1
|
Chanu NK, Mandal MK, Srivastava A, Chaurasia N. Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19762-19777. [PMID: 34718975 DOI: 10.1007/s11356-021-16611-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
In the current study, the effect of the EC50 and LC90 concentrations of pyrethroid insecticide alpha-cypermethrin to cyanobacteria Anabaena sp. NC-K1 was investigated at different time exposures (1st day, 4th day and 7th day) with reference to growth, photosynthetic pigments, oxidative damage and antioxidant defence system. Superoxide dismutase (1.38-fold), peroxidase (5.04) and proline content (2.27-fold) were enhanced compared to the control. After performing 2D gel electrophoresis at 1st day EC50 exposure, where appropriate differences in the biochemical and physiological parameters were observed, 22 differentially accumulated proteins (20 upregulated and 2 downregulated) were selected for mass spectrometry. Out of 42 proteins identified, 20 upregulated protein spots were classified into twelve categories according to their metabolic functions. Proteins related to photosynthesis (phycobilisome rod-core linker polypeptide, rubisco), stress responses (Hsp70, Hsp40, catalase family peroxidase), translation (elongation factor Tu) and amino acid biosynthesis and metabolism (3-phosphoshikimate 1-carboxyvinyl transferase) were significantly upregulated. Additionally, proteins involved in transcription and DNA repair (Snf-2 histone linker phd ring helicase, RNA polymerase sigma factor RpoD and Holliday junction ATP-dependent DNA helicase RuvA) were considerably upregulated. Upregulation of these proteins against pesticide stress presumably maintained the photosynthesis, energy metabolism, carbohydrate metabolism, transport and signalling proteins, transcription, translation and DNA repair. Additionally, these proteins might involve in sufficient detoxification of ROS and play a crucial role in damage removal and repair of oxidized proteins, lipids and nucleic acids. Taken together, Anabaena sp. NC-K1 responded towards alpha-cypermethrin stress via modulating its proteome to maintain its cellular metabolism and homeostasis.
Collapse
Affiliation(s)
- Ng Kunjarani Chanu
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Madan Kumar Mandal
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
2
|
Liu Z, Pan X, Wang C, Yun F, Huang D, Yao Y, Gao R, Ye F, Liu X, Liao W. Genome-wide identification and expression analysis of serine hydroxymethyltransferase ( SHMT) gene family in tomato ( Solanum lycopersicum). PeerJ 2022; 10:e12943. [PMID: 35186505 PMCID: PMC8841039 DOI: 10.7717/peerj.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is one of the most important enzyme families in one-carbon metabolic pathway and photorespiration within plant cells. Recently studies reported the active roles of plant SHMTs in defending abiotic stresses. However, genome-scale analysis of SHMT in tomato is currently unknown. In this study, seven SHMT genes were identified in the tomato genome using a genome-wide search approach. In addition, their physicochemical properties, protein secondary structure, subcellular localization, gene structure, conserved motifs, phylogenetic and collinear relationships were analyzed. Our results demonstrated that tomato SHMT members were divided into two group and four subgroups, and they were conserved with the orthologs of other plants. Analysis of cis-acting elements showed that each of the SlSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Finally, qRT-PCR analysis indicated that SlSHMTs were expressed at different levels in different tissues, and they responded to UV, cold, heat, NaCl, H2O2, ABA and PEG treatments. These results provided definite evidence that SlSHMTs might involve in growth, development and stress responses in tomato, which laid a foundation for future functional studies of SlSHMTs.
Collapse
Affiliation(s)
- Zesheng Liu
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Xuejuan Pan
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Chunlei Wang
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Fahong Yun
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Dengjing Huang
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Yandong Yao
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Rong Gao
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Fujin Ye
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Xingjuan Liu
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| | - Weibiao Liao
- Gansu Agricultural University, College of Horticulture, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Wang Z, Zhao Z, Fan G, Dong Y, Deng M, Xu E, Zhai X, Cao H. A comparison of the transcriptomes between diploid and autotetraploid Paulownia fortunei under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1-11. [PMID: 30804626 PMCID: PMC6352521 DOI: 10.1007/s12298-018-0578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/08/2018] [Accepted: 06/29/2018] [Indexed: 05/06/2023]
Abstract
Paulownia is a tree species grown in many countries. Our previous study reveals that tetraploid Paulownia fortunei is more tolerant to salt stress than its corresponding diploid tree. To investigate the molecular mechanisms of salt stress tolerance in P. fortunei, the transcriptomes of normal and salt-stressed diploid and tetraploid were investigated. After assembling the clean reads, we obtained 130,842 unigenes. The unigenes were aligned against six public databases (Nr, Nt, Swiss-Prot, COG, KEGG, GO) to discover homologs and assign functional annotations. We retrieved 7983 and 15,503 differentially expressed unigenes (DEUs) between the normal and the salt-stressed diploid and tetraploid P. fortunei, respectively. We identified dozens of important DEUs including 3 related to photosynthesis, 10 related to plant growth and development and 11 related to osmolytes. Some of these DEUs were upregulated in tetraploid compared to diploid and others were upregulated under salt stress. Quantitative reverse transcriptase polymerase chain reaction verified the expression patterns of 15 unigenes. Our results provided insights into the molecular aspects why tetraploid is stronger and more energetic than diploid under saline environment. This study provides useful information for further studies on the molecular mechanisms of salt tolerance in other tree plants.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan People’s Republic of China
| | - Heping Cao
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124 USA
| |
Collapse
|
4
|
Yadav RK, Thagela P, Tripathi K, Abraham G. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp. World J Microbiol Biotechnol 2016; 32:147. [PMID: 27430514 DOI: 10.1007/s11274-016-2098-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na(+) content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K(+) content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K(+)/Na(+) ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K(+)/Na(+). Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF-MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na(+) content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na(+) ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.
