1
|
Niu M, Sui Z, Jiang G, Wang L, Yao X, Hu Y. The Mutation of the DNA-Binding Domain of Fur Protein Enhances the Pathogenicity of Edwardsiella piscicida via Inducing Overpowering Pyroptosis. Microorganisms 2023; 12:11. [PMID: 38276180 PMCID: PMC10821184 DOI: 10.3390/microorganisms12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Edwardsiella piscicida is an important fish pathogen with a broad host that causes substantial economic losses in the aquaculture industry. Ferric uptake regulator (Fur) is a global transcriptional regulator and contains two typical domains, the DNA-binding domain and dimerization domain. In a previous study, we obtained a mutant strain of full-length fur of E. piscicida, TX01Δfur, which displayed increased siderophore production and stress resistance factors and decreased pathogenicity. To further reveal the regulatory mechanism of Fur, the DNA-binding domain (N-terminal) of Fur was knocked out in this study and the mutant was named TX01Δfur2. We found that TX01Δfur2 displayed increased siderophore production and enhanced adversity tolerance, including a low pH, manganese, and high temperature stress, which was consistent with the phenotype of TX01Δfur. Contrary to TX01Δfur, whose virulence was weakened, TX01Δfur2 displayed an ascended invasion of nonphagocytic cells and enhanced destruction of phagocytes via inducing overpowering or uncontrollable pyroptosis, which was confirmed by the fact that TX01Δfur2 induced higher levels of cytotoxicity, IL-1β, and p10 in macrophages than TX01. More importantly, TX01Δfur2 displayed an increased global virulence to the host, which was confirmed by the result that TX01Δfur2 caused higher lethality outcomes for healthy tilapias than TX01. These results demonstrate that the mutation of the Fur N-terminal domain augments the resistance level against the stress and pathogenicity of E. piscicida, which is not dependent on the bacterial number in host cells or host tissues, although the capabilities of biofilm formation and the motility of TX01Δfur2 decline. These interesting findings provide a new insight into the functional analysis of Fur concerning the regulation of virulence in E. piscicida and prompt us to explore the subtle regulation mechanism of Fur in the future.
Collapse
Affiliation(s)
- Mimi Niu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhihai Sui
- School of Life Science, Linyi University, Linyi 276000, China;
| | - Guoquan Jiang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Xuemei Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Yonghua Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.J.); (L.W.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| |
Collapse
|
2
|
Price SL, Thibault D, Garrison TM, Brady A, Guo H, Kehl‐Fie TE, Garneau‐Tsodikova S, Perry RD, van Opijnen T, Lawrenz MB. Droplet Tn-Seq identifies the primary secretion mechanism for yersiniabactin in Yersinia pestis. EMBO Rep 2023; 24:e57369. [PMID: 37501563 PMCID: PMC10561177 DOI: 10.15252/embr.202357369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Nutritional immunity includes sequestration of transition metals from invading pathogens. Yersinia pestis overcomes nutritional immunity by secreting yersiniabactin to acquire iron and zinc during infection. While the mechanisms for yersiniabactin synthesis and import are well-defined, those responsible for yersiniabactin secretion are unknown. Identification of this mechanism has been difficult because conventional mutagenesis approaches are unable to inhibit trans-complementation by secreted factors between mutants. To overcome this obstacle, we utilized a technique called droplet Tn-seq (dTn-seq), which uses microfluidics to isolate individual transposon mutants in oil droplets, eliminating trans-complementation between bacteria. Using this approach, we first demonstrated the applicability of dTn-seq to identify genes with secreted functions. We then applied dTn-seq to identify an AcrAB efflux system as required for growth in metal-limited conditions. Finally, we showed this efflux system is the primary yersiniabactin secretion mechanism and required for virulence during bubonic and pneumonic plague. Together, these studies have revealed the yersiniabactin secretion mechanism that has eluded researchers for over 30 years and identified a potential therapeutic target for bacteria that use yersiniabactin for metal acquisition.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
| | | | - Taylor M Garrison
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
| | - Amanda Brady
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
| | - Haixun Guo
- Center for Predictive Medicine for Biodefense and Emerging Infectious DiseasesUniversity of LouisvilleLouisvilleKYUSA
- Department of RadiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Thomas E Kehl‐Fie
- Department of MicrobiologyUniversity of Illinois Urbana‐ChampaignChampaignILUSA
- Carl R Woese Institute for Genomic BiologyUrbanaILUSA
| | | | - Robert D Perry
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of KentuckyLexingtonKYUSA
| | | | - Matthew B Lawrenz
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
- Center for Predictive Medicine for Biodefense and Emerging Infectious DiseasesUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
3
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Wu J, McAuliffe O, O'Byrne CP. Manganese uptake mediated by the NRAMP-type transporter MntH is required for acid tolerance in Listeria monocytogenes. Int J Food Microbiol 2023; 399:110238. [PMID: 37148667 DOI: 10.1016/j.ijfoodmicro.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland..
