1
|
Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease. Sci Rep 2020; 10:18313. [PMID: 33110205 PMCID: PMC7591570 DOI: 10.1038/s41598-020-74977-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis is a causative agent in the onset and progression of periodontal disease. This study aims to investigate the effects of quercetin, a natural plant product, on P. gingivalis virulence properties including gingipain, haemagglutinin and biofilm formation. Antimicrobial effects and morphological changes of quercetin on P. gingivalis were detected. The effects of quercetin on gingipains activities and hemolytic, hemagglutination activities were evaluated using chromogenic peptides and sheep erythrocytes. The biofilm biomass and metabolism with different concentrations of quercetin were assessed by the crystal violet and MTT assay. The structures and thickness of the biofilms were observed by confocal laser scanning microscopy. Bacterial cell surface properties including cell surface hydrophobicity and aggregation were also evaluated. The mRNA expression of virulence and iron/heme utilization was assessed using real time-PCR. Quercetin exhibited antimicrobial effects and damaged the cell structure. Quercetin can inhibit gingipains, hemolytic, hemagglutination activities and biofilm formation at sub-MIC concentrations. Molecular docking analysis further indicated that quercetin can interact with gingipains. The biofilm became sparser and thinner after quercetin treatment. Quercetin also modulate cell surface hydrophobicity and aggregation. Expression of the genes tested was down-regulated in the presence of quercetin. In conclusion, our study demonstrated that quercetin inhibited various virulence factors of P. gingivalis.
Collapse
|
2
|
Fujise K, Kikuchi Y, Kokubu E, Okamoto-Shibayama K, Ishihara K. Effect of extracytoplasmic function sigma factors on autoaggregation, hemagglutination, and cell surface properties of Porphyromonas gingivalis. PLoS One 2017; 12:e0185027. [PMID: 28931045 PMCID: PMC5607195 DOI: 10.1371/journal.pone.0185027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 09/05/2017] [Indexed: 01/05/2023] Open
Abstract
Porphyromonas gingivalis is a bacterium frequently isolated from chronic periodontal lesions and is involved in the development of chronic periodontitis. To colonize the gingival crevice, P. gingivalis has to adapt to environmental stresses. Microbial gene expression is regulated by transcription factors such as those in two-component systems and extracytoplasmic function (ECF) sigma factors. ECF sigma factors are involved in the regulation of environmental stress response genes; however, the roles of individual ECF sigma factors are largely unknown. The purpose of this study was to investigate the functions, including autoaggregation, hemagglutination, gingipain activity, susceptibility to antimicrobial agents, and surface structure formation, of P. gingivalis ECF sigma factors encoded by SigP (PGN_0274), SigCH (PGN_0319), PGN_0450, PGN_0970, and SigH (PGN_1740). Various physiological aspects of the sigP mutant were affected; autoaggregation was significantly decreased at 60 min (p < 0.001), hemagglutination activity was markedly reduced, and enzymatic activities of Kgp and Rgps were significantly decreased (p < 0.001). The other mutants also showed approximately 50% reduction in Rgps activity. Kgp activity was significantly reduced in the sigH mutant (p < 0.001). No significant differences in susceptibilities to tetracycline and ofloxacin were observed in the mutants compared to those of the wild-type strain. However, the sigP mutant displayed an increased susceptibility to ampicillin, whereas the PGN_0450 and sigH mutants showed reduced susceptibility. Transmission electron microscopy images revealed increased levels of outer membrane vesicles formed at the cell surfaces of the sigP mutant. These results indicate that SigP is important for bacterial surface-associated activities, including gingipain activity, autoaggregation, hemagglutination, vesicle formation, and antimicrobial susceptibility.