Collapse
Affiliation(s)
- Ravindra Kumar Yadav
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Preeti Thagela
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Keshawanand Tripathi
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - G Abraham
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Brutemark A, Vandelannoote A, Engström-Öst J, Suikkanen S. A less saline Baltic Sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy. PLoS One 2015; 10:e0128904. [PMID: 26042598 PMCID: PMC4456099 DOI: 10.1371/journal.pone.0128904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/03/2015] [Indexed: 11/19/2022] Open
Abstract
Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.
Collapse
Affiliation(s)
- Andreas Brutemark
- ARONIA Coastal Zone Research Team, Novia University of Applied Sciences & Åbo Akademi University, Ekenäs, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | | | - Jonna Engström-Öst
- ARONIA Coastal Zone Research Team, Novia University of Applied Sciences & Åbo Akademi University, Ekenäs, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute SYKE, Helsinki, Finland
| |
Collapse
|
6
|
Fonseca C, Planchon S, Serra T, Chander S, Saibo NJM, Renaut J, Oliveira MM, Batista R. In vitro culture may be the major contributing factor for transgenic versus nontransgenic proteomic plant differences. Proteomics 2014; 15:124-34. [DOI: 10.1002/pmic.201400018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Cátia Fonseca
- National Health Institute; Lisboa Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Sébastien Planchon
- Department of Environment and Agrobiotechnologies (EVA); Centre de Recherche Public; Gabriel Lippmann; Belvaux Luxembourg
| | | | - Subhash Chander
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Jenny Renaut
- Department of Environment and Agrobiotechnologies (EVA); Centre de Recherche Public; Gabriel Lippmann; Belvaux Luxembourg
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- IBET; Oeiras Portugal
| | - Rita Batista
- National Health Institute; Lisboa Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
7
|
Qin H, Li D. Enhanced Resistance to UV-B Radiation in Anabaena sp. PCC 7120 (Cyanophyceae) by Repeated Exposure. Curr Microbiol 2014; 69:1-9. [DOI: 10.1007/s00284-014-0543-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/10/2013] [Indexed: 12/24/2022]
|
8
|
Blume C, Behrens C, Eubel H, Braun HP, Peterhansel C. A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism. PHYTOCHEMISTRY 2013; 95:168-76. [PMID: 23916564 DOI: 10.1016/j.phytochem.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/24/2013] [Accepted: 07/10/2013] [Indexed: 05/08/2023]
Abstract
Glyoxylate is a peroxisomal intermediate of photorespiration, the recycling pathway for 2-phosphoglycolate (2-PG) produced by the oxygenase activity of Rubisco. Under hot and dry growth conditions, photorespiratory intermediates can accumulate and must be detoxified by alternative pathways, including plastidal reactions. Moreover, there is evidence that chloroplasts are capable of actively producing glyoxylate from glycolate. Further metabolic steps are unknown, but probably include a CO2 release step. Here, we report that CO2 production from glycolate and glyoxylate in isolated tobacco chloroplasts can be inhibited by pyruvate, but not related compounds. We isolated a protein fraction that was enriched for the chloroplast pyruvate dehydrogenase complex (PDC). The fraction contained a protein complex of several MDa in size that included all predicted subunits of the chloroplast PDC and a so far unidentified HSP93-V/ClpC1 heat shock protein. Glyoxylate competitively inhibited NADH formation from pyruvate in this fraction. The Km for pyruvate and the Ki for glyoxylate were 330 and 270 μM, respectively. Glyoxylate decarboxylation was also enriched in this fraction and could be in turn inhibited by pyruvate. Based on these data, we suggest that the chloroplast PDC might be part of a pathway for glycolate and/or glyoxylate oxidation in chloroplasts.
