1
|
Zhang Z, Xing J, Li X, Lu X, Liu G, Qu Y, Zhao J. Review of research progress on the production of cellulase from filamentous fungi. Int J Biol Macromol 2024; 277:134539. [PMID: 39122065 DOI: 10.1016/j.ijbiomac.2024.134539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Cellulases have been widely used in many fields such as animal feed, textile, food, lignocellulose bioconversion, etc. Efficient and low-cost production of cellulases is very important for its industrial application, especially in bioconversion of lignocellulosic biomass. Filamentous fungi are currently widely used in industrial cellulase production due to their ability to secrete large amounts of active free cellulases extracellularly. This review comprehensively summarized the research progress on cellulases from filamentous fungi in recent years, including filamentous fungi used for cellulase production and its modification strategies, enzyme compositions, characterization methods and application of fungal cellulase systems, and the production of fungal cellulase includes production processes, factors affecting cellulase production such as inducers, fermentation medium, process parameters and their control strategies. Also, the future perspectives and research topics in fungal cellulase production are presented in the end of the review. The review helps to deepen the understanding of the current status of fungal cellulases, thereby promoting the production technology progress and industrial application of filamentous fungal cellulase.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Zuriegat Q, Abubakar YS, Wang Z, Chen M, Zhang J. Emerging Roles of Exocyst Complex in Fungi: A Review. J Fungi (Basel) 2024; 10:614. [PMID: 39330374 PMCID: PMC11433146 DOI: 10.3390/jof10090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The exocyst complex, an evolutionarily conserved octameric protein assembly, plays a central role in the targeted binding and fusion of vesicles at the plasma membrane. In fungal cells, this transport system is essential for polarized growth, morphogenesis, cell wall maintenance and virulence. Recent advances have greatly improved our understanding of the role and regulation of the exocyst complex in fungi. This review synthesizes these developments and focuses on the intricate interplay between the exocyst complex, specific fungal cargos and regulatory proteins. Insights into thestructure of the exocyst and its functional dynamics have revealed new dimensions of its architecture and its interactions with the cellular environment. Furthermore, the regulation of exocyst activity involves complex signaling pathways and interactions with cytoskeletal elements that are crucial for its role in vesicle trafficking. By exploring these emerging themes, this review provides a comprehensive overview of the multifaceted functions of the exocyst complex in fungal biology. Understanding these mechanisms offers potential avenues for novel therapeutic strategies against fungal pathogens and insights into the general principles of vesicle trafficking in eukaryotic cells. The review therefore highlights the importance of the exocyst complex in maintaining cellular functions and its broader implications in fungal pathogenicity and cell biology.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| |
Collapse
|
3
|
van Leeuwe TM, Arentshorst M, Ernst T, Alazi E, Punt PJ, Ram AFJ. Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi. Fungal Biol Biotechnol 2019; 6:13. [PMID: 31559019 PMCID: PMC6754632 DOI: 10.1186/s40694-019-0076-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CRISPR/Cas9 mediated genome editing has expedited the way of constructing multiple gene alterations in filamentous fungi, whereas traditional methods are time-consuming and can be of mutagenic nature. These developments allow the study of large gene families that contain putatively redundant genes, such as the seven-membered family of crh-genes encoding putative glucan-chitin crosslinking enzymes involved in cell wall biosynthesis. RESULTS Here, we present a CRISPR/Cas9 system for Aspergillus niger using a non-integrative plasmid, containing a selection marker, a Cas9 and a sgRNA expression cassette. Combined with selection marker free knockout repair DNA fragments, a set of the seven single knockout strains was obtained through homology directed repair (HDR) with an average efficiency of 90%. Cas9-sgRNA plasmids could effectively be cured by removing selection pressure, allowing the use of the same selection marker in successive transformations. Moreover, we show that either two or even three separate Cas9-sgRNA plasmids combined with marker-free knockout repair DNA fragments can be used in a single transformation to obtain double or triple knockouts with 89% and 38% efficiency, respectively. By employing this technique, a seven-membered crh-gene family knockout strain was acquired in a few rounds of transformation; three times faster than integrative selection marker (pyrG) recycling transformations. An additional advantage of the use of marker-free gene editing is that negative effects of selection marker gene expression are evaded, as we observed in the case of disrupting virtually silent crh family members. CONCLUSIONS Our findings advocate the use of CRISPR/Cas9 to create multiple gene deletions in both a fast and reliable way, while simultaneously omitting possible locus-dependent-side-effects of poor auxotrophic marker expression.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Tim Ernst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ebru Alazi