Collapse
Affiliation(s)
- Kazutaka Fujise
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | | | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
3
|
Dou Y, Robles A, Roy F, Aruni AW, Sandberg L, Nothnagel E, Fletcher HM. The roles of RgpB and Kgp in late onset gingipain activity in the vimA-defective mutant of Porphyromonas gingivalis W83. Mol Oral Microbiol 2015; 30:347-60. [PMID: 25858089 DOI: 10.1111/omi.12098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that VimA, an acetyltransferase, can modulate gingipain biogenesis in Porphyromonas gingivalis. Inactivation of the vimA gene resulted in isogenic mutants that showed a late onset of gingipain activity that only occurred during the stationary growth phase. To further elucidate the role and contribution of the gingipains in this VimA-dependent process, isogenic mutants defective in the gingipain genes in the vimA-deficient genetic background were evaluated. In contrast with the wild-type strain, RgpB and Kgp gingipain activities were absent in exponential phase in the ∆rgpA::tetQ-vimA::ermF mutant. However, these activities increased to 31 and 53%, respectively, of that of the wild-type during stationary phase. In the ∆rgpA::cat-∆kgp::tetQ-vimA::ermF mutant, the RgpB protein was observed in the extracellular fraction but no activity was present even at the stationary growth phase. There was no gingipain activity observed in the ∆rgpB::cat-∆kgp::tetQ-vimA::ermF mutant whereas Kgp activity in ∆rgpA::cat-∆rgpB::tetQ-vimA::ermF mutant was 24% of the wild-type at late stationary phase. In contrast to RgpA, the glycosylation profile of the RgpB catalytic domain from both W83 and P. gingivalis FLL92 (vimA::ermF) showed similarity. Taken together, the results suggest multiple gingipain activation pathways in P. gingivalis. Whereas the maturation pathways for RgpA and RgpB are different, the late-onset gingipain activity in the vimA-defective mutant was due to activation/maturation of RgpB and Kgp. Moreover, unlike RgpA, which is VimA-dependent, the maturation/activation pathways for RgpB and Kgp are interdependent in the absence VimA.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - F Roy
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - L Sandberg
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - E Nothnagel
- Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Deletion of a 77-base-pair inverted repeat element alters the synthesis of surface polysaccharides in Porphyromonas gingivalis. J Bacteriol 2015; 197:1208-20. [PMID: 25622614 DOI: 10.1128/jb.02589-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, generating a large ∼19.4-kb transcript (PG0104-PG0121). Furthermore, production of capsule is deficient in a PG0121 mutant strain. In this study, we report on the identification of an antisense RNA (asRNA) molecule located within a 77-bp inverted repeat (77bpIR) element located near the 5' end of the locus. We show that overexpression of this asRNA decreases the amount of capsule produced, indicating that this asRNA can impact capsule synthesis in trans. We also demonstrate that deletion of the 77bpIR element and thereby synthesis of the large 19.4-kb transcript also diminishes, but does not eliminate, capsule synthesis. Surprisingly, LPS structures were also altered by deletion of the 77bpIR element, and reactivity to monoclonal antibodies specific to both O-LPS and A-LPS was eliminated. Additionally, reduced reactivity to these antibodies was also observed in a PG0106 mutant, indicating that this putative glycosyltransferase, which is required for capsule synthesis, is also involved in LPS synthesis in strain W83. We discuss our finding in the context of how DNABII proteins, an antisense RNA molecule, and the 77bpIR element may modulate expression of surface polysaccharides in P. gingivalis. IMPORTANCE The periodontal pathogen Porphyromonas gingivalis displays at least three different types of cell surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown using Northern analysis that the K-antigen capsule locus encodes a large transcript (∼19.4 kb), encompassing a 77-bp inverted repeat (77bpIR) element near the 5' end. Here, we report on the identification of an antisense RNA (asRNA) encoded within the 77bpIR. We show that overexpression of this asRNA or deletion of the element decreases the amount of capsule. LPS structures were also altered by deletion of the 77bpIR, and reactivity to monoclonal antibodies to both O-LPS and A-LPS was eliminated. Our data indicate that the 77bpIR element is involved in modulating both LPS and capsule synthesis in P. gingivalis.