Collapse
Affiliation(s)
- Christian Blume
- Leibniz University Hannover, Institute of Botany, D 30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
9
|
Rai S, Singh S, Shrivastava AK, Rai LC. Salt and UV-B induced changes in Anabaena PCC 7120: physiological, proteomic and bioinformatic perspectives. PHOTOSYNTHESIS RESEARCH 2013; 118:105-114. [PMID: 24113924 DOI: 10.1007/s11120-013-9931-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
This study examines response of Anabaena sp. PCC 7120 to salt and UV-B stress by combining physiological, biochemical, proteomics and bioinformatics approaches. Sixty five significantly altered protein spots corresponding to 51 protein genes identified using MALDI-TOF MS/MS were divided into nine functional categories. Based on relative abundance, these proteins were grouped into four major sets. Of these, 27 and 5 proteins were up- and downregulated, respectively, both under salt and UV-B while 8 and 11 proteins showed accumulation in salt and UV-B applied singly. Some responses common to salt and UV-B included (i) enhanced expression of FeSOD, alr3090 and accumulation of MDA indicating oxidative stress, (ii) accumulation of PDH, G6P isomerase, FBPaldolase, TK, GAPDH and PGK suggesting enhanced glycolysis, (iii) upregulation of 6-PGD, 6PGL and NADPH levels signifying operation of pentose phosphate pathway, (iv) upregulation of Dps, NDK and alr3199 indicating DNA damage, and (v) accumulation of proteins of ribosome assembly, transcriptional and translational processing. In contrast, enhanced expression of RUBISCO, increased glycolate oxidase activity and ammonium content under salt signify the difference. Salt was found to be more damaging than UV-B probably due to a cumulative effect of ionic, osmotic and oxidative damage. A group of proteins having common expression represent decreased toxicity of salt and UV-B when applied in combination.
Collapse
Affiliation(s)
- Snigdha Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | |
Collapse
|
10
|
Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W. Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:106. [PMID: 23883549 PMCID: PMC3726282 DOI: 10.1186/1754-6834-6-106] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/23/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic cyanobacteria have been recently proposed as a 'microbial factory' to produce butanol due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources, respectively. However, to improve the productivity, one key issue needed to be addressed is the low tolerance of the photosynthetic hosts to butanol. RESULTS In this study, we first applied a quantitative transcriptomics approach with a next-generation RNA sequencing technology to identify gene targets relevant to butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803. The results showed that 278 genes were induced by the butanol exposure at all three sampling points through the growth time course. Genes encoding heat-shock proteins, oxidative stress related proteins, transporters and proteins involved in common stress responses, were induced by butanol exposure. We then applied GC-MS based metabolomics analysis to determine the metabolic changes associated with the butanol exposure. The results showed that 46 out of 73 chemically classified metabolites were differentially regulated by butanol treatment. Notably, 3-phosphoglycerate, glycine, serine and urea related to general stress responses were elevated in butanol-treated cells. To validate the potential targets, we constructed gene knockout mutants for three selected gene targets. The comparative phenotypic analysis confirmed that these genes were involved in the butanol tolerance. CONCLUSION The integrated OMICS analysis provided a comprehensive view of the complicated molecular mechanisms employed by Synechocystis sp. PCC 6803 against butanol stress, and allowed identification of a series of potential gene candidates for tolerance engineering in cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Hongji Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Xiaoyue Ren
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Zhongdi Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Jianjun Qiao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Xiaoxu Tian
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Jie Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
| |
Collapse
|
11
|
Vongsangnak W, Ruenwai R, Tang X, Hu X, Zhang H, Shen B, Song Y, Laoteng K. Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi. Gene 2013; 521:180-90. [PMID: 23541380 DOI: 10.1016/j.gene.2013.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Microbial lipids are becoming an attractive option for the industrial production of foods and oleochemicals. To investigate the lipid physiology of the oleaginous microorganisms, at the system level, genome-scale metabolic networks of Mortierella alpina and Mucor circinelloides were constructed using bioinformatics and systems biology. As scaffolds for integrated data analysis focusing on lipid production, consensus metabolic routes governing fatty acid synthesis, and lipid storage and mobilisation were identified by comparative analysis of developed metabolic networks. Unique metabolic features were identified in individual fungi, particularly in NADPH metabolism and sterol biosynthesis, which might be related to differences in fungal lipid phenotypes. The frameworks detailing the metabolic relationship between M. alpina and M. circinelloides generated in this study is useful for further elucidation of the microbial oleaginicity, which might lead to the production improvement of microbial oils as alternative feedstocks for oleochemical industry.
