1
|
Li S, He H, Zhang Y, Ning X, Ding Z, Zhang L, Li Y, Shi G. Identification of a Novel Lactose-Specific PTS Operon in Bacillus licheniformis and Development of Derivative Artificial Operon Modules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37927088 DOI: 10.1021/acs.jafc.3c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacillus licheniformis plays a crucial role as a microbial host in the food industry and shows promising potential as a probiotic for human intestinal regulation. It exhibits a remarkable ability to utilize lactose as its sole carbon source. Despite its significance, the lactose-related metabolic pathway in this strain remains unclear. In this study, we identified a novel lactose-specific operon (lacDCAB) in B. licheniformis, consisting of the lacD gene that encodes a unique 6-phospho-β-galactosidase belonging to the GH4 family, and the lacCAB genes encoding a lactose-specific PTS1 system. Notably, we constructed and assessed an array library of transport and catabolic modules specifically for lactose utilization. Among these modules, PDS-lacD-P2-pts1 demonstrated the highest specific lactose consumption rate of 0.64 g/(L·h·OD), which was 8 times higher than that of the control strain. Furthermore, we developed a dual carbon source transport model based on the PDS-lacD-P2-pts1 assembly module, which highlighted efficient coutilization of glucose/sucrose, lactose/sucrose, lactose/galactose, and lactose/2,3-butanediol. This study provides insight into the lactose-specific metabolic pathway of B. licheniformis and presents a promising strategy for enhancing lactose utilization efficiency and mixed carbon source coutilization.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xuewei Ning
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
3
|
The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Sci Rep 2018; 8:7152. [PMID: 29740087 PMCID: PMC5940811 DOI: 10.1038/s41598-018-25660-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/26/2018] [Indexed: 11/30/2022] Open
Abstract
The lactose operon (lacTEGF) from Lactobacillus casei strain BL23 has been previously studied. The lacT gene codes for a transcriptional antiterminator, lacE and lacF for the lactose-specific phosphoenolpyruvate: phosphotransferase system (PTSLac) EIICB and EIIA domains, respectively, and lacG for the phospho-β-galactosidase. In this work, we have shown that L. casei is able to metabolize N-acetyllactosamine (LacNAc), a disaccharide present at human milk and intestinal mucosa. The mutant strains BL153 (lacE) and BL155 (lacF) were defective in LacNAc utilization, indicating that the EIICB and EIIA of the PTSLac are involved in the uptake of LacNAc in addition to lactose. Inactivation of lacG abolishes the growth of L. casei in both disaccharides and analysis of LacG activity showed a high selectivity toward phosphorylated compounds, suggesting that LacG is necessary for the hydrolysis of the intracellular phosphorylated lactose and LacNAc. L. casei (lacAB) strain deficient in galactose-6P isomerase showed a growth rate in lactose (0.0293 ± 0.0014 h−1) and in LacNAc (0.0307 ± 0.0009 h−1) significantly lower than the wild-type (0.1010 ± 0.0006 h−1 and 0.0522 ± 0.0005 h−1, respectively), indicating that their galactose moiety is catabolized through the tagatose-6P pathway. Transcriptional analysis showed induction levels of the lac genes ranged from 130 to 320–fold in LacNAc and from 100 to 200–fold in lactose, compared to cells growing in glucose.
Collapse
|
4
|
Reznikov EA, Comstock SS, Hoeflinger JL, Wang M, Miller MJ, Donovan SM. Dietary Bovine Lactoferrin Reduces Staphylococcus aureus in the Tissues and Modulates the Immune Response in Piglets Systemically Infected with S. aureus. Curr Dev Nutr 2018; 2:nzy001. [PMID: 30019029 PMCID: PMC6041752 DOI: 10.1093/cdn/nzy001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bovine lactoferrin (bLf) reduces Staphylococcus aureus infection in premature infants and promotes the growth of Bifidobacterium infantis, a predominant infant gut species. We hypothesized that bLf in combination with B. infantis would reduce the severity of systemic S. aureus infection. OBJECTIVE The aim was to determine the effects of oral administration of bLf and B. infantis on the course of systemic S. aureus infection. METHODS Colostrum-deprived piglets were fed formulas containing 4 g whey/L (CON group) or bLf (LF group). One-half of the piglets in each group were gavaged with B. infantis (109 colony-forming units/d), resulting in 2 additional groups (BI or COMB, respectively). On day 7, piglets were intravenously injected with S. aureus. Blood samples were collected preinfection and every 12 h postinfection for immune analyses. Tissue samples were collected on day 12 for analysis of bacterial abundance and gene expression. RESULTS Preinfection, LF piglets had lower serum interleukin 10 (IL-10), a higher percentage of lymphocytes, and a lower percentage of neutrophils than BI or COMB piglets. After infection, dietary bLf increased piglet weight gain, reduced staphylococcal counts in the kidneys, and tended to lower staphylococcal counts in the lungs and heart. Dietary bLf also decreased kidney IL-10 and increased lung interferon γ (IFN-γ) mRNA. B. infantis increased splenic IFN-γ expression. Renal Toll-like receptor 2 was upregulated in BI piglets but not in COMB piglets. Postinfection, BI piglets had increased serum IL-10 and decreased memory T cell populations. LF and COMB piglets had fewer circulating monocytes and B cells than CON or BI piglets. CONCLUSIONS Dietary bLf and B. infantis produced independent and tissue-specific effects. Piglets fed bLf alone or in combination with B. infantis mounted a more effective immune response and exhibited lower bacterial abundance. This study provides biological underpinnings to the clinical benefits of bLf observed in preterm infants but does not support B. infantis administration during S. aureus infection.