Collapse
|
5
|
McKenzie RME, Aruni W, Johnson NA, Robles A, Dou Y, Henry L, Boskovic DS, Fletcher HM. Metabolome variations in the Porphyromonas gingivalis vimA mutant during hydrogen peroxide-induced oxidative stress. Mol Oral Microbiol 2014; 30:111-27. [PMID: 25055986 DOI: 10.1111/omi.12075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 01/01/2023]
Abstract
The adaptability and survival of Porphyromonas gingivalis in the oxidative microenvironment of the periodontal pocket are indispensable for survival and virulence, and are modulated by multiple systems. Among the various genes involved in P. gingivalis oxidative stress resistance, vimA gene is a part of the 6.15-kb locus. To elucidate the role of a P. gingivalis vimA-defective mutant in oxidative stress resistance, we used a global approach to assess the transcriptional profile, to study the unique metabolome variations affecting survival and virulence in an environment typical of the periodontal pocket. A multilayered protection strategy against oxidative stress was noted in P. gingivalis FLL92 with upregulation of detoxifying genes. The duration of oxidative stress was shown to differentially modulate transcription with 94 (87%) genes upregulated twofold during 10 min and 55 (83.3%) in 15 min. Most of the upregulated genes (55%), fell in the hypothetical/unknown/unassigned functional class. Metabolome variation showed reduction in fumarate and formaldehyde, hence resorting to alternative energy generation and maintenance of a reduced metabolic state. There was upregulation of transposases, genes encoding for the metal ion binding protein transport and secretion system.
Collapse
Affiliation(s)
- R M E McKenzie
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nagano K. FimA Fimbriae of the Periodontal Disease-associated Bacterium Porphyromonas gingivalis. YAKUGAKU ZASSHI 2013; 133:963-74. [DOI: 10.1248/yakushi.13-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
7
|
Aruni AW, Robles A, Fletcher HM. VimA mediates multiple functions that control virulence in Porphyromonas gingivalis. Mol Oral Microbiol 2012; 28:167-80. [PMID: 23279905 DOI: 10.1111/omi.12017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
Abstract
Porphyromonas gingivalis, a black-pigmented, gram-negative anaerobe, is an important etiological agent of periodontal disease. Its ability to survive in the periodontal pocket and orchestrate the microbial/host activities that can lead to disease suggest that P. gingivalis possesses a complex regulatory network involving transcriptional and post-transcriptional mechanisms. The vimA (virulence modulating) gene is part of the 6.15-kb bcp-recA-vimA-vimE-vimF-aroG locus and plays a role in oxidative stress resistance. In addition to the glycosylation and anchorage of several surface proteins including the gingipains, VimA can also modulate sialylation, acetyl coenzyme A transfer, lipid A and its associated proteins and may be involved in protein sorting and transport. In this review, we examine the multifunctional role of VimA and discuss its possible involvement in a major regulatory network important for survival and virulence regulation in P. gingivalis. It is postulated that the multifunction of VimA is modulated via a post-translational mechanism involving acetylation.
Collapse
Affiliation(s)
- A W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | | |
Collapse
|
8
|
Osbourne D, Aruni AW, Dou Y, Perry C, Boskovic DS, Roy F, Fletcher HM. VimA-dependent modulation of the secretome in Porphyromonas gingivalis. Mol Oral Microbiol 2012; 27:420-35. [PMID: 23134608 DOI: 10.1111/j.2041-1014.2012.00661.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The VimA protein of Porphyromonas gingivalis is a multifunctional protein involved in cell surface biogenesis. To further determine if its acetyl coenzyme A (acetyl-CoA) transfer and putative sorting functions can affect the secretome, its role in peptidoglycan biogenesis and effects on the extracellular proteins of P. gingivalis FLL92, a vimA-defective mutant, were evaluated. There were structural and compositional differences in the peptidoglycan of P. gingivalis FLL92 compared with the wild-type strain. Sixty-eight proteins were present only in the extracellular fraction of FLL92. Fifteen proteins present in the extracellular fraction of the parent strain were missing in the vimA-defective mutant. These proteins had protein sorting characteristics that included a C-terminal motif with a common consensus Gly-Gly-CTERM pattern and a polar tail consisting of aromatic amino acid residues. These observations suggest that the VimA protein is likely involved in peptidoglycan synthesis, and corroborates our previous report, which suggests a role in protein sorting.
