1
|
Hayasaka M, Hamajima L, Yoshida Y, Mori R, Kato H, Suzuki H, Tsurigami R, Kojima T, Kato M, Shimizu M. Phenanthrene degradation by a flavoprotein monooxygenase from Phanerodontia chrysosporium. Appl Environ Microbiol 2025; 91:e0157424. [PMID: 39898659 PMCID: PMC11921375 DOI: 10.1128/aem.01574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Phenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is degraded by white-rot fungi like Phanerochaete chrysosporium (the fungus has been renamed as Phanerodontia chrysosporium). PHEN is metabolized by P. chrysosporium and transformed into various monohydroxylated and dihydroxylated products. These intermediates are further degraded by cleavage of the aromatic ring. However, the enzymes involved in PHEN conversion in P. chrysosporium remain largely unidentified. We aimed to identify and characterize the P. chrysosporium enzymes involved in the degradation of PHEN and its intermediates. Recombinant P. chrysosporium flavoprotein monooxygenase 11 (FPMO11), a homolog of the salicylate 1-monooxygenase from the naphthalene-degrading bacterium Pseudomonas putida G7, was overexpressed in Escherichia coli. FPMO11 catalyzes the oxidative decarboxylation of 1-hydroxy-2-naphthoate (1H2N) and 2-hydroxy-1-naphthoate (2H1N) to 1,2-dihydroxynaphthalene (1,2DHN). To the best of our knowledge, this is the first study to identify and characterize enzymes with 1H2N and 2H1N monooxygenase activities in members of the FPMO superfamily. Additionally, our search for a dioxygenase with the ability to catalyze the aromatic ring cleavage of 1,2DHN led to the identification of intradiol dioxygenase (IDD) 1 and IDD2 from P. chrysosporium, which catalyzes the ring cleavage of 1,2DHN. Thus, this study also identified, for the first time, intradiol 1,2DHN dioxygenase activity in members of the IDD superfamily. The findings highlight the unique substrate spectra of FPMO11 and IDDs, rendering them attractive candidates for biotechnological applications, especially mitigation of environmental and health risks associated with PAH pollution.IMPORTANCEPhenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is a widely studied pollutant in environmental science and toxicology due to its presence in fossil fuels, tobacco smoke, and as a byproduct of incomplete combustion processes. White-rot fungi like P. chrysosporium can degrade PHEN through the production of extracellular oxidative enzymes. We investigated the properties of PHEN-degrading enzymes in P. chrysosporium, specifically one flavoprotein monooxygenase (FPMO11) and two intradiol dioxygenases (IDD1 and IDD2). Our findings indicate that the enzymes catalyze the aromatic ring cleavage of PHEN, using the intermediates as substrates, transforming them into less harmful and more biodegradable compounds. This could help reduce environmental pollution and mitigate health risks associated with PAH exposure. The potential of these enzymes for biotechnological applications is also highlighted, emphasizing their critical role in understanding PAH degradation by white-rot fungi.
Collapse
Affiliation(s)
- Mika Hayasaka
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Link Hamajima
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Yuki Yoshida
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Reini Mori
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | | | | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | |
Collapse
|
2
|
Al Farraj DA, Hadibarata T, Yuniarto A, Alkufeidy RM, Alshammari MK, Syafiuddin A. Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess Biosyst Eng 2020; 43:2305-2314. [DOI: 10.1007/s00449-020-02415-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
|
3
|
Shon JC, Noh YJ, Kwon YS, Kim JH, Wu Z, Seo JS. The impact of phenanthrene on membrane phospholipids and its biodegradation by Sphingopyxis soli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110254. [PMID: 32007746 DOI: 10.1016/j.ecoenv.2020.110254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The direct interactions of bacterial membranes and polycyclic aromatic hydrocarbons (PAHs) strongly influence the biological processes, such as metabolic activity and uptake of substrates due to changes in membrane lipids. However, the elucidation of adaptation mechanisms as well as membrane phospholipid alterations in the presence of phenanthrene (PHE) from α-proteobacteria has not been fully explored. This study was conducted to define the degradation efficiency of PHE by Sphingopyxis soli strain KIT-001 in a newly isolated from Jeonju river sediments and to characterize lipid profiles in the presence of PHE in comparison to cells grown on glucose using quantitative lipidomic analysis. This strain was able to respectively utilize 1-hydroxy-2-naphthoic acid and salicylic acid as sole carbon source and approximately 90% of PHE (50 mg/L) was rapidly degraded via naphthalene route within 1 day incubation. In the cells grown on PHE, strain KIT-001 appeared to dynamically change profiles of metabolite and lipid in comparison to cells grown on glucose. The levels of primary metabolites, phosphatidylethanolamines (PE), and phosphatidic acids (PA) were significantly decreased, whereas the levels of phosphatidylcholines (PC) and phosphatidylglycerols (PG) were significantly increased. The adaptation mechanism of Sphingopyxis sp. regarded mainly the accumulation of bilayer forming lipids and anionic lipids to adapt more quickly under restricted nutrition and toxicity condition. Hence, these findings are conceivable that strain KIT-001 has a good adaptive ability and biodegradation for PHE through the alteration of phospholipids, and will be helpful for applications for effective bioremediation of PAHs-contaminated sites.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Zhexue Wu