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present Address: Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arthur F. J. Ram
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
4
|
The expression, secretion and activity of the aspartic protease MpAPr1 in Metschnikowia pulcherrima IWBT Y1123. J Ind Microbiol Biotechnol 2019; 46:1733-1743. [PMID: 31420798 DOI: 10.1007/s10295-019-02227-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
Protease-secreting yeasts have broad biotechnological potential for application to various industrial processes, including winemaking. However, this activity is influenced by the yeast response to environmental factors such as nitrogen and protein sources, as are found in grape juice. In this study, the wine-relevant yeast Metschnikowia pulcherrima IWBT Y1123, with known protease-secreting ability, was subjected to different nitrogen-containing compounds to monitor their impact on protease secretion and activity. Protease activity increased above basal levels for haemoglobin-containing treatments, indicating an inductive influence of proteins. On the other hand, treatments containing both haemoglobin and assimilable nitrogen sources led to a delayed increase in protease activity and protein degradation, suggesting a nitrogen catabolite repression mechanism at work. Protease activity and expression were furthermore evaluated in grape juice, which revealed increased expression and activity levels over time as promising results for further investigations into the impact of this yeast on wine properties.
Collapse
|
5
|
Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Sci Rep 2019; 9:10995. [PMID: 31358805 PMCID: PMC6662751 DOI: 10.1038/s41598-019-47421-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Trichoderma reesei represents one of the most prolific producers of plant cell wall degrading enzymes. Recent research showed broad regulation by phosphorylation in T. reesei, including important transcription factors involved in cellulase regulation. To evaluate factors crucial for changes in these phosphorylation events, we studied non-essential protein phosphatases (PPs) of T. reesei. Viable deletion strains were tested for growth on different carbon sources, osmotic and oxidative stress response, asexual and sexual development, cellulase and protease production as well as secondary metabolism. Six PPs were found to be positive or negative regulators for cellulase production. A correlation of the effects of PPs on protease activities and cellulase activities was not detected. Hierarchical clustering of regulation patterns and phenotypes of deletion indicated functional specialization within PP classes and common as well as variable effects. Our results confirmed the central role of catalytic and regulatory subunits of PP2A which regulates several aspects of cell growth and metabolism. Moreover we show that the additional homologue of PPH5 in Trichoderma spp., PPH5-2 assumes distinct functions in metabolism, development and stress response, different from PPH5. The influence of PPs on both cellulase gene expression and secondary metabolite production support an interrelationship in the underlying regulation mechanisms.
Collapse
|
6
|
Ballester AR, López-Pérez M, de la Fuente B, González-Candelas L. Functional and Pharmacological Analyses of the Role of Penicillium digitatum Proteases on Virulence. Microorganisms 2019; 7:microorganisms7070198. [PMID: 31336863 PMCID: PMC6680461 DOI: 10.3390/microorganisms7070198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Penicillium digitatum is the major postharvest pathogen of citrus fruit under Mediterranean climate conditions. Previous results have shown that proteases is the largest enzyme family induced by P. digitatum during fruit infection. In the present work, we addressed the study of the role of P. digitatum's proteases in virulence following two complementary approaches. In the first approach, we undertook the functional characterization of the P. digitatum prtT gene, which codes for a putative transcription factor previously shown to regulate extracellular proteases in other filamentous fungi. Deletion of prtT caused a significant loss in secreted protease activity during in vitro growth assays. However, there was no effect on virulence. Gene expression of the two major secreted acid proteases was barely affected in the ΔprtT deletant during infection of citrus fruit. Hence, no conclusion could be drawn on the role of these secreted acidic proteases on the virulence of P. digitatum. In the second approach, we studied the effect of different protease inhibitors and chelators on virulence. Co-inoculation of citrus fruit with P. digitatum conidia and a cocktail of protease inhibitors resulted in almost a complete absence of disease development. Analysis of individual inhibitors revealed that the metalloprotease inhibitor, 1,10-phenanthroline, was responsible for the observed effect. The application of metal ions reverted the protective effect caused by the metallopeptidase inhibitor. These results may set the basis for the development of new alternative treatments to combat this important postharvest pathogen.