| |
Collapse
|
5
|
Martínez D, Oyarzún-Salazar R, Quilapi AM, Coronado J, Enriquez R, Vargas-Lagos C, Oliver C, Santibañez N, Godoy M, Muñoz JL, Vargas-Chacoff L, Romero A. Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon ( Salmo salar). Front Immunol 2023; 14:1187209. [PMID: 37187753 PMCID: PMC10175622 DOI: 10.3389/fimmu.2023.1187209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Ana María Quilapi
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - José Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Enriquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Vargas-Lagos
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Marcos Godoy
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile
| | - José Luis Muñoz
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), University Austral of Chile, Valdivia, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| |
Collapse
|
6
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
7
|
Price SL, Vadyvaloo V, DeMarco JK, Brady A, Gray PA, Kehl-Fie TE, Garneau-Tsodikova S, Perry RD, Lawrenz MB. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc Natl Acad Sci U S A 2021; 118:e2104073118. [PMID: 34716262 PMCID: PMC8612365 DOI: 10.1073/pnas.2104073118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164
| | - Jennifer K DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Phoenix A Gray
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Thomas E Kehl-Fie
- Department of Microbiology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61820
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202;
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| |
Collapse
|
8
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
9
|
Shin M, Jin Y, Park J, Mun D, Kim SR, Payne SM, Kim KH, Kim Y. Characterization of an Antibacterial Agent Targeting Ferrous Iron Transport Protein FeoB against Staphylococcus aureus and Gram-Positive Bacteria. ACS Chem Biol 2021; 16:136-149. [PMID: 33378170 DOI: 10.1021/acschembio.0c00842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of multidrug-resistant Staphylococcus aureus strains has become a serious clinical problem. Iron is absolutely required for the bacterial growth, virulence associated with colonization, and survival from the host immune system. The FeoB protein is a major iron permease in bacterial ferrous iron transport systems (Feo) that has been shown to play a crucial role in virulence of some pathogenic bacteria. However, FeoB is still uncharacterized in Gram-positive pathogens, and its effects on S. aureus pathogenesis are unknown. In this study, we identified a novel inhibitor, GW3965·HCl, that targets FeoB in S. aureus. The molecule effectively inhibited FeoB in vitro enzyme activity, bacterial growth, and virulence factor expression. Genome-editing and metabolomic analyses revealed that GW3965·HCl inhibited FeoB function and affected the associated mechanisms with reduced iron availability in S. aureus. Gentamicin resistance and Caenorhabditis elegans infection assays further demonstrated the power of GW3965·HCl as a safe and efficient antibacterial agent. In addition to S. aureus, GW3965·HCl also presented its effectiveness on inhibition of the FeoB activity and growth of Gram-positive bacteria. This novel inhibitor will provide new insight for developing a next-generation antibacterial therapy.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yerin Jin
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Jinsub Park
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Shelley M. Payne
- Department of Molecular Biosciences, College of Natural Science, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Manganese homeostasis at the host-pathogen interface and in the host immune system. Semin Cell Dev Biol 2021; 115:45-53. [PMID: 33419608 DOI: 10.1016/j.semcdb.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Manganese serves as an indispensable catalytic center and the structural core of various enzymes that participate in a plethora of biological processes, including oxidative phosphorylation, glycosylation, and signal transduction. In pathogenic microorganisms, manganese is required for survival by maintaining basic biochemical activity and virulence; in contrast, the host utilizes a process known as nutritional immunity to sequester manganese from invading pathogens. Recent epidemiological and animal studies have shown that manganese increases the immune response in a wide range of vertebrates, including humans, rodents, birds, and fish. On the other hand, excess manganese can cause neurotoxicity and other detrimental effects. Here, we review recent data illustrating the essential role of manganese homeostasis at the host-pathogen interface and in the host immune system. We also discuss the accumulating body of evidence that manganese modulates various signaling pathways in immune processes. Finally, we discuss the key molecular players involved in manganese's immune regulatory function, as well as the clinical implications with respect to cancer immunotherapy.
