1
|
Jalal RS, Sonbol HS. Resistome Signature and Antibiotic Resistance Mechanisms in Rhizospheric Soil Bacteriomes of Mecca Region, Saudi Arabia: Insights into Impact on Human Health. Life (Basel) 2024; 14:928. [PMID: 39202671 PMCID: PMC11355665 DOI: 10.3390/life14080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
The objective of this investigation is to ascertain the distinctive profile of the rhizospheric soil resistome within the Mecca region, while also evaluating the potential risks associated with the horizontal transfer of resistome determinants to the open environment and human clinical isolates. We have made metagenomic whole-genome shotgun sequencing for rhizospheric microbiomes of two endemic plants, namely Moringa oleifera and Abutilon fruticosum. The rhizospheric resistomes of the two plants and the abundance of antibiotic resistance genes (ARGs) were identified by cross-referencing encoded proteins with the comprehensive antibiotic resistance database (CARD). The identified ARGs were then analyzed for their antimicrobial resistance (AMR) mechanisms. Predominantly within this soil are the two bacterial species Pseudomonas aeruginosa and Mycobacterium tuberculosis. These opportunistic human pathogens are implicated in respiratory infections and are correlated with heightened mortality rates. The most prevalent array of ARGs existing in this soil comprises mexA, mexC, mexE, and cpxR, associated with mechanisms of antibiotic active efflux, along with ACC(2), ACC(3), AAC(6), and APH(6), in addition to arr1, arr3, arr4, iri, rphA, and rphB, implicated in antibiotic inactivation. Furthermore, vanS, vanR, and vanJ are identified for antibiotic target alteration, while rpoB2 and RbpA are noted for antibiotic target replacement and protection, respectively. These mechanisms confer resistance against a diverse spectrum of drug classes encompassing fluoroquinolones, aminoglycosides, glycopeptides, and rifampicins. This study underscores the potential hazards posed to human health by the presence of these pathogenic bacteria within the rhizospheric soil of the Mecca region, particularly in scenarios where novel ARGs prevalent in human populations are harbored and subsequently transmitted through the food chain to human clinical isolates. Consequently, stringent adherence to good agricultural and food transportation practices is imperative, particularly with regard to edible plant parts and those utilized in folkloric medicine.
Collapse
Affiliation(s)
- Rewaa S. Jalal
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia;
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
2
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
3
|
Šmídová K, Ziková A, Pospíšil J, Schwarz M, Bobek J, Vohradsky J. DNA mapping and kinetic modeling of the HrdB regulon in Streptomyces coelicolor. Nucleic Acids Res 2019; 47:621-633. [PMID: 30371884 PMCID: PMC6344877 DOI: 10.1093/nar/gky1018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
HrdB in streptomycetes is a principal sigma factor whose deletion is lethal. This is also the reason why its regulon has not been investigated so far. To overcome experimental obstacles, for investigating the HrdB regulon, we constructed a strain whose HrdB protein was tagged by an HA epitope. ChIP-seq experiment, done in 3 repeats, identified 2137 protein-coding genes organized in 337 operons, 75 small RNAs, 62 tRNAs, 6 rRNAs and 3 miscellaneous RNAs. Subsequent kinetic modeling of regulation of protein-coding genes with HrdB alone and with a complex of HrdB and a transcriptional cofactor RbpA, using gene expression time series, identified 1694 genes that were under their direct control. When using the HrdB-RbpA complex in the model, an increase of the model fidelity was found for 322 genes. Functional analysis revealed that HrdB controls the majority of gene groups essential for the primary metabolism and the vegetative growth. Particularly, almost all ribosomal protein-coding genes were found in the HrdB regulon. Analysis of promoter binding sites revealed binding motif at the -10 region and suggested the possible role of mono- or di-nucleotides upstream of the -10 element.