- Mass Spectrometry Convergence Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
4
|
Xu X, Liu W, Wang W, Tian S, Jiang P, Qi Q, Li F, Li H, Wang Q, Li H, Yu H. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1030-1038. [PMID: 30901777 DOI: 10.1016/j.scitotenv.2019.02.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The Yellow River Delta (YRD), being close to Shengli Oilfield, is at high risk for petroleum oil pollution. The aim of this study was to isolate halotolerant phenanthrene (PHE) degrading bacteria for dealing with this contaminates in salinity environment. Two bacterial strains assigned as FM6-1 and FM8-1 were successfully screened from oil contaminated soil in the YRD. Morphological and molecular analysis suggested that strains FM6-1 and FM8-1 were belonging to Delftia sp. and Achromobacter sp., respectively. Bacterial growth of both strains was not dependent on NaCl, however, grew well under extensive NaCl concentration. The optimum NaCl concentration for bacterial production of strain FM8-1 was 4% (m/v), whereas for strain FM6-1, growth was not affected within 2.5% NaCl. Both strains could use the tested aromatic hydrocarbons (naphthalene, phenanthrene, fluoranthene and pyrene) and aliphatic hydrocarbons (C12, C16, C20 and C32) as sole carbon source. The optimized biodegradation conditions for strain FM6-1 were pH 7, 28 °C and 2% NaCl, for strain FM8-1 were pH 8, 28 °C and 2.5% NaCl. The highest biodegradation rate of strains FM6-1 and FM8-1 was found at 150 mg/L PHE and 200 mg/L, respectively. In addition, strainsFM8-1 showed a superior biodegradation ability to strain FM6-1 at each optimized condition. The PHE biodegradation process by both strains well fitted to first-order kinetic models and the k1 values were calculated to be 0.1974 and 0.1070 per day. Strain FM6-1 metabolized PHE via a "phthalic acid" route, while strain FM8-1 metabolized PHE through the "naphthalene" route. This project not only obtained two halotolerant petroleum hydrocarbon degraders but also provided a promising remediation approach for solving oil pollutants in salinity environments.
Collapse
Affiliation(s)
- Xingjian Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China.
| | - Wenming Liu
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Wei Wang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Shuhua Tian
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Pan Jiang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Qige Qi
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Fengjiao Li
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Haiyan Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Changchun University of Science and Technology, Changchun 130022, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
5
|
Elyamine AM, Moussa MG, Afzal J, Rana MS, Imran M, Zhao X, Hu CX. Modified Rice Straw Enhanced Cadmium (II) Immobilization in Soil and Promoted the Degradation of Phenanthrene in Co-Contaminated Soil. Int J Mol Sci 2019; 20:ijms20092189. [PMID: 31058819 PMCID: PMC6539957 DOI: 10.3390/ijms20092189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 11/25/2022] Open
Abstract
Very limited information is available about heavy metal-polycyclic aromatic hydrocarbons (PAHs) depollution involving the modified natural material in soil. Using phenanthrene and cadmium (Cd) as model, this study investigated the effect(s) of modified rice straw by a NaOH solution and on PAHs, heavy metal availability, and their interactions. Treatment included chemical contaminant with/without modified/unmodified rice straw. Fourier Transform Infrared (FTIR) analysis revealed that certain functional groups including anionic matters groups, which can a complex with Cd2+, were exposed on the modified rice straw surfaces. Therefore, Cd concentration was significantly reduced by about 60%, 57%, 62.5 %, and, 64% in the root, shoot, CaCl2, diethylenetriaminepentaacetic acid (DTPA), and extractable Cd, respectively. Subsequently, the prediction of the functional profile of the soil metagenome using Clusters Orthologous Groups (COGs) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the significantly changed individual COGs belonged to the carbohydrate metabolism, ion transports, and signaling (including cytochrome P450s) categories. This indicated that ion transports might be involved in Cd management, while carbohydrate metabolism, including bisphenol, benzoate, ethylbenzene degradation, and cytochrome P450s, were rather involved in phenanthrene metabolism. The exposed functional group might serve as an external substrate, and P450s might serve as a catalyst to activate and initiate phenanthrene metabolism process. These finding offer confirmation that modified straw could promote the reduction of heavy metal and the degradation of PAHs in soil.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
- Faculty of Science and Technology, Department of Life Science, University of Comoros, Moroni 269, Comoros.