Collapse
|
11
|
Murgas CJ, Green SP, Forney AK, Korba RM, An SS, Kitten T, Lucas HR. Intracellular Metal Speciation in Streptococcus sanguinis Establishes SsaACB as Critical for Redox Maintenance. ACS Infect Dis 2020; 6:1906-1921. [PMID: 32329608 DOI: 10.1021/acsinfecdis.0c00132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcus sanguinis is an oral commensal bacterium, but it can colonize pre-existing heart valve vegetations if introduced into the bloodstream, leading to infective endocarditis. Loss of Mn- or Fe-cofactored virulence determinants are thought to result in weakening of this bacterium. Indeed, intracellular Mn accumulation mediated by the lipoprotein SsaB, a component of the SsaACB transporter complex, has been shown to promote virulence for endocarditis and O2 tolerance. To delineate intracellular metal-ion abundance and redox speciation within S. sanguinis, we developed a protocol exploiting two spectroscopic techniques, Inductively coupled plasma-optical emission spectrometry (ICP-OES) and electron paramagnetic resonance (EPR) spectroscopy, to respectively quantify total intracellular metal concentrations and directly measure redox speciation of Fe and Mn within intact whole-cell samples. Addition of the cell-permeable siderophore deferoxamine shifts the oxidation states of accessible Fe and Mn from reduced-to-oxidized, as verified by magnetic moment calculations, aiding in the characterization of intracellular metal pools and metal sequestration levels for Mn2+ and Fe. We have applied this methodology to S. sanguinis and an SsaACB knockout strain (ΔssaACB), indicating that SsaACB mediates both Mn and Fe uptake, directly influencing the metal-ion pools available for biological inorganic pathways. Mn supplementation of ΔssaACB returns total intracellular Mn to wild-type levels, but it does not restore wild-type redox speciation or distribution of metal cofactor availability for either Mn or Fe. Our results highlight the biochemical basis for S. sanguinis oxidative resistance, revealing a dynamic role for SsaACB in controlling redox homeostasis by managing the intracellular Fe/Mn composition and distribution.
Collapse
Affiliation(s)
- Cody J. Murgas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Shannon P. Green
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Rachel M. Korba
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
12
|
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE. Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during Staphylococcus aureus Infection. Infect Immun 2019; 87:e00642-18. [PMID: 30348827 PMCID: PMC6300641 DOI: 10.1128/iai.00642-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jamie Zhu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Bobrov AG, Kirillina O, Fosso MY, Fetherston JD, Miller MC, VanCleave TT, Burlison JA, Arnold WK, Lawrenz MB, Garneau-Tsodikova S, Perry RD. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 2018; 9:757-772. [PMID: 28540946 DOI: 10.1039/c7mt00126f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn2+in vitro under the conditions tested. However, we detect a significant increase in Zn2+-binding ability of filtered supernatants from a Ybt+ strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
MntC-Dependent Manganese Transport Is Essential for Staphylococcus aureus Oxidative Stress Resistance and Virulence. mSphere 2018; 3:3/4/e00336-18. [PMID: 30021878 PMCID: PMC6052334 DOI: 10.1128/msphere.00336-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence. Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH. Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence. IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.
Collapse
|
15
|
Radka CD, Chen D, DeLucas LJ, Aller SG. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal. Acta Crystallogr D Struct Biol 2017; 73:921-939. [PMID: 29095164 PMCID: PMC5683015 DOI: 10.1107/s2059798317015236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron-siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron-siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron-siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2-3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs.