Collapse
Affiliation(s)
- Klára Šmídová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, 12800 Prague, Czechia
| | - Alice Ziková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
| | - Jiří Pospíšil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
| | - Marek Schwarz
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
| | - Jan Bobek
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, 12800 Prague, Czechia
- Chemistry Department, Faculty of Science, J. E. Purkinje University, 40096 Ústí nad Labem, Czechia
| | - Jiri Vohradsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czechia
- To whom correspondence should be addressed. Tel: +420 241 062 513;
| |
Collapse
|
4
|
Prusa J, Jensen D, Santiago-Collazo G, Pope SS, Garner AL, Miller JJ, Ruiz Manzano A, Galburt EA, Stallings CL. Domains within RbpA Serve Specific Functional Roles That Regulate the Expression of Distinct Mycobacterial Gene Subsets. J Bacteriol 2018; 200:e00690-17. [PMID: 29686140 PMCID: PMC5996690 DOI: 10.1128/jb.00690-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase (RNAP) binding protein A (RbpA) contributes to the formation of stable RNAP-promoter open complexes (RPo) and is essential for viability in mycobacteria. Four domains have been identified in the RbpA protein, i.e., an N-terminal tail (NTT) that interacts with RNAP β' and σ subunits, a core domain (CD) that contacts the RNAP β' subunit, a basic linker (BL) that binds DNA, and a σ-interaction domain (SID) that binds group I and group II σ factors. Limited in vivo studies have been performed in mycobacteria, however, and how individual structural domains of RbpA contribute to RbpA function and mycobacterial gene expression remains mostly unknown. We investigated the roles of the RbpA structural domains in mycobacteria using a panel of rbpA mutants that target individual RbpA domains. The function of each RbpA domain was required for Mycobacterium tuberculosis viability and optimal growth in Mycobacterium smegmatis We determined that the RbpA SID is both necessary and sufficient for RbpA interaction with the RNAP, indicating that the primary functions of the NTT and CD are not solely association with the RNAP. We show that the RbpA BL and SID are required for RPo stabilization in vitro, while the NTT and CD antagonize this activity. Finally, RNA-sequencing analyses suggest that the NTT and CD broadly activate gene expression, whereas the BL and SID activate or repress gene expression in a gene-dependent manner for a subset of mycobacterial genes. Our findings highlight specific outcomes for the activities of the individual functional domains in RbpA.IMPORTANCEMycobacterium tuberculosis is the causative agent of tuberculosis and continues to be the most lethal infectious disease worldwide. Improved molecular understanding of the essential proteins involved in M. tuberculosis transcription, such as RbpA, could provide targets for much needed future therapeutic agents aimed at combatting this pathogen. In this study, we expand our understanding of RbpA by identifying the RbpA structural domains responsible for the interaction of RbpA with the RNAP and the effects of RbpA on transcription initiation and gene expression. These experiments expand our knowledge of RbpA while also broadening our understanding of bacterial transcription in general.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gustavo Santiago-Collazo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven S Pope
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Ghosh S, Chatterji D. Two zinc finger proteins from Mycobacterium smegmatis: DNA binding and activation of transcription. Genes Cells 2017. [PMID: 28639742 DOI: 10.1111/gtc.12507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single zinc finger domain containing proteins are very few in number. Of numerous zinc finger proteins in eukaryotes, only three of them like GAGA, Superman and DNA binding by one finger (Dof) have single zinc finger domain. Although few zinc finger proteins have been described in eubacteria, no protein with single C4 zinc finger has been described in details in anyone of them. In this article, we are describing two novel C-terminal C4 zinc finger proteins-Msmeg_0118 and Msmeg_3613 from Mycobacterium smegmatis. We have named these proteins as Mszfp1 (Mycobacterial Single Zinc Finger Protein 1) and Mszfp2 (Mycobacterial Single Zinc Finger Protein 2). Both the proteins are expressed constitutively, can bind to DNA and regulate transcription. It appears that Mszfp1 and Mszfp2 may activate transcription by interacting with RNA polymerase.
Collapse
Affiliation(s)
- Subho Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
6
|
Elseman AM, Shalan AE, Rashad MM, Hassan AM, Ibrahim NM, Nassar AM. Easily attainable new approach to mass yield ferrocenyl Schiff base and different metal complexes of ferrocenyl Schiff base through convenient ultrasonication-solvothermal method. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Mourtada Elseman
- Electronic and Magnetic Division, Advanced Materials Department; Central Metallurgical Research & Development Institute (CMRDI); Helwan Cairo Egypt
| | - Ahmed Esmail Shalan
- Electronic and Magnetic Division, Advanced Materials Department; Central Metallurgical Research & Development Institute (CMRDI); Helwan Cairo Egypt
- Research Institute for Electronic Science; Hokkaido University; N21, W10, Kita-ku 001-0021 Sapporo Japan
| | - Mohamed M. Rashad
- Electronic and Magnetic Division, Advanced Materials Department; Central Metallurgical Research & Development Institute (CMRDI); Helwan Cairo Egypt
| | - Ali M. Hassan
- Chemistry Department, Faculty of Science; Al-Azhar University; Nasr City Cairo Egypt
| | - Nabila M. Ibrahim
- National Research Centre; Department of Organometallic & Organometalloid Chemistry; El Buhouth St, Dokki, Giza Cairo Egypt
| | - Amr M. Nassar
- Chemistry Department, Faculty of Science; Al-Azhar University; Nasr City Cairo Egypt
| |
Collapse
|
7
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
8
|
Hubin EA, Tabib-Salazar A, Humphrey LJ, Flack JE, Olinares PDB, Darst SA, Campbell EA, Paget MS. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc Natl Acad Sci U S A 2015; 112:7171-6. [PMID: 26040003 PMCID: PMC4466734 DOI: 10.1073/pnas.1504942112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σ(A). The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σ(A) as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator.