Collapse
Affiliation(s)
- Ana-Rosa Ballester
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Mario López-Pérez
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Beatriz de la Fuente
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Luis González-Candelas
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
7
|
Daranagama ND, Shioya K, Yuki M, Sato H, Ohtaki Y, Suzuki Y, Shida Y, Ogasawara W. Proteolytic analysis of Trichoderma reesei in celluase-inducing condition reveals a role for trichodermapepsin (TrAsP) in cellulase production. ACTA ACUST UNITED AC 2019; 46:831-842. [DOI: 10.1007/s10295-019-02155-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Abstract
Filamentous fungi produce a variety of proteases with significant biotechnological potential and show diverse substrate specificities. Proteolytic analysis of the industrial enzyme producer Trichoderma reesei has been sparse. Therefore, we determined the substrate specificity of T. reesei secretome and its main protease Trichodermapepsin (TrAsP) up to P1 position using FRETS-25Xaa-libraries. The role of TrAsP was analyzed using T. reesei QM9414 and the deletant QM∆trasp in Avicel. We observed higher activities of CMCase, Avicelase, and Xylanase in QM∆t rasp compared to that of QM9414. Saccharification rate of cellulosic biomass also increased when using secretome of QM∆trasp but the effect was not significant due to the absence of difference in BGL activity compared to QM9414. Higher TrAsP was produced when monosaccharides were used as a carbon source compared to cellulase inducers such as Avicel and α-sophorose. These results elucidate the relationship between TrAsP and cellulase production in T. reesei and suggest a physiological role for TrAsP.
Collapse
Affiliation(s)
- Nayani Dhanushka Daranagama
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Koki Shioya
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Masahiro Yuki
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Haruna Sato
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Yuki Ohtaki
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Yoshiyuki Suzuki
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Yosuke Shida
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| | - Wataru Ogasawara
- 0000 0001 0671 2234 grid.260427.5 Department of Bioengineering Nagaoka University of Technology 1603-1, Kamitomioka 940-2188 Nagaoka Japan
| |
Collapse
|
8
|
Snyman C, Theron LW, Divol B. Understanding the regulation of extracellular protease gene expression in fungi: a key step towards their biotechnological applications. Appl Microbiol Biotechnol 2019; 103:5517-5532. [PMID: 31129742 DOI: 10.1007/s00253-019-09902-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
The secretion of proteases by certain species of yeast and filamentous fungi is of importance not only for their biological function and survival, but also for their biotechnological application to various processes in the food, beverage, and bioprocessing industries. A key step towards understanding the role that these organisms play in their environment, and how their protease-secreting ability may be optimally utilised through industrial applications, involves an evaluation of those factors which influence protease production. The objective of this review is to provide an overview of the findings from investigations directed at elucidating the regulatory mechanisms underlying extracellular protease secretion in yeast and filamentous fungi, and the environmental stimuli that elicit these responses. The influence of nitrogen-, carbon-, and sulphur-containing compounds, as well as proteins, temperature, and pH, on extracellular protease regulation, which is frequently exerted at the transcriptional level, is discussed in particular depth. Protease-secreting organisms of biotechnological interest are also presented in this context, in an effort to explore the areas of industrial significance that could possibly benefit from such knowledge. In this way, the establishment of a platform of existing knowledge regarding fungal protease regulation is attempted, with the particular goal of aiding in the practical application of these organisms to processes that require secretion of this enzyme.