| | - Mohamed G Moussa
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl 13759, Egypt.
| | - Javaria Afzal
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Shoab Rana
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Imran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cheng Xiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Fanesi A, Zegeye A, Mustin C, Cébron A. Soil Particles and Phenanthrene Interact in Defining the Metabolic Profile of Pseudomonas putida G7: A Vibrational Spectroscopy Approach. Front Microbiol 2018; 9:2999. [PMID: 30564224 PMCID: PMC6288191 DOI: 10.3389/fmicb.2018.02999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 01/21/2023] Open
Abstract
In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as comparative approaches to discriminate the metabolic responses to PAHs from those to simple carbon sources are seldom considered in mineralization experiments, limiting our knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the absence and presence of different SPs (i.e., sand, clays and humic acids), using either phenanthrene or glucose as the sole carbon and energy source, was characterized using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate classification analysis (i.e., PLS-DA). The different type of SPs specifically altered the metabolic profile of P. putida, especially in combination with phenanthrene. In comparison to the cells grown in the absence of SPs, sand induced no remarkable change in the metabolic profile of the cells, whereas clays and humic acids affected it the most, as revealed by the higher discriminative accuracy (R2, RMSEP and sensitivity) of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene vs. glucose), no effect on the metabolic profile was evident in the absence of SPs or in the presence of sand. On the other hand, with clays and humic acids, more pronounced spectral clusters between cells grown on glucose or on phenanthrene were evident, suggesting that these SPs modify the way cells access and metabolize PAHs. The macromolecular changes regarded mainly protein secondary structures (a shift from α-helices to β-sheets), amino acid levels, nucleic acid conformation and cell wall carbohydrates. Our results provide new interesting evidences that SPs specifically interact with PAHs in defining bacteria metabolic profiles and further emphasize the importance of studying the interaction of bacteria with their surrounding matrix to deeply understand PAHs degradation in soils.
Collapse
Affiliation(s)
- Andrea Fanesi
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Asfaw Zegeye
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Christian Mustin
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Aurélie Cébron
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| |
Collapse
|
7
|
Huang X, Shi J, Cui C, Yin H, Zhang R, Ma X, Zhang X. Biodegradation of phenanthrene byRhizobium petroleariumSL-1. J Appl Microbiol 2016; 121:1616-1626. [DOI: 10.1111/jam.13292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- X. Huang
- Key Laboratory of Microbial Resources Collection and Preservation; Ministry of Agriculture; Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; Beijing China
- College of Resources Environment and Tourism; Capital Normal University; Beijing China
| | - J. Shi
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process; School of Resources and Environmental Engineering; East China University of Science and Technology; Shanghai China
| | - C. Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process; School of Resources and Environmental Engineering; East China University of Science and Technology; Shanghai China
| | - H. Yin
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - R. Zhang
- Key Laboratory of Microbial Resources Collection and Preservation; Ministry of Agriculture; Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; Beijing China
- College of Resources Environment and Tourism; Capital Normal University; Beijing China
| | - X. Ma
- Key Laboratory of Microbial Resources Collection and Preservation; Ministry of Agriculture; Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; Beijing China
| | - X. Zhang
- Key Laboratory of Microbial Resources Collection and Preservation; Ministry of Agriculture; Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
8
|