Collapse
Affiliation(s)
- Elizabeth A Hubin
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065
| | - Aline Tabib-Salazar
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Laurence J Humphrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Joshua E Flack
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065;
| | - Mark S Paget
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom;
| |
Collapse
|
9
|
Hu Y, Morichaud Z, Perumal AS, Roquet-Baneres F, Brodolin K. Mycobacterium RbpA cooperates with the stress-response σB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res 2014; 42:10399-408. [PMID: 25122744 PMCID: PMC4176334 DOI: 10.1093/nar/gku742] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RbpA, a transcriptional activator that is essential for Mycobacterium tuberculosis replication and survival during antibiotic treatment, binds to RNA polymerase (RNAP) in the absence of promoter DNA. It has been hypothesized that RbpA stimulates housekeeping gene expression by promoting assembly of the σA subunit with core RNAP. Here, using a purified in vitro transcription system of M. tuberculosis, we show that RbpA functions in a promoter-dependent manner as a companion of RNAP essential for promoter DNA unwinding and formation of the catalytically active open promoter complex (RPo). Screening for RbpA activity using a full panel of the M. tuberculosis σ subunits demonstrated that RbpA targets σA and stress-response σB, but not the alternative σ subunits from the groups 3 and 4. In contrast to σA, the σB subunit activity displayed stringent dependency upon RbpA. These results suggest that RbpA-dependent control of RPo formation provides a mechanism for tuning gene expression during the switch between different physiological states, and in the stress response.
Collapse
Affiliation(s)
- Yangbo Hu
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Zakia Morichaud
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Ayyappasamy Sudalaiyadum Perumal
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Françoise Roquet-Baneres
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
10
|
Verma AK, Chatterji D. Dual role of MsRbpA: transcription activation and rescue of transcription from the inhibitory effect of rifampicin. MICROBIOLOGY-SGM 2014; 160:2018-2029. [PMID: 24987104 DOI: 10.1099/mic.0.079186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MsRbpA is an RNA polymerase (RNAP) binding protein from Mycobacterium smegmatis. According to previous studies, MsRbpA rescues rifampicin-induced transcription inhibition upon binding to the RNAP. Others have shown that RbpA from Mycobacterium tuberculosis (MtbRbpA) is a transcription activator. In this study, we report that both MsRbpA and MtbRbpA activate transcription as well as rescue rifampicin-induced transcription inhibition. Transcription activation is achieved through the increased formation of closed RNAP-promoter complex as well as enhanced rate of conversion of this complex to a stable transcriptionally competent RNAP-promoter complex. When a 16 aa peptide fragment (Asp 58 to Lys 73) was deleted from MsRbpA, the resulting protein showed 1000-fold reduced binding with core RNAP. The deletion results in abolition of transcription activation and rescue of transcription from the inhibitory effect of rifampicin. Through alanine scanning of this essential region of MsRbpA, Gly 67, Val 69, Pro 70 and Pro 72 residues are identified to be important for MsRbpA function. Furthermore, we report here that the protein is indispensable for M. smegmatis, and it appears to help the organism grow in the presence of the antibiotic rifampicin.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
11
|
Bortoluzzi A, Muskett FW, Waters LC, Addis PW, Rieck B, Munder T, Schleier S, Forti F, Ghisotti D, Carr MD, O'Hare HM. Mycobacterium tuberculosis RNA polymerase-binding protein A (RbpA) and its interactions with sigma factors. J Biol Chem 2013; 288:14438-14450. [PMID: 23548911 DOI: 10.1074/jbc.m113.459883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA polymerase-binding protein A (RbpA), encoded by Rv2050, is specific to the actinomycetes, where it is highly conserved. In the pathogen Mycobacterium tuberculosis, RbpA is essential for growth and survival. RbpA binds to the β subunit of the RNA polymerase where it activates transcription by unknown mechanisms, and it may also influence the response of M. tuberculosis to the current frontline anti-tuberculosis drug rifampicin. Here we report the solution structure of RbpA and identify the principle sigma factor σ(A) and the stress-induced σ(B) as interaction partners. The protein has a central ordered domain with a conserved hydrophobic surface that may be a potential protein interaction site. The N and C termini are highly dynamic and are involved in the interaction with the sigma factors. RbpA forms a tight complex with the N-terminal domain of σ(B) via its N- and C-terminal regions. The interaction with sigma factors may explain how RbpA stabilizes sigma subunit binding to the core RNA polymerase and thereby promotes initiation complex formation. RbpA could therefore influence the competition between principal and alternative sigma factors and hence the transcription profile of the cell.