Collapse
Affiliation(s)
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | | | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Michael J Miller
- Division of Nutritional Sciences
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Sharon M Donovan
- Division of Nutritional Sciences
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| |
Collapse
|
5
|
Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Prebiotic Galactooligosaccharide Metabolism by Probiotic Lactobacilli and Bifidobacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4184-4192. [PMID: 28466641 DOI: 10.1021/acs.jafc.7b00851] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Galactooligosaccharides (GOS) are bifidogenic and lactogenic prebiotics; however, GOS utilization is strain-dependent. In this study, commercially available bifidobacteria and lactobacilli probiotic strains were evaluated for growth in the presence of GOS. Several bifidobacteria and lactobacilli grew on GOS; however, the specific GOS oligomers utilized for growth differed. A subset of probiotic bifidobacteria and lactobacilli revealed three different GOS utilization profiles delineated by the degrees of polymerization (DP) of GOS: (1) utilization of 2 DP GOS, (2) utilization of ≤3 DP GOS, and (3) utilization of all DP GOS. Specifically, Lactobacillus acidophilus NCFM (LA_NCFM) was found to efficiently consume all GOS oligomers. Extracellular β-galactosidase activity in the cell-free supernatant of LA_NCFM correlated with accumulation of galactose. In a LacL-deficient LA_NCFM strain, GOS utilization was abolished. This is the first report of LacL's role in GOS metabolism in LA_NCFM. In vitro GOS utilization should be considered when GOS are delivered with probiotic bifidobacteria and lactobacilli.
Collapse
Affiliation(s)
- Taksawan Thongaram
- Department of Food Science and Human Nutrition, University of Illinois , 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Jennifer L Hoeflinger
- Department of Food Science and Human Nutrition, University of Illinois , 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - JoMay Chow
- Abbott Nutrition , 3300 Stelzer Road, Columbus, Ohio 43219, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois , 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Katyal I, Chaban B, Hill JE. Comparative Genomics of cpn60-Defined Enterococcus hirae Ecotypes and Relationship of Gene Content Differences to Competitive Fitness. MICROBIAL ECOLOGY 2016; 72:917-930. [PMID: 26566933 DOI: 10.1007/s00248-015-0708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Natural microbial communities undergo selection-driven succession with changes in environmental conditions and available nutrients. In a previous study of the pig faecal Enterococcus community, we demonstrated that cpn60 universal target (UT) sequences could resolve phenotypically and genotypically distinct ecotypes of Enterococcus spp. that emerged over time in the faecal microbiome of growing pigs. In this study, we characterized genomic diversity in the identified Enterococcus hirae ecotypes in order to define further the nature and degree of genome content differences between taxa resolved by cpn60 UT sequences. Genome sequences for six representative isolates (two from each of three ecotypes) were compared. Differences in phosphotransferase systems and amino acid metabolism pathways for glutamine, proline and selenocysteine were observed. Differences in the lac family phosphotransferase system corresponded to lactose utilization phenotypes of the isolates. Competitive fitness of the E. hirae ecotypes was evaluated by in vitro growth competition assays in pig faecal extract medium. Isolates from E. hirae-1 and E. hirae-2 ecotypes were able to out-compete isolates from the E. hirae-3 ecotype, consistent with the relatively low abundance of E. hirae-3 relative to E. hirae-1 and E. hirae-2 previously observed in the pig faecal microbiome, and with observed differences between the ecotypes in gene content related to biosynthetic capacity. Results of this study provide a genomic basis for the definition of ecotypes within E. hirae and confirm the utility of the cpn60 UT sequence for high-resolution profiling of complex microbial communities.
Collapse
Affiliation(s)
- Isha Katyal
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Bonnie Chaban
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
8
|
Cockburn DW, Koropatkin NM. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol 2016; 428:3230-3252. [PMID: 27393306 DOI: 10.1016/j.jmb.2016.06.021] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrates comprise a large fraction of the typical diet, yet humans are only able to directly process some types of starch and simple sugars. The remainder transits the large intestine where it becomes food for the commensal bacterial community. This is an environment of not only intense competition but also impressive cooperation for available glycans, as these bacteria work to maximize their energy harvest from these carbohydrates during their limited transit time through the gut. The species within the gut microbiota use a variety of strategies to process and scavenge both dietary and host-produced glycans such as mucins. Some act as generalists that are able to degrade a wide range of polysaccharides, while others are specialists that are only able to target a few select glycans. All are members of a metabolic network where substantial cross-feeding takes place, as by-products of one organism serve as important resources for another. Much of this metabolic activity influences host physiology, as secondary metabolites and fermentation end products are absorbed either by the epithelial layer or by transit via the portal vein to the liver where they can have additional effects. These microbially derived compounds influence cell proliferation and apoptosis, modulate the immune response, and can alter host metabolism. This review summarizes the molecular underpinnings of these polysaccharide degradation processes, their impact on human health, and how we can manipulate them through the use of prebiotics.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012; 3:340. [PMID: 23055996 PMCID: PMC3458588 DOI: 10.3389/fmicb.2012.00340] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023] Open
Abstract
Oligosaccharides, compounds that are composed of 2-10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp.
Collapse
Affiliation(s)
- Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Rainer Follador
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|