggest that KpUgd has multiple binding sites for UPG, and that UGA is a competitive inhibitor. The conformational changes triggered by UGA binding to the allosteric site can be exploited in designing potent inhibitors.
Collapse
Affiliation(s)
- Ying-Yin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Loutet SA, Mussen LE, Flannagan RS, Valvano MA. A two-tier model of polymyxin B resistance in Burkholderia cenocepacia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:278-285. [PMID: 23761261 DOI: 10.1111/j.1758-2229.2010.00222.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Burkholderia cenocepacia is an environmental bacterium causing serious human opportunistic infections and is extremely resistant to multiple antibiotics including antimicrobial peptides, such as polymyxin B (PmB). Extreme antibiotic resistance is attributed to outer membrane impermeability ('intrinsic' resistance). Previous work showed that production of full-length lipopolysaccharide (LPS) prevents surface binding of PmB. We hypothesized that two tiers of resistance mechanisms rendering different thresholds of PmB resistance exist in B. cenocepacia. To test this notion, candidate genes were mutated in two isogenic strains expressing full-length LPS or truncated LPS devoid of heptose ('heptoseless LPS') respectively. We uncovered various proteins required for PmB resistance only in the strain with heptoseless LPS. These proteins are not involved in preventing PmB binding to whole cells or permeabilization of the outer membrane. Our results support a two-tier model of PmB resistance in B. cenocepacia. One tier sets a very high threshold mediated by the LPS and the outer membrane permeability barrier. The second tier sets a lower threshold that may play a role in PmB resistance only when outer membrane permeability is compromised. This model may be of general applicability to understanding the high antimicrobial peptide resistance of environmental opportunistic pathogens.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Department of Medicine, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | |
Collapse
|
21
|
Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010; 87:31-40. [PMID: 20390415 DOI: 10.1007/s00253-010-2528-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 closely related species of the beta-proteobacteria subdivision that emerged in the 1980s as important human pathogens, especially to patients suffering from cystic fibrosis. Since then, a remarkable progress has been achieved on the taxonomy and molecular identification of these bacteria. Although some progress have been achieved on the knowledge of the pathogenesis traits and virulence factors used by these bacteria, further work envisaging the identification of potential targets for the scientifically based design of new therapeutic strategies is urgently needed, due to the very difficult eradication of these bacteria with available therapies. An overview of these aspects of Bcc pathogenesis and opportunities for the design of future therapies is presented and discussed in this work.
Collapse
|
22
|
Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. Appl Environ Microbiol 2010; 76:3170-6. [PMID: 20348312 DOI: 10.1128/aem.03024-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Burkholderia cenocepacia is a multidrug-resistant opportunistic pathogen that infects the airways of patients with cystic fibrosis (CF) and can survive intracellularly in macrophages and epithelial cells. The gentamicin protection assay, which relies on the poor ability of gentamicin or other aminoglycosides to permeate eukaryotic cell membranes, is traditionally employed to quantify intracellular bacteria. However, the high resistance of these bacteria to aminoglycosides hampers the use of the gentamicin protection assay to investigate intracellular infection by B. cenocepacia. Here, we report the construction of gentamicin-sensitive strains of B. cenocepacia carrying a deletion of the BCAL1674, BCAL1675, and BCAL1676 genes that form an operon encoding an AmrAB-OprA-like efflux pump. We show that bacteria carrying this deletion are hypersensitive to gentamicin and also delay phagolysosomal fusion upon infection of RAW 264.7 murine macrophages, as previously demonstrated for the parental strain. We also demonstrate for the first time that low concentrations of gentamicin can be used to effectively kill extracellular bacteria and reliably quantify the intracellular infection by B. cenocepacia, which can replicate in RAW 264.7 macrophages.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Colistin is a 50-year-old antibiotic that is being used increasingly as a 'last-line' therapy to treat infections caused by multidrug-resistant Gram-negative bacteria, when essentially no other options are available. Despite its age, or because of its age, there has been a dearth of knowledge on its pharmacological and microbiological properties. This review focuses on recent studies aimed at optimizing the clinical use of this old antibiotic. RECENT FINDINGS A number of factors, including the diversity in the pharmaceutical products available, have hindered the optimal use of colistin. Recent advances in understanding of the pharmacokinetics and pharmacodynamics of colistin, and the emerging knowledge on the relationship between the pharmacokinetics and pharmacodynamics, provide a solid base for optimization of dosage regimens. The potential for nephrotoxicity has been a lingering concern, but recent studies provide useful new information on the incidence, severity and reversibility of this adverse effect. Recent approaches to the use of other antibiotics in combination with colistin hold promise for increased antibacterial efficacy with less potential for emergence of resistance. SUMMARY Because few, if any, new antibiotics with activity against multidrug-resistant Gram-negative bacteria will be available within the next several years, it is essential that colistin is used in ways that maximize its antibacterial efficacy and minimize toxicity and development of resistance. Recent developments have improved use of colistin in the 21st century.