Collapse
Affiliation(s)
- Alessio Bortoluzzi
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Frederick W Muskett
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Lorna C Waters
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Philip W Addis
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Barbara Rieck
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Thomas Munder
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology e.V.-Hans Knöll Institute, D-07745 Jena, Germany
| | - Susanne Schleier
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology e.V.-Hans Knöll Institute, D-07745 Jena, Germany
| | - Francesca Forti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniela Ghisotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mark D Carr
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | - Helen M O'Hare
- Department of Biochemistry, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
12
|
Dey A, Adithi V, Chatterji D. Co-evolution of RNA polymerase with RbpA in the phylum Actinobacteria. Appl Transl Genom 2012; 1:9-20. [PMID: 27896048 PMCID: PMC5121209 DOI: 10.1016/j.atg.2012.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 11/17/2022]
Abstract
The role of RbpA in the backdrop of M. smegmatis showed that it rescues mycobacterial RNA polymerase from rifampicin-mediated inhibition (Dey et al., 2010; Dey et al., 2011). Paget and co-workers (Paget et al., 2001; Newell et al., 2006) have revealed that RbpA homologs occur exclusively in actinobacteria. Newell et al. (2006) showed that MtbRbpA, when complemented in a ∆rbpA mutant of S. coelicolor, showed a low recovery of MIC (from 0.75 to 2 μg/ml) as compared to complementation by native RbpA of S. coelicolor (MIC increases from 0.75 to 11 μg/ml). Our studies on MsRbpA show that it is a differential marker for M. smegmatis RNA polymerase as compared to E. coli RNA polymerase at IC50 levels of rifampicin. A recent sequence-based analysis by Lane and Darst (2010) has shown that RNA polymerases from Proteobacteria and Actinobacteria have had a divergent evolution. E. coli is a representative of Proteobacteria and M. smegmatis is an Actinobacterium. RbpA has an exclusive occurrence in Actinobacteria. Since protein-protein interactions might not be conserved across different species, therefore, the probable reason for the indifference of MsRbpA toward E. coli RNA polymerase could be the lineage-specific differences between actinobacterial and proteobacterial RNA polymerases. These observations led us to ask the question as to whether the evolution of RbpA in Actinobacteria followed the same route as that of RNA polymerase subunits from actinobacterial species. We show that the exclusivity of RbpA in Actinobacteria and the unique evolution of RNA polymerase in this phylum share a co-evolutionary link. We have addressed this issue by a blending of experimental and bioinformatics based approaches. They comprise of induction of bacterial cultures coupled to rifampicin-tolerance, transcription assays and statistical comparison of phylogenetic trees for different pairs of proteins in actinobacteria.
Collapse
Affiliation(s)
- Abhinav Dey
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - V.R. Adithi
- Department of Plant Molecular Biology and Biotechnology, Center for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
13
|
Hu Y, Morichaud Z, Chen S, Leonetti JP, Brodolin K. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σ A-containing RNA polymerase holoenzyme. Nucleic Acids Res 2012; 40:6547-57. [PMID: 22570422 PMCID: PMC3413145 DOI: 10.1093/nar/gks346] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RbpA is an RNA polymerase (RNAP)-binding protein whose presence increases the tolerance levels of Mycobacteria to the first-line anti-tuberculosis drug rifampicin by an unknown mechanism. Here, we show that the role of Mycobacterium tuberculosis RbpA in resistance is indirect because it does not affect the sensitivity of RNAP to rifampicin while it stimulates transcription controlled by the housekeeping σA-factor. The transcription regulated by the stress-related σF was not affected by RbpA. The binding site of RbpA maps to the RNAP β subunit Sandwich-Barrel Hybrid Motif, which has not previously been described as an activator target and does not overlap the rifampicin binding site. Our data suggest that RbpA modifies the structure of the core RNAP, increases its affinity for σA and facilitates the assembly of the transcriptionally competent promoter complexes. We propose that RbpA is an essential partner which advantages σA competitiveness for core RNAP binding with respect to the alternative σ factors. The RbpA-driven stimulation of the housekeeping gene expression may help Mycobacteria to tolerate high rifampicin levels and to adapt to the stress conditions during infection.
Collapse
Affiliation(s)
- Yangbo Hu
- CNRS UMR 5236 - UM1 - UM2, Centre d'études d'agents Pathogénes et Biothechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
14
|
Dey A, Chatterji D. Tracing the Variation in Physiological Response to Rifampicin Across the Microbial Spectrum. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.2.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Abhinav Dey
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|