Collapse
Affiliation(s)
- Christopher D. Radka
- Graduate Biomedical Sciences Microbiology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dongquan Chen
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lawrence J. DeLucas
- Office of the Provost, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Grim KP, San Francisco B, Radin JN, Brazel EB, Kelliher JL, Párraga Solórzano PK, Kim PC, McDevitt CA, Kehl-Fie TE. The Metallophore Staphylopine Enables Staphylococcus aureus To Compete with the Host for Zinc and Overcome Nutritional Immunity. mBio 2017; 8:e01281-17. [PMID: 29089427 PMCID: PMC5666155 DOI: 10.1128/mbio.01281-17] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
During infection, the host sequesters essential nutrients, such as zinc, to combat invading microbes. Despite the ability of the immune effector protein calprotectin to bind zinc with subpicomolar affinity, Staphylococcus aureus is able to successfully compete with the host for zinc. However, the zinc importers expressed by S. aureus remain unknown. Our investigations have revealed that S. aureus possesses two importers, AdcABC and CntABCDF, which are induced in response to zinc limitation. While AdcABC is similar to known zinc importers in other bacteria, CntABCDF has not previously been associated with zinc acquisition. Concurrent loss of the two systems severely impairs the ability of S. aureus to obtain zinc and grow in zinc-limited environments. Further investigations revealed that the Cnt system is responsible for the ability of S. aureus to compete with calprotectin for zinc in culture and contributes to acquisition of zinc during infection. The cnt locus also enables S. aureus to produce the broad-spectrum metallophore staphylopine. Similarly to the Cnt transporter, loss of staphylopine severely impairs the ability of S. aureus to resist host-imposed zinc starvation, both in culture and during infection. Further investigations revealed that together staphylopine and the Cnt importer function analogously to siderophore-based iron acquisition systems in order to facilitate zinc acquisition by S. aureus Analogous systems are found in a broad range of Gram-positive and Gram-negative bacterial pathogens, suggesting that this new type of zinc importer broadly contributes to the ability of bacteria to cause infection.IMPORTANCE A critical host defense against infection is the restriction of zinc availability. Despite the subpicomolar affinity of the immune effector calprotectin for zinc, Staphylococcus aureus can successfully compete for this essential metal. Here, we describe two zinc importers, AdcABC and CntABCDF, possessed by S. aureus, the latter of which has not previously been associated with zinc acquisition. The ability of S. aureus to compete with the host for zinc is dependent on CntABCDF and the metallophore staphylopine, both in culture and during infection. These results expand the mechanisms utilized by bacteria to obtain zinc, beyond Adc-like systems, and demonstrate that pathogens utilize strategies similar to siderophore-based iron acquisition to obtain other essential metals during infection. The staphylopine synthesis machinery is present in a diverse collection of bacteria, suggesting that this new family of zinc importers broadly contributes to the ability of numerous pathogens to cause infection.
Collapse
Affiliation(s)
- Kyle P Grim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica L Kelliher
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Philip C Kim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Radka CD, DeLucas LJ, Wilson LS, Lawrenz MB, Perry RD, Aller SG. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites. Acta Crystallogr D Struct Biol 2017; 73:557-572. [PMID: 28695856 PMCID: PMC5505154 DOI: 10.1107/s2059798317006349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2017] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.
Collapse
Affiliation(s)
- Christopher D. Radka
- Graduate Biomedical Sciences Microbiology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lawrence J. DeLucas
- Office of the Provost, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Landon S. Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2017; 114:E2233-E2242. [PMID: 28242693 DOI: 10.1073/pnas.1614902114] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type VI secretion system (T6SS) is a versatile protein export machinery widely distributed in Gram-negative bacteria. Known to translocate protein substrates to eukaryotic and prokaryotic target cells to cause cellular damage, the T6SS has been primarily recognized as a contact-dependent bacterial weapon for microbe-host and microbial interspecies competition. Here we report contact-independent functions of the T6SS for metal acquisition, bacteria competition, and resistance to oxidative stress. We demonstrate that the T6SS-4 in Burkholderia thailandensis is critical for survival under oxidative stress and is regulated by OxyR, a conserved oxidative stress regulator. The T6SS-4 is important for intracellular accumulation of manganese (Mn2+) under oxidative stress. Next, we identified a T6SS-4-dependent Mn2+-binding effector TseM, and its interacting partner MnoT, a Mn2+-specific TonB-dependent outer membrane transporter. Similar to the T6SS-4 genes, expression of mnoT is regulated by OxyR and is induced under oxidative stress and low Mn2+ conditions. Both TseM and MnoT are required for efficient uptake of Mn2+ across the outer membrane under Mn2+-limited and -oxidative stress conditions. The TseM-MnoT-mediated active Mn2+ transport system is also involved in contact-independent bacteria-bacteria competition and bacterial virulence. This finding provides a perspective for understanding the mechanisms of metal ion uptake and the roles of T6SS in bacteria-bacteria competition.