Collapse
|
24
|
Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol 2009; 76:441-50. [PMID: 19948863 DOI: 10.1128/aem.01828-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Burkholderia includes strains pathogenic to animals and plants, bioremediators, or plant growth promoters. Genome sequence analyses of representative Burkholderia cepacia complex (Bcc) and non-Bcc strains for the presence of the bce-I gene cluster, directing the biosynthesis of the exopolysaccharide (EPS) cepacian, further extended this previously described cluster by another 9 genes. The genes in the bce-II cluster were named bceM to bceU and encode products putatively involved in nucleotide sugar precursor biosynthesis and repeat unit assembly, modification, and translocation across the cytoplasmic membrane. Disruption of the B. cepacia IST408 bceQ and bceR genes, encoding a putative repeat unit flippase and a glycosyltransferase, respectively, resulted in the abolishment of cepacian biosynthesis. A mutation in the bceS gene, encoding a putative acyltransferase, did not affect EPS production yield significantly but decreased its acetylation content by approximately 20%. Quantitative real-time reverse transcription-PCR experiments confirmed the induction of genes in the bce-I and bce-II clusters in a Burkholderia multivorans EPS producer clinical isolate in comparison to the level for its isogenic EPS-defective strain. Fourier Transform infrared spectroscopy analysis confirmed that the exopolysaccharide produced by 10 Burkholderia isolates tested was cepacian. The ability of Burkholderia strains to withstand desiccation and metal ion stress was higher when bacteria were incubated in the presence of 2.5 g/liter of cepacian, suggesting that this EPS plays a role in the survival of these bacteria by contributing to their ability to thrive in different environments.
Collapse
|
25
|
Sousa SA, Ramos CG, Moreira LM, Leitão JH. The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. MICROBIOLOGY-SGM 2009; 156:896-908. [PMID: 19942656 DOI: 10.1099/mic.0.035139-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Burkholderia cepacia complex (Bcc) emerged as problematic opportunistic pathogens to cystic fibrosis (CF) patients. Although several virulence factors have been identified in Bcc, the knowledge of their relative contribution to Bcc pathogenicity remains scarce. In this work, we describe the identification and characterization of a B. cepacia IST408 mutant containing a disruption in the hfq gene. In other bacteria, Hfq is a global regulator of metabolism, acting as an RNA chaperone involved in the riboregulation of target mRNAs by small regulatory non-coding RNAs (sRNAs). The B. cepacia Hfq protein was overproduced as a histidine-tagged derivative, and we show evidence that the protein forms hexamers and binds sRNAs. When provided in trans, the B. cepacia IST408 hfq gene complemented the Escherichia coli hfq mutant strain GS081. Our results also show that the B. cepacia hfq mutant is more susceptible to stress conditions mimicking those faced by Bcc bacteria when infecting the CF host. In addition, the B. cepacia hfq mutant and two hfq mutants derived from B. dolosa and B. ambifaria clinical isolates also exhibited a reduced ability to colonize and kill the nematode Caenorhabditis elegans, used as an infection model. These data, together with the conservation of Hfq orthologues among Bcc, strongly suggest that Hfq plays a major role in the survival of Bcc under stress conditions, contributing to the success of Bcc as CF pathogens.
Collapse
Affiliation(s)
- Silvia A Sousa
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Christian G Ramos
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonilde M Moreira
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H Leitão
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
26
|
Ortega X, Silipo A, Saldías MS, Bates CC, Molinaro A, Valvano MA. Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide: truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J Biol Chem 2009; 284:21738-51. [PMID: 19525227 DOI: 10.1074/jbc.m109.008532] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope.
Collapse
Affiliation(s)
- Ximena Ortega
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|