Collapse
Affiliation(s)
- C Snyman
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - L W Theron
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
9
|
Mat'at'a M, Galádová H, Varečka L, Šimkovič M. The study of intracellular and secreted high-molecular-mass protease(s) of Trichoderma spp., and their responses to conidiation stimuli. Can J Microbiol 2019; 65:653-667. [PMID: 31059650 DOI: 10.1139/cjm-2018-0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We continued our study of high-molecular-mass proteases (HMMPs) using several strains of the genus Trichoderma, and other filamentous fungi (Botrytis cinerea, Aspergillus niger, Fusarium culmorum, and Penicillium purpurogenum). We found that five Trichoderma strains secreted HMMPs into the media after induction with bovine serum albumin. Botrytis cinerea and F. culmorum secreted proteases in the absence of inducer, while A. niger or P. purpurogenum did not secrete proteolytic activity (PA). The activity of HMMPs secreted by or intracellularly located in Trichoderma spp. represents the predominant part of cellular PA, according to zymogram patterns. This observation allowed the study of HMMPs' physiological role(s) independent from the secretion. In studying conidiation, we found that illumination significantly stimulated PA in Trichoderma strains. In the T. atroviride IMI 206040 strain, we demonstrated that this stimulation is dependent on the BLR1 and BLR2 receptors. No stimulation of PA was observed when mechanical injury was used as an elicitor of conidiation. Compounds used as inhibitors or activators of conidiation exerted no congruent effects on both PA and conidiation. These results do not favour a direct role of HMMPs in conidiation. Probably, HMMP activity may be involved in the process of the activation of metabolism during vegetative growth, differentiation, and aging-related processes.
Collapse
Affiliation(s)
- Matej Mat'at'a
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - L'udovít Varečka
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.,Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
10
|
Nevalainen H, Peterson R, Curach N. Overview of Gene Expression Using Filamentous Fungi. ACTA ACUST UNITED AC 2019; 92:e55. [PMID: 30040195 DOI: 10.1002/cpps.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Filamentous fungi are lower eukaryotes increasingly used for expression of foreign proteins ranging from industrial enzymes originating from other fungi and bacteria to proteins of mammalian origin, such as antibodies and growth factors. Their strengths include an excellent capacity for protein secretion and their eukaryotic protein processing machinery. Proteins secreted from filamentous fungi are modified in the secretory pathway, with folding, proteolytic processing, and addition of glycans being the main modifications. Unlike from many other expression systems, however, plasmids and host strains for expression of gene products in filamentous fungi are not readily available commercially, and the expression system must thus be stitched together in the laboratory. In this overview, the key elements of fungal expression systems are discussed from a practical point of view and with a view towards the future. The principles and considerations presented here can be applied to a range of filamentous fungi. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Robyn Peterson
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Natalie Curach
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
11
|
López DN, Galante M, Ruggieri G, Piaruchi J, Dib ME, Duran NM, Lombardi J, de Sanctis M, Boeris V, Risso PH, Spelzini D. Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state fermentation, purification and characterization. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Li Q, Loman AA, Callow NV, Islam SM, Ju LK. Leveraging pH profiles to direct enzyme production (cellulase, xylanase, polygalacturonase, pectinase, α-galactosidase, and invertase) by Aspergillus foetidus. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Nevalainen H, Bergquist P, Te'o VSJ. Making a Bacterial Thermophilic Enzyme in a Fungal Expression System. ACTA ACUST UNITED AC 2018; 92:e52. [DOI: 10.1002/cpps.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Helena Nevalainen
- Department of Molecular Sciences, Macquarie University Sydney Australia
| | - Peter Bergquist
- Department of Molecular Sciences, Macquarie University Sydney Australia
| | - Valentino Setoa Junior Te'o
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology Brisbane Australia
| |
Collapse
|
14
|