Collapse
|
19
|
Garcia YM, Barwinska-Sendra A, Tarrant E, Skaar EP, Waldron KJ, Kehl-Fie TE. A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity. PLoS Pathog 2017; 13:e1006125. [PMID: 28103306 PMCID: PMC5245786 DOI: 10.1371/journal.ppat.1006125] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a devastating mammalian pathogen for which the development of new therapeutic approaches is urgently needed due to the prevalence of antibiotic resistance. During infection pathogens must overcome the dual threats of host-imposed manganese starvation, termed nutritional immunity, and the oxidative burst of immune cells. These defenses function synergistically, as host-imposed manganese starvation reduces activity of the manganese-dependent enzyme superoxide dismutase (SOD). S. aureus expresses two SODs, denoted SodA and SodM. While all staphylococci possess SodA, SodM is unique to S. aureus, but the advantage that S. aureus gains by expressing two apparently manganese-dependent SODs is unknown. Surprisingly, loss of both SODs renders S. aureus more sensitive to host-imposed manganese starvation, suggesting a role for these proteins in overcoming nutritional immunity. In this study, we have elucidated the respective contributions of SodA and SodM to resisting oxidative stress and nutritional immunity. These analyses revealed that SodA is important for resisting oxidative stress and for disease development when manganese is abundant, while SodM is important under manganese-deplete conditions. In vitro analysis demonstrated that SodA is strictly manganese-dependent whereas SodM is in fact cambialistic, possessing equal enzymatic activity when loaded with manganese or iron. Cumulatively, these studies provide a mechanistic rationale for the acquisition of a second superoxide dismutase by S. aureus and demonstrate an important contribution of cambialistic SODs to bacterial pathogenesis. Furthermore, they also suggest a new mechanism for resisting manganese starvation, namely populating manganese-utilizing enzymes with iron.
Collapse
Affiliation(s)
- Yuritzi M. Garcia
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Anna Barwinska-Sendra
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma Tarrant
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eric P. Skaar
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center Nashville TN, United States of America
| | - Kevin J. Waldron
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
20
|
Abstract
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee 37212
| |
Collapse
|
21
|
Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 2016; 7:965-78. [PMID: 25891079 DOI: 10.1039/c4mt00332b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
22
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
23
|
Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation. J Bacteriol 2015; 198:816-29. [PMID: 26712936 DOI: 10.1128/jb.00668-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability. Among the properties that are affected by both iron and manganese levels are those required for normal surface attachment and biofilm formation, but the requirement for each of these transition metals is mechanistically independent from the other.
Collapse
|
24
|
Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 2015; 97:216-28. [PMID: 25898914 DOI: 10.1111/mmi.13034] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is a required cofactor for all forms of life. Given the importance of Mn to bacteria, the host has devised strategies to sequester Mn from invaders. In the macrophage phagosome, NRAMP1 removes Mn and other essential metals to starve intracellular pathogens; in the extracellular space, calprotectin chelates Mn and Zn. Calprotectin-mediated Mn sequestration is a newly appreciated host defense mechanism, and recent findings are highlighted herein. In order to acquire Mn when extracellular concentrations are low, bacteria have evolved efficient Mn acquisition systems that are under elegant transcriptional control. To counteract Mn overload, some bacteria possess Mn-specific export systems that are important in vivo, presumably for control of intracellular Mn levels. Mn transporters, their transcriptional regulators and some Mn-requiring enzymes are necessary for virulence of certain bacterial pathogens, as revealed by animal models of infection. Furthermore, Mn is an important facet of the cellular response to oxidative stress, a host antibacterial strategy. The battle for Mn between host and pathogen is now appreciated to be a major determinant of the outcome of infection. In this MicroReview, the contribution of Mn to the host-pathogen interaction is reviewed, and key questions are proposed for future study.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
25
|
Heroven AK, Dersch P. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front Cell Infect Microbiol 2014; 4:146. [PMID: 25368845 PMCID: PMC4202721 DOI: 10.3389/fcimb.2014.00146] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
26
|
Ford DC, Joshua GWP, Wren BW, Oyston PCF. The importance of the magnesium transporter MgtB for virulence of Yersinia pseudotuberculosis and Yersinia pestis. MICROBIOLOGY-SGM 2014; 160:2710-2717. [PMID: 25234474 DOI: 10.1099/mic.0.080556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mg(2+) has been shown to be an important signal controlling gene regulation via the PhoPQ two-component regulatory system for a range of Gram-negative bacteria, including Yersinia pestis and Yersinia pseudotuberculosis. The magnesium ion transporter MgtB is part of the complex PhoPQ regulon, being upregulated in response to low Mg(2+). Despite the presence of other Mg(2+) transport systems in Yersinia, inactivation of mgtB had a significant effect on the ability of the bacteria to scavenge this crucial ion. Whereas inactivation of PhoPQ is reported to adversely affect intracellular survival, we show that Y. pestis and Y. pseudotuberculosis ΔmgtB mutants survived equally as well as the respective parent strain within macrophages, although they were more sensitive to killing in the Galleria model of infection. Surprisingly, despite MgtB being only one member of the Mg(2+) stimulon and PhoPQ controlling the expression levels of a range of genes including mgtB, the Yersinia ΔmgtB mutants were more highly attenuated than the equivalent Yersinia ΔphoP mutants in mouse models of infection. MgtB may be a suitable target for development of novel antimicrobials, and investigation of its role may help elucidate the contribution of this component of the PhoPQ regulon to pathogenesis.