Effects of Polycyclic Aromatic Hydrocarbon Mixtures on Degradation, Gene Expression, and Metabolite Production in Four Mycobacterium Species. Appl Environ Microbiol 2016; 82:3357-3369. [PMID: 27037123 DOI: 10.1128/aem.00100-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that are hazardous to human health. It has been demonstrated that members of the Mycobacterium genus are among the most effective degraders of PAHs, but few studies have focused on the degradation of PAH mixtures. In this study, single and mixed PAH metabolism was investigated in four phylogenetically distinct Mycobacterium species with respect to (i) parent compound degradation, (ii) bacterial growth, (iii) catabolic gene expression, and (iv) metabolite production. Synergistic and antagonistic effects on four model PAH compounds (benzo[a]pyrene, pyrene, fluoranthene, and phenanthrene) characterized degradation of mixtures in a strain- and mixture-dependent manner. The mixture of pyrene and phenanthrene, in particular, resulted in antagonized degradation by three out of four bacterial species, and further studies were narrowed to investigate the degradation of this mixture. Antagonistic effects persisted over time and were correlated with reduced bacterial growth. Antagonized degradation of PAH was not caused by preferential degradation of secondary PAHs, nor were mixture compounds or concentrations toxic to cells growing on sugars. Reverse transcription-PCR (RT-PCR) studies of the characterized catabolic pathway of phenanthrene showed that in one organism, antagonism of mixture degradation was associated with downregulated gene expression. Metabolite profiling revealed that antagonism in mixture degradation was associated with the shunting of substrate through alternative pathways not used during the degradation of single PAHs. The results of this study demonstrate metabolic differences between single and mixed PAH degradation with consequences for risk assessment and bioremediation of PAH-contaminated sites. IMPORTANCE Mycobacterium species are promising organisms for environmental bioremediation because of their ubiquitous presence in soils and their ability to catabolize aromatic compounds. PAHs can be degraded effectively as single compounds, but mixed substrates often are subject to degradative inhibition, which may explain the persistence of these pollutants in soils. Single and mixed PAH degradation by diverse Mycobacterium species was compared, with associated bacterial growth, gene expression, and metabolite production. The results demonstrate that antagonism characterized degradation in a strain- and mixture-dependent manner. One strain that was versatile in its pathway use of single chemicals also efficiently degraded the mixture, whereas antagonism in other the strains was associated with altered metabolic profiles, indicating unusual pathway use. The impacts of this work on risk assessment and bioremediation modeling studies indicate the need to account for mixture-generated intermediates and to recognize mixture degradation as a property distinct from that of PAH substrate range.
Collapse
|
9
|
Pandey P, Pathak H, Dave S. Microbial Ecology of Hydrocarbon Degradation in the Soil: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/rjet.2016.1.15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Hesham AEL, Mawad AMM, Mostafa YM, Shoreit A. Study of enhancement and inhibition phenomena and genes relating to degradation of petroleum polycyclic aromatic hydrocarbons in isolated bacteria. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Guzik U, Hupert-Kocurek K, Sitnik M, Wojcieszyńska D. Protocatechuate 3,4-dioxygenase: a wide substrate specificity enzyme isolated from Stenotrophomonas maltophilia KB2 as a useful tool in aromatic acid biodegradation. J Mol Microbiol Biotechnol 2014; 24:150-60. [PMID: 24970342 DOI: 10.1159/000362791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protocatechuate 3,4-dioxygenases (P34Os) catalyze the reaction of the ring cleavage of aromatic acid derivatives. It is a key reaction in many xenobiotic metabolic pathways. P34Os characterize narrow substrate specificity. This property is an unfavorable feature in the biodegradation process because one type of pollution is rarely present in the environment. Thus, the following study aimed at the characterization of a P34O from Stenotrophomonas maltophilia KB2, being able to utilize a wide spectrum of aromatic carboxylic acids. A total of 3 mM vanillic acid and 4-hydroxybenzoate were completely degraded during 8 and 4.5 h, respectively. When cells of strain KB2 were grown on 9 mM 4-hydroxybenzoate, P34O was induced. Biochemical analysis revealed that the examined enzyme was similar to other known P34Os, but showed untypical wide substrate specificity. A high activity of P34O against 2,4- and 3,5-dihydroxybenzoate was observed. As these substrates do not possess ortho configuration hydroxyl groups, it is postulated that their cleavage could be connected with their monodentate binding of substrate to the active site. Since this enzyme characterizes untypical wide substrate specificity it makes it a useful tool in applications for environmental clean-up purposes.