Considine EC, Thomas G, Boulesteix AL, Khashan AS, Kenny LC. Critical review of reporting of the data analysis step in metabolomics. Metabolomics 2017; 14:7. [PMID: 30830321 DOI: 10.1007/s11306-017-1299-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION We present the first study to critically appraise the quality of reporting of the data analysis step in metabolomics studies since the publication of minimum reporting guidelines in 2007. OBJECTIVES The aim of this study was to assess the standard of reporting of the data analysis step in metabolomics biomarker discovery studies and to investigate whether the level of detail supplied allows basic understanding of the steps employed and/or reuse of the protocol. For the purposes of this review we define the data analysis step to include the data pretreatment step and the actual data analysis step, which covers algorithm selection, univariate analysis and multivariate analysis. METHOD We reviewed the literature to identify metabolomic studies of biomarker discovery that were published between January 2008 and December 2014. Studies were examined for completeness in reporting the various steps of the data pretreatment phase and data analysis phase and also for clarity of the workflow of these sections. RESULTS We analysed 27 papers, published anytime in 2008 until the end of 2014 in the area or biomarker discovery in serum metabolomics. The results of this review showed that the data analysis step in metabolomics biomarker discovery studies is plagued by unclear and incomplete reporting. Major omissions and lack of logical flow render the data analysis' workflows in these studies impossible to follow and therefore replicate or even imitate. CONCLUSIONS While we await the holy grail of computational reproducibility in data analysis to become standard, we propose that, at a minimum, the data analysis section of metabolomics studies should be readable and interpretable without omissions such that a data analysis workflow diagram could be extrapolated from the study and therefore the data analysis protocol could be reused by the reader. That inconsistent and patchy reporting obfuscates reproducibility is a given. However even basic understanding and reuses of protocols are hampered by the low level of detail supplied in the data analysis sections of the studies that we reviewed.
Collapse
Affiliation(s)
- E C Considine
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - G Thomas
- SQU4RE, Sint-Alfonsusstraat 17, 8800, Roeselare, Belgium
| | - A L Boulesteix
- Department of Medical Informatics, Biometry and Epidemiology, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A S Khashan
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
- Department of Epidemiology and Public Health, University College Cork, Cork, Ireland
| | - L C Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Kamaruddin N, Storms R, Mahadi NM, Illias RM, Bakar FDA, Murad AMA. Reduction of Extracellular Proteases Increased Activity and Stability of Heterologous Protein in $${ Aspergillus}$$ A s p e r g i l l u s $${ niger}$$ n i g e r. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2914-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger. PLoS One 2016; 11:e0165755. [PMID: 27835655 PMCID: PMC5106034 DOI: 10.1371/journal.pone.0165755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.
Collapse
|
17
|
Burggraaf AM, Ram AFJ. Autophagy is dispensable to overcome ER stress in the filamentous fungus Aspergillus niger. Microbiologyopen 2016; 5:647-58. [PMID: 27027276 PMCID: PMC4985598 DOI: 10.1002/mbo3.359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory proteins are subjected to stringent quality control systems in the endoplasmic reticulum (ER) which include the targeting of misfolded proteins for proteasomal destruction via the ER‐associated degradation (ERAD) pathway. Since deletion of ERAD genes in the filamentous fungus Aspergillus niger had hardly any effect on growth, this study investigates whether autophagy might function as an alternative process to eliminate misfolded proteins from the ER. We generated A. niger double mutants by deleting genes essential for ERAD (derA) and autophagy (atg1 or atg8), and assessed their growth both under normal and ER stress conditions. Sensitivity toward ER stress was examined by treatment with dithiothreitol (DTT) and by expressing a mutant form of glucoamylase (mtGlaA::GFP) in which disulfide bond sites in GlaA were mutated. Misfolding of mtGlaA::GFP was confirmed, as mtGlaA::GFP accumulated in the ER. Expression of mtGlaA::GFP in ERAD and autophagy mutants resulted in a twofold higher accumulation in ΔderA and ΔderAΔatg1 strains compared to Δatg1 and wild type. As ΔderAΔatg1 mutants did not show increased sensitivity toward DTT, not even when mtGlaA::GFP was expressed, the results indicate that autophagy does not act as an alternative pathway in addition to ERAD for removing misfolded proteins from the ER in A. niger.