Collapse
Affiliation(s)
- Donna C Ford
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - George W P Joshua
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Brendan W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
27
|
Abstract
Plague has been a scourge of mankind for centuries, and outbreaks continue to the present day. The virulence mechanisms employed by the etiological agent Yersinia pestis are reviewed in the context of the available prophylactic and therapeutic strategies for plague. Although antibiotics are available, resistance is emerging in this dangerous pathogen. Therapeutics used in the clinic are discussed and innovative approaches to the design and development of new therapeutic compounds are reviewed. Currently there is no licensed vaccine available for prevention of plague in the USA or western Europe, although both live attenuated strains and killed whole-cell extracts have been used historically. Live strains are still approved for human use in some parts of the world, such as the former Soviet Union, but poor safety profiles render them unacceptable to many countries. The development of safe, effective next-generation vaccines, including the recombinant subunit vaccine currently used in clinical trials is discussed.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | | |
Collapse
|
28
|
Pradel E, Lemaître N, Merchez M, Ricard I, Reboul A, Dewitte A, Sebbane F. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathog 2014; 10:e1004029. [PMID: 24675805 PMCID: PMC3968184 DOI: 10.1371/journal.ppat.1004029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/11/2014] [Indexed: 12/22/2022] Open
Abstract
Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, “per-pool” screening method that we have developed. Our data showed that in addition to genes involved in physiological adaption and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site – probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability. In order to understand and combat infectious diseases, it is essential to characterize the full set of genes required by pathogenic bacteria to overcome the many immunological and physiological challenges encountered during infection. Here, we used a genome-scale approach to identify genes required by the bacterium Yersinia pestis in the production of bubonic plague (a fatal, flea-borne zoonosis). Our results suggest that when colonizing the mammalian host, the bacterium (i) relies on carbohydrates as its carbon source, (ii) shifts to anaerobic respiration or fermentation and (iii) experiences and resists several (but not all) types of stress generated by the host's innate immune system. Strikingly, only a small set of genes (including horizontally acquired and uncharacterized sequences) are required for these infectious processes. Further investigations of the ypmt1,66c gene provided evidence to suggest that accretion of genetic material via horizontal transfer has played a key role in Yersinia pestis' ability to successfully initiate infection after the dermal fleabite. Lastly, we believe that (i) application of our approach to other pathogens and (ii) additional studies of selected Yersinia pestis genes important for plague pathogenesis (some of which are shared with other pathogens) will provide a better understanding of bacterial pathogenesis in general.
Collapse
Affiliation(s)
- Elizabeth Pradel
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Nadine Lemaître
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
- CHU Lille, Lille, France
| | - Maud Merchez
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Isabelle Ricard
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Angéline Reboul
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Amélie Dewitte
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Florent Sebbane
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
- * E-mail:
| |
Collapse
|
29
|
Guilhen C, Taha MK, Veyrier FJ. Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Front Cell Infect Microbiol 2013; 3:102. [PMID: 24392357 PMCID: PMC3870273 DOI: 10.3389/fcimb.2013.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/05/2013] [Indexed: 01/01/2023] Open
Abstract
Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.
Collapse
Affiliation(s)
- Cyril Guilhen
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Muhamed-Kheir Taha
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Frédéric J Veyrier
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| |
Collapse
|
30
|
Lisher JP, Giedroc DP. Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 2013; 3:91. [PMID: 24367765 PMCID: PMC3851752 DOI: 10.3389/fcimb.2013.00091] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022] Open
Abstract
Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic "fingerprint" under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface.