Collapse
Affiliation(s)
- Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | | | | |
Collapse
|
12
|
Feng TC, Cui CZ, Dong F, Feng YY, Liu YD, Yang XM. Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol 2012; 113:779-89. [PMID: 22762374 DOI: 10.1111/j.1365-2672.2012.05386.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/10/2012] [Accepted: 06/27/2012] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the phenanthrene-degrading abilities of the halophilic Martelella species AD-3 under different conditions and to propose a possible metabolic pathway. METHODS AND RESULTS Using HPLC and GC-MS analyses, the phenanthrene-degrading properties of the halophilic strain AD-3 and its metabolites were analysed. This isolate efficiently degraded phenanthrene under multiple conditions characterized by different concentrations of phenanthrene (100-400 mg l(-1) ), a broad range of salinities (0·1-15%) and varying pHs (6·0-10·0). Phenanthrene (200 mg l(-1) ) was completely depleted under 3% salinity and a pH of 9·0 within 6 days. The potential toxicity of phenanthrene and its generated metabolites towards the bacterium Vibrio fischeri was significantly reduced 10 days after the bioassay. On the basis of the identified metabolites, enzyme activities and the utilization of probable intermediates, phenanthrene degradation by strain AD-3 was proposed in two distinct routes. In route I, metabolism of phenanthrene was initiated by the dioxygenation at C-3,4 via 1-hydroxy-2-naphthoic acid, 1-naphthol, salicylic acid and gentisic acid. In route II, phenanthrene was metabolized to 9-phenanthrol and 9,10-phenanthrenequinone. Further study indicated that strain AD-3 exhibited a wide spectrum of substrate utilization including other polycyclic aromatic hydrocarbons (PAHs). CONCLUSIONS The results suggest that strain AD-3 possesses a high phenanthrene biodegradability and that the degradation occurs via two routes that remarkably reduce toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this work presents the first report of phenanthrene degradation by a halophilic PAH-degrading strain via two routes. In the future, the use of halophilic strain AD-3 provides a potential application for efficient PAH-contaminated hypersaline field remediation.
Collapse
Affiliation(s)
- T-C Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
13
|
Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. Appl Environ Microbiol 2011; 78:621-7. [PMID: 22101055 DOI: 10.1128/aem.07137-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein fraction exhibiting 1-hydroxy-2-naphthoic acid (1-H2NA) dioxygenase activity was purified via ion exchange, hydrophobic interactions, and gel filtration chromatography from Arthrobacter phenanthrenivorans sp. nov. strain Sphe3 isolated from a Greek creosote-oil-polluted site. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS-MS) analysis revealed that the amino acid sequences of oligopeptides of the major 45-kDa protein species, as analyzed by SDS-PAGE and silver staining, comprising 29% of the whole sequence, exhibited strong homology with 1-H2NA dioxygenase of Nocardioides sp. strain KP7. A BLAST search of the recently sequenced Sphe3 genome revealed two putative open reading frames, named diox1 and diox2, showing 90% nucleotide identity to each other and 85% identity at the amino acid level with the Nocardia sp. homologue. diox1 was found on an indigenous Sphe3 plasmid, whereas diox2 was located on the chromosome. Both genes were induced by the presence of phenanthrene used as a sole carbon and energy source, and as expected, both were subject to carbon catabolite repression. The relative RNA transcription level of the chromosomal (diox2) gene was significantly higher than that of its plasmid (diox1) homologue. Both diox1 and diox2 putative genes were PCR amplified, cloned, and overexpressed in Escherichia coli. Recombinant E. coli cells expressed 1-H2NA dioxygenase activity. Recombinant enzymes exhibited Michaelis-Menten kinetics with an apparent K(m) of 35 μM for Diox1 and 29 μM for Diox2, whereas they showed similar kinetic turnover characteristics with K(cat)/K(m) values of 11 × 10(6) M(-1) s(-1) and 12 × 10(6) M(-1) s(-1), respectively. Occurrence of two diox1 and diox2 homologues in the Sphe3 genome implies that a replicative transposition event has contributed to the evolution of 1-H2NA dioxygenase in A. phenanthrenivorans.
Collapse
|