Collapse
Affiliation(s)
- Anne-Marie Burggraaf
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
18
|
Yu X, Bogaert L, Hu R, Bals O, Grimi N, Vorobiev E. A combined coagulation–ultrafiltration method for enhanced separation of proteins and polyphenols. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1141957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3-GENES GENOMES GENETICS 2015; 6:193-204. [PMID: 26566947 PMCID: PMC4704718 DOI: 10.1534/g3.115.024067] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.
Collapse
|
20
|
Landowski CP, Huuskonen A, Wahl R, Westerholm-Parvinen A, Kanerva A, Hänninen AL, Salovuori N, Penttilä M, Natunen J, Ostermeier C, Helk B, Saarinen J, Saloheimo M. Enabling Low Cost Biopharmaceuticals: A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma reesei. PLoS One 2015; 10:e0134723. [PMID: 26309247 PMCID: PMC4550459 DOI: 10.1371/journal.pone.0134723] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 11/22/2022] Open
Abstract
The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant.
Collapse
Affiliation(s)
| | - Anne Huuskonen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | |
Collapse
|
21
|
van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. MASS SPECTROMETRY REVIEWS 2013; 32:399-415. [PMID: 23630115 DOI: 10.1002/mas.21370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Metabolites have played an essential role in our understanding of life, health, and disease for thousands of years. This domain became much more important after the concept of metabolism was discovered. In the 1950s, mass spectrometry was coupled to chromatography and made the technique more application-oriented and allowed the development of new profiling technologies. Since 1980, TNO has performed system-based metabolic profiling of body fluids, and combined with pattern recognition has led to many discoveries and contributed to the field known as metabolomics and systems biology. This review describes the development of related concepts and applications at TNO in the biomedical, pharmaceutical, nutritional, and microbiological fields, and provides an outlook for the future.
Collapse
|
22
|
Nitsche BM, Burggraaf-van Welzen AM, Lamers G, Meyer V, Ram AFJ. Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Appl Microbiol Biotechnol 2013; 97:8205-18. [DOI: 10.1007/s00253-013-4971-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
|
23
|
Nitsche BM, Jørgensen TR, Akeroyd M, Meyer V, Ram AFJ. The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 2012; 13:380. [PMID: 22873931 PMCID: PMC3527191 DOI: 10.1186/1471-2164-13-380] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/26/2012] [Indexed: 01/13/2023] Open
Abstract
Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a comprehensive framework for further elucidation of the interrelation and interplay of the individual cellular events involved.
Collapse
Affiliation(s)
- Benjamin M Nitsche
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Carvalho ND, Jørgensen TR, Arentshorst M, Nitsche BM, van den Hondel CA, Archer DB, Ram AF. Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genomics 2012; 13:350. [PMID: 22846479 PMCID: PMC3472299 DOI: 10.1186/1471-2164-13-350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/09/2012] [Indexed: 01/07/2023] Open
Abstract
Background HacA/Xbp1 is a conserved bZIP transcription factor in eukaryotic cells which regulates gene expression in response to various forms of secretion stress and as part of secretory cell differentiation. In the present study, we replaced the endogenous hacA gene of an Aspergillus niger strain with a gene encoding a constitutively active form of the HacA transcription factor (HacACA). The impact of constitutive HacA activity during exponential growth was explored in bioreactor controlled cultures using transcriptomic analysis to identify affected genes and processes. Results Transcription profiles for the wild-type strain (HacAWT) and the HacACA strain were obtained using Affymetrix GeneChip analysis of three replicate batch cultures of each strain. In addition to the well known HacA targets such as the ER resident foldases and chaperones, GO enrichment analysis revealed up-regulation of genes involved in protein glycosylation, phospholipid biosynthesis, intracellular protein transport, exocytosis and protein complex assembly in the HacACA mutant. Biological processes over-represented in the down-regulated genes include those belonging to central metabolic pathways, translation and transcription. A remarkable transcriptional response in the HacACA strain was the down-regulation of the AmyR transcription factor and its target genes. Conclusions The results indicate that the constitutive activation of the HacA leads to a coordinated regulation of the folding and secretion capacity of the cell, but with consequences on growth and fungal physiology to reduce secretion stress.