Collapse
Affiliation(s)
- D Osbourne
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Henry LG, McKenzie RME, Robles A, Fletcher HM. Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol 2012; 7:497-512. [PMID: 22439726 DOI: 10.2217/fmb.12.17] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
10
|
VimA-dependent modulation of acetyl coenzyme A levels and lipid A biosynthesis can alter virulence in Porphyromonas gingivalis. Infect Immun 2011; 80:550-64. [PMID: 22144476 DOI: 10.1128/iai.06062-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Porphyromonas gingivalis VimA protein has multifunctional properties that can modulate several of its major virulence factors. To further characterize VimA, P. gingivalis FLL406 carrying an additional vimA gene and a vimA-defective mutant in a different P. gingivalis genetic background were evaluated. The vimA-defective mutant (FLL451) in the P. gingivalis ATCC 33277 genetic background showed a phenotype similar to that of the vimA-defective mutant (FLL92) in the P. gingivalis W83 genetic background. In contrast to the wild type, gingipain activity was increased in P. gingivalis FLL406, a vimA chimeric strain. P. gingivalis FLL451 had a five times higher biofilm-forming capacity than the parent strain. HeLa cells incubated with P. gingivalis FLL92 showed a decrease in invasion, in contrast to P. gingivalis FLL451 and FLL406, which showed increases of 30 and 40%, respectively. VimA mediated coenzyme A (CoA) transfer to isoleucine and reduced branched-chain amino acid metabolism. The lipid A content and associated proteins were altered in the vimA-defective mutants. The VimA chimera interacted with several proteins which were found to have an LXXTG motif, similar to the sorting motif of gram-positive organisms. All the proteins had an N-terminal signal sequence with a putative sorting signal of L(P/T/S)X(T/N/D)G and two unique signatures of EXGXTX and HISXXGXG, in addition to a polar tail. Taken together, these observations further confirm the multifunctional role of VimA in modulating virulence possibly through its involvement in acetyl-CoA transfer and lipid A synthesis and possibly by protein sorting.
Collapse
|
11
|
Sialidase and sialoglycoproteases can modulate virulence in Porphyromonas gingivalis. Infect Immun 2011; 79:2779-91. [PMID: 21502589 DOI: 10.1128/iai.00106-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Porphyromonas gingivalis recombinant VimA can interact with the gingipains and several other proteins, including a sialidase. Sialylation can be involved in protein maturation; however, its role in virulence regulation in P. gingivalis is unknown. The three sialidase-related proteins in P. gingivalis showed the characteristic sialidase Asp signature motif (SXDXGXTW) and other unique domains. To evaluate the roles of the associated genes, randomly chosen P. gingivalis isogenic mutants created by allelic exchange and designated FLL401 (PG0778::ermF), FLL402 (PG1724::ermF), and FLL403 (PG0352::ermF-ermAM) were characterized. Similar to the wild-type strain, FLL402 and FLL403 displayed a black-pigmented phenotype in contrast to FLL401, which was not black pigmented. Sialidase activity in P. gingivalis FLL401 was reduced by approximately 70% in comparison to those in FLL402 and FLL403, which were reduced by approximately 42% and 5%, respectively. Although there were no changes in the expression of the gingipain genes, their activities were reduced by 60 to 90% in all the isogenic mutants compared to that for the wild type. Immunoreactive bands representing the catalytic domains for RgpA, RgpB, and Kgp were present in FLL402 and FLL403 but were missing in FLL401. While adhesion was decreased, the capacity for invasion of epithelial cells by the isogenic mutants was increased by 11 to 16% over that of the wild-type strain. Isogenic mutants defective in PG0778 and PG0352 were more sensitive to hydrogen peroxide than the wild type. Taken together, these results suggest that the P. gingivalis sialidase activity may be involved in regulating gingipain activity and other virulence factors and may be important in the pathogenesis of this organism.
Collapse
|
12
|
Lamont RJ. Controlling Porphyromonas gingivalis requires Vim. MICROBIOLOGY-SGM 2010; 156:1907-1908. [PMID: 20466766 DOI: 10.1099/mic.0.041251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Richard J Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|