Collapse
|
12
|
Waditee-Sirisattha R, Singh M, Kageyama H, Sittipol D, Rai AK, Takabe T. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt. Arch Microbiol 2012; 194:909-14. [PMID: 22707090 DOI: 10.1007/s00203-012-0824-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 04/07/2012] [Accepted: 05/19/2012] [Indexed: 10/28/2022]
Abstract
Photosynthetic, nitrogen-fixing Anabaena strains play an important role in the carbon and nitrogen cycles in tropical paddy fields although they are salt sensitive. Improvement in salt tolerance of Anabaena cells by expressing glycine betaine-synthesizing genes is an interesting subject. Due to the absence of choline in cyanobacteria, choline-oxidizing enzyme could not be used for the synthesis of glycine betaine. Here, the genes encoding glycine-sarcosine and dimethylglycine methyltransferases (ApGSMT-DMT) from a halotolerant cyanobacterium Aphanothece halophytica were expressed in Anabaena sp. strain PCC7120. The ApGSMT-DMT-expressing Anabaena cells were capable of synthesizing glycine betaine without the addition of any substance. The accumulation level of glycine betaine in Anabaena increased with rise of salt concentration. The transformed cells exhibited an improved growth and more tolerance to salinity than the control cells. The present work provides a prospect to engineer a nitrogen-fixing cyanobacterium having enhanced tolerance to stress by manipulating de novo synthesis of glycine betaine.
Collapse
|
13
|
Waditee-Sirisattha R, Sittipol D, Tanaka Y, Takabe T. Overexpression of serine hydroxymethyltransferase from halotolerant cyanobacterium in Escherichia coli results in increased accumulation of choline precursors and enhanced salinity tolerance. FEMS Microbiol Lett 2012; 333:46-53. [PMID: 22587350 DOI: 10.1111/j.1574-6968.2012.02597.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a key enzyme in cellular one-carbon pathway and has been studied in many living organisms from bacteria to higher plants and mammals. However, biochemical and molecular characterization of SHMT from photoautotrophic microorganisms remains a challenge. Here, we isolated the SHMT gene from a halotolerant cyanobacterium Aphanothece halophytica (ApSHMT) and expressed it in Escherichia coli. Purified recombinant ApSHMT protein exhibited catalytic reactions for dl-threo-3-phenylserine as well as for l-serine. Catalytic reaction for l-serine was strongly inhibited by NaCl, but not to that level with glycine betaine. Overexpression of ApSHMT in E. coli resulted in the increased accumulation of glycine and serine. Choline and glycine betaine levels were also significantly increased. Under high salinity, the growth rate of ApSHMT-expressing cells was faster compared to its respective control. High salinity also strongly induced the transcript level of ApSHMT in A. halophytica. Our results indicate the importance of a novel pathway; salt-induced ApSHMT increased the level of glycine betaine via serine and choline and conferred the tolerance to salinity stress.
Collapse
|
14
|
Pandey S, Rai R, Rai LC. Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics 2011; 75:921-37. [PMID: 22057044 DOI: 10.1016/j.jprot.2011.10.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/13/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
Proteomics in conjunction with morphological, physiological and biochemical variables has been employed for the first time to unravel survival strategies of the diazotrophic cyanobacterium Anabaena sp. PCC7120 under Arsenic (As) stress. Significant reduction in growth, carbon fixation, nitrogenase activity and chlorophyll content after 1 day (1d) and recovery after 15 days (15d) of As exposure indicates the acclimation of the test organism against As stress. The formation of akinete like structures is a novel observation never reported before in Anabaena sp. PCC7120. Proteomic characterization using 2-DE showed average 537, 422 and 439 spots in control, 1 and 15d treatment respectively. MALDI-TOF and LC-MS of As-treated Anabaena revealed a total of 45 differentially expressed proteins, of which 13 were novel (hypothetical) ones. Down-regulation of phosphoglycerate kinase (PGK), fructose bisphosphate aldolase II (FBA II), fructose 1,6 bisphosphatase (FBPase), transketolase (TK), and ATP synthase on day 1 and their significant recovery on the 15th day presumably maintained the glycolysis, pentose phosphate pathway (PPP) and turnover rate of Calvin cycle, hence survival of the test organism. Up-regulation of catalase (CAT), peroxiredoxin (Prx), thioredoxin (Trx) and oxidoreductase appears to protect the cells from oxidative stress. Appreciable induction in phytochelatin content (2.4 fold), GST activity (2.3 fold), and transcripts of phytochelatin synthase (5.0 fold), arsenate reductase (8.5 fold) and arsenite efflux genes - asr1102 (5.0 fold), alr1097 (4.7 fold) reiterates their role in As sequestration and shielding of the organism from As toxicity. While up-regulated metabolic and antioxidative defense proteins, phytochelatin and GST work synchronously, the ars genes play a central role in detoxification and survival of Anabaena under As stress. The proposed hypothetical model explains the interaction of metabolic proteins associated with the survival of Anabaena sp. PCC7120 under As stress.
Collapse
Affiliation(s)
- Sarita Pandey
- Molecular Biology Section, Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | | | | |
Collapse
|