Collapse
Affiliation(s)
- Neuza Dsp Carvalho
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, BE Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Fungal proteases and their pathophysiological effects. Mycopathologia 2011; 171:299-323. [PMID: 21259054 DOI: 10.1007/s11046-010-9386-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Proteolytic enzymes play an important role in fungal physiology and development. External digestion of protein substrates by secreted proteases is required for survival and growth of both saprophytic and pathogenic species. Extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. New findings focus on novel membrane-associated proteases such as yapsins and ADAMs and their role in pathology. Proteases from fungi induce inflammatory responses by altering the permeability of epithelial barrier and by induction of proinflammatory cytokines through protease-activated receptors. Many fungal allergens possess proteolytic activity that appears to be essential in eliciting Th2 responses. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system as well as the coagulation and fibrinolytic cascades. Their effect on the host protease-antiprotease balance results from activation of endogenous proteases and degradation of protease inhibitors. Recent studies of the role of fungi in human health point to the growing importance of proteases not only as pathogenic agents in fungal infections but also in asthma, allergy, and damp building related illnesses. Proteolytic enzymes from fungi are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. The involvement of fungal proteases in diverse pathological mechanisms makes them potential targets of therapeutic intervention and candidates for biomarkers of disease and exposure.
Collapse
|
26
|
Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ. An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 2010; 11:584. [PMID: 20959013 PMCID: PMC3091731 DOI: 10.1186/1471-2164-11-584] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ecological niche occupied by a fungal species, its pathogenicity and its usefulness as a microbial cell factory to a large degree depends on its secretome. Protein secretion usually requires the presence of a N-terminal signal peptide (SP) and by scanning for this feature using available highly accurate SP-prediction tools, the fraction of potentially secreted proteins can be directly predicted. However, prediction of a SP does not guarantee that the protein is actually secreted and current in silico prediction methods suffer from gene-model errors introduced during genome annotation. RESULTS A majority rule based classifier that also evaluates signal peptide predictions from the best homologs of three neighbouring Aspergillus species was developed to create an improved list of potential signal peptide containing proteins encoded by the Aspergillus niger genome. As a complement to these in silico predictions, the secretome associated with growth and upon carbon source depletion was determined using a shotgun proteomics approach. Overall, some 200 proteins with a predicted signal peptide were identified to be secreted proteins. Concordant changes in the secretome state were observed as a response to changes in growth/culture conditions. Additionally, two proteins secreted via a non-classical route operating in A. niger were identified. CONCLUSIONS We were able to improve the in silico inventory of A. niger secretory proteins by combining different gene-model predictions from neighbouring Aspergilli and thereby avoiding prediction conflicts associated with inaccurate gene-models. The expected accuracy of signal peptide prediction for proteins that lack homologous sequences in the proteomes of related species is 85%. An experimental validation of the predicted proteome confirmed in silico predictions.