Collapse
Affiliation(s)
- John P. Lisher
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
| | - David P. Giedroc
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
- Department of Chemistry, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
31
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
32
|
Zappa S, Bauer CE. The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in Rhodobacter capsulatus. Mol Microbiol 2013; 90:1277-92. [PMID: 24134691 PMCID: PMC3890261 DOI: 10.1111/mmi.12431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 01/27/2023]
Abstract
The purple bacterium Rhodobacter capsulatus is unique among Rhodobacteriacae as it contains a putative iron response regulator (Irr) but does not possess a copy of the ferric uptake regulator (Fur). Interestingly, an in-frame deletion mutant of Irr shows no major role in iron homeostasis. Instead, we showed that the previously identified activator of haem gene expression HbrL is a crucial regulator of iron homeostasis. We demonstrated that an HbrL deletion strain is unable to grow in iron-limited medium in aerobic, semi-aerobic and photosynthetic conditions and that suppressor strains can be isolated with mutations in iron uptake genes. Gene expression studies revealed that HbrL is a transcriptional activator of multiple ferrous and ferric iron uptake systems in addition to a haem uptake system. Finally, HbrL activates the expression of numerous haem biosynthesis genes. Thus, HbrL has a central role in controlling the amount of iron transport in conjunction with the synthesis of its cognate tetrapyrrole haem.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr., Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr., Bloomington, IN 47405, U. S. A
| |
Collapse
|
33
|
Global transcriptome analysis of Lactococcus garvieae strains in response to temperature. PLoS One 2013; 8:e79692. [PMID: 24223997 PMCID: PMC3817100 DOI: 10.1371/journal.pone.0079692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Collapse
|
34
|
Troxell B, Hassan HM. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:59. [PMID: 24106689 PMCID: PMC3788343 DOI: 10.3389/fcimb.2013.00059] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/16/2022] Open
Abstract
In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
35
|
Liu M, Bouhsira E, Boulouis HJ, Biville F. The Bartonella henselae SitABCD transporter is required for confronting oxidative stress during cell and flea invasion. Res Microbiol 2013; 164:827-37. [PMID: 23811032 DOI: 10.1016/j.resmic.2013.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
Bartonella henselae is a zoonotic pathogen that possesses a flea-cat-flea transmission cycle and causes cat scratch disease in humans via cat scratches and bites. In order to establish infection, B. henselae must overcome oxidative stress damage produced by the mammalian host and arthropod vector. B. henselae encodes for putative Fe²⁺ and Mn²⁺ transporter SitABCD. In B. henselae, SitAB knockdown increases sensitivity to hydrogen peroxide. We consistently show that SitAB knockdown decreases the ability of B. henselae to survive in both human endothelial cells and cat fleas, thus demonstrating that the SitABCD transporter plays an important role during the B. henselae infection cycle.
Collapse
Affiliation(s)
- MaFeng Liu
- Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu-611130/Ya'an-625014, Sichuan, PR China; Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, F-94700 Maisons-Alfort, France.
| | | | | | | |
Collapse
|
36
|
Elhassanny AEM, Anderson ES, Menscher EA, Roop RM. The ferrous iron transporter FtrABCD is required for the virulence ofBrucella abortus2308 in mice. Mol Microbiol 2013; 88:1070-82. [DOI: 10.1111/mmi.12242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed E. M. Elhassanny
- Department of Microbiology and Immunology; East Carolina University School of Medicine; Greenville; NC; 27834; USA
| | - Eric S. Anderson
- Department of Biology; East Carolina University School of Medicine; Greenville; NC; 27858; USA
| | - Evan A. Menscher
- Department of Microbiology and Immunology; East Carolina University School of Medicine; Greenville; NC; 27834; USA
| | - R. Martin Roop
- Department of Microbiology and Immunology; East Carolina University School of Medicine; Greenville; NC; 27834; USA
| |
Collapse
|
37
|
Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525-37. [PMID: 22796883 DOI: 10.1038/nrmicro2836] [Citation(s) in RCA: 1050] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.
Collapse
|
38
|
Yersinia pestis transition metal divalent cation transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:267-79. [PMID: 22782773 DOI: 10.1007/978-1-4614-3561-7_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
|