Collapse
|
27
|
Braaksma M, Bijlsma S, Coulier L, Punt PJ, van der Werf MJ. Metabolomics as a tool for target identification in strain improvement: the influence of phenotype definition. MICROBIOLOGY-SGM 2010; 157:147-159. [PMID: 20847006 DOI: 10.1099/mic.0.041244-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For the optimization of microbial production processes, the choice of the quantitative phenotype to be optimized is crucial. For instance, for the optimization of product formation, either product concentration or productivity can be pursued, potentially resulting in different targets for strain improvement. The choice of a quantitative phenotype is highly relevant for classical improvement approaches, and even more so for modern systems biology approaches. In this study, the information content of a metabolomics dataset was determined with respect to different quantitative phenotypes related to the formation of specific products. To this end, the production of two industrially relevant products by Aspergillus niger was evaluated: (i) the enzyme glucoamylase, and (ii) the more complex product group of secreted proteases, consisting of multiple enzymes. For both products, six quantitative phenotypes associated with activity and productivity were defined, also taking into account different time points of sampling during the fermentation. Both linear and nonlinear relationships between the metabolome data and the different quantitative phenotypes were considered. The multivariate data analysis tool partial least-squares (PLS) was used to evaluate the information content of the datasets for all the different quantitative phenotypes defined. Depending on the product studied, different quantitative phenotypes were found to have the highest information content in specific metabolomics datasets. A detailed analysis of the metabolites that showed strong correlation with these quantitative phenotypes revealed that various sugar derivatives correlated with glucoamylase activity. For the reduction of protease activity, mainly as-yet-unidentified compounds correlated.
Collapse
Affiliation(s)
- Machtelt Braaksma
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Sabina Bijlsma
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Leon Coulier
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Peter J Punt
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Mariët J van der Werf
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
28
|
Adav SS, Li AA, Manavalan A, Punt P, Sze SK. Quantitative iTRAQ Secretome Analysis of Aspergillus niger Reveals Novel Hydrolytic Enzymes. J Proteome Res 2010; 9:3932-40. [DOI: 10.1021/pr100148j] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sunil S. Adav
- School of Biological Sciences, Nanyang Technological Universiy, 60 Nanyang Drive, Singapore 637551, and Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - An A. Li
- School of Biological Sciences, Nanyang Technological Universiy, 60 Nanyang Drive, Singapore 637551, and Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Arulmani Manavalan
- School of Biological Sciences, Nanyang Technological Universiy, 60 Nanyang Drive, Singapore 637551, and Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Peter Punt
- School of Biological Sciences, Nanyang Technological Universiy, 60 Nanyang Drive, Singapore 637551, and Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological Universiy, 60 Nanyang Drive, Singapore 637551, and Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
29
|
Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 2010; 76:5344-55. [PMID: 20562270 DOI: 10.1128/aem.00450-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h(-1)), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general.
Collapse
|
30
|
van den Berg RA, Braaksma M, van der Veen D, van der Werf MJ, Punt PJ, van der Oost J, de Graaff LH. Identification of modules in Aspergillus niger by gene co-expression network analysis. Fungal Genet Biol 2010; 47:539-50. [PMID: 20350613 DOI: 10.1016/j.fgb.2010.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 02/19/2010] [Accepted: 03/13/2010] [Indexed: 01/13/2023]
Abstract
The fungus Aspergillus niger has been studied in considerable detail with respect to various industrial applications. Although its central metabolic pathways are established relatively well, the mechanisms that control the adaptation of its metabolism are understood rather poorly. In this study, clustering of co-expressed genes has been performed on the basis of DNA microarray data sets from two experimental approaches. In one approach, low amounts of inducer caused a relatively mild perturbation, while in the other approach the imposed environmental conditions including carbon source starvation caused severe perturbed stress. A set of conserved genes was used to construct gene co-expression networks for both the individual and combined data sets. Comparative analysis revealed the existence of modules, some of which are present in all three networks. In addition, experimental condition-specific modules were identified. Module-derived consensus expression profiles enabled the integration of all protein-coding A. niger genes to the co-expression analysis, including hypothetical and poorly conserved genes. Conserved sequence motifs were detected in the upstream region of genes that cluster in some modules, e.g., the binding site for the amino acid metabolism-related transcription factor CpcA as well as for the fatty acid metabolism-related transcription factors, FarA and FarB. Moreover, not previously described putative transcription factor binding sites were discovered for two modules: the motif 5'-CGACAA is overrepresented in the module containing genes encoding cytosolic ribosomal proteins, while the motif 5'-GGCCGCG is overrepresented in genes related to 'gene expression', such as RNA helicases and translation initiation factors.
Collapse
|