1
|
Chunkrua P, Leschonski KP, Gran-Scheuch AA, Vreeke GJC, Vincken JP, Fraaije MW, van Berkel WJH, de Bruijn WJC, Kabel MA. Prenylation of aromatic amino acids and plant phenolics by an aromatic prenyltransferase from Rasamsonia emersonii. Appl Microbiol Biotechnol 2024; 108:421. [PMID: 39023782 PMCID: PMC11258057 DOI: 10.1007/s00253-024-13254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.
Collapse
Affiliation(s)
- Pimvisuth Chunkrua
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Kai P Leschonski
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Alejandro A Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gijs J C Vreeke
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Liu R, Zhang H, Wu W, Li H, An Z, Zhou F. C7-Prenylation of Tryptophan-Containing Cyclic Dipeptides by 7-Dimethylallyl Tryptophan Synthase Significantly Increases the Anticancer and Antimicrobial Activities. Molecules 2020; 25:E3676. [PMID: 32806659 PMCID: PMC7463755 DOI: 10.3390/molecules25163676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Prenylated natural products have interesting pharmacological properties and prenylation reactions play crucial roles in controlling the activities of biomolecules. They are difficult to synthesize chemically, but enzymatic synthesis production is a desirable pathway. Cyclic dipeptide prenyltransferase catalyzes the regioselective Friedel-Crafts alkylation of tryptophan-containing cyclic dipeptides. This class of enzymes, which belongs to the dimethylallyl tryptophan synthase superfamily, is known to be flexible to aromatic prenyl receptors, while mostly retaining its typical regioselectivity. In this study, seven tryptophan-containing cyclic dipeptides 1a-7a were converted to their C7-regularly prenylated derivatives 1b-7b in the presence of dimethylallyl diphosphate (DMAPP) by using the purified 7-dimethylallyl tryptophan synthase (7-DMATS) as catalyst. The HPLC analysis of the incubation mixture and the NMR analysis of the separated products showed that the stereochemical structure of the substrate had a great influence on their acceptance by 7-DMATS. Determination of the kinetic parameters proved that cyclo-l-Trp-Gly (1a) consisting of a tryptophanyl and glycine was accepted as the best substrate with a KM value of 169.7 μM and a turnover number of 0.1307 s-1. Furthermore, docking studies simulated the prenyl transfer reaction of 7-DMATS and it could be concluded that the highest affinity between 7-DMATS and 1a. Preliminary results have been clearly shown that prenylation at C7 led to a significant increase of the anticancer and antimicrobial activities of the prenylated derivatives 1b-7b in all the activity test experiment, especially the prenylated product 4b.
Collapse
Affiliation(s)
- Rui Liu
- College of Life Science, Shanxi Datong University, Datong 037009, China; (R.L.); (H.L.)
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Hongchi Zhang
- College of Life Science, Shanxi Datong University, Datong 037009, China; (R.L.); (H.L.)
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Weiqiang Wu
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Hui Li
- College of Life Science, Shanxi Datong University, Datong 037009, China; (R.L.); (H.L.)
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Zhipeng An
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Feng Zhou
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| |
Collapse
|
3
|
Yang K, Li SM, Liu X, Fan A. Reinvestigation of the substrate specificity of a reverse prenyltransferase NotF from Aspergillus sp. MF297-2. Arch Microbiol 2020; 202:1419-1424. [PMID: 32185409 DOI: 10.1007/s00203-020-01854-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022]
Abstract
NotF from Aspergillus sp. MF297-2 and BrePT from Aspergillus versicolor catalyze a reverse C2-prenylation of brevianamide F in the biosynthetic pathway of brevianamides and notoamides. NotF was reported to use only brevianamide F as substrate while BrePT demonstrated broad substrate promiscuity. With high identity at amino acid level, it is interesting to reinvestigate the catalytic activities of these two prenyltransferases in vitro toward 14 cyclodipeptides. Product identification of the in vitro assays by MS proved that NotF and BrePT share similar catalytic ability and substrate promiscuity.
Collapse
Affiliation(s)
- Keyan Yang
- College of Life Science, Capital Normal University, No. 105 Xisanhuan Beilu, Beijing, 100048, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie Und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiaoqing Liu
- College of Life Science, Capital Normal University, No. 105 Xisanhuan Beilu, Beijing, 100048, China.
| | - Aili Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
Collapse
|
5
|
Dubois P, Correia I, Le Chevalier F, Dubois S, Jacques I, Canu N, Moutiez M, Thai R, Gondry M, Lequin O, Belin P. Reprogramming Escherichia coli for the production of prenylated indole diketopiperazine alkaloids. Sci Rep 2019; 9:9208. [PMID: 31239480 PMCID: PMC6592928 DOI: 10.1038/s41598-019-45519-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022] Open
Abstract
Prenylated indole diketopiperazine (DKP) alkaloids are important bioactive molecules or their precursors. In the context of synthetic biology, efficient means for their biological production would increase their chemical diversification and the discovery of novel bioactive compounds. Here, we prove the suitability of the Escherichia coli chassis for the production of prenylated indole DKP alkaloids. We used enzyme combinations not found in nature by co-expressing bacterial cyclodipeptide synthases (CDPSs) that assemble the DKP ring and fungal prenyltransferases (PTs) that transfer the allylic moiety from the dimethylallyl diphosphate (DMAPP) to the indole ring of tryptophanyl-containing cyclodipeptides. Of the 11 tested combinations, seven resulted in the production of eight different prenylated indole DKP alkaloids as determined by LC-MS/MS and NMR characterization. Two were previously undescribed. Engineering E. coli by introducing a hybrid mevalonate pathway for increasing intracellular DMAPP levels improved prenylated indole DKP alkaloid production. Purified product yields of 2–26 mg/L per culture were obtained from culture supernatants. Our study paves the way for the bioproduction of novel prenylated indole DKP alkaloids in a tractable chassis that can exploit the cyclodipeptide diversity achievable with CDPSs and the numerous described PT activities.
Collapse
Affiliation(s)
- Pavlina Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Isabelle Correia
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabien Le Chevalier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | | | - Isabelle Jacques
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France.,Isabelle B. Jacques, APTEEUS, Institut Pasteur de Lille, Lille, France
| | - Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Robert Thai
- SIMOPRO, CEA, 91198, Gif-sur-Yvette, cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
6
|
Liao G, Mai P, Fan J, Zocher G, Stehle T, Li SM. Complete Decoration of the Indolyl Residue in cyclo-l-Trp-l-Trp with Geranyl Moieties by Using Engineered Dimethylallyl Transferases. Org Lett 2018; 20:7201-7205. [DOI: 10.1021/acs.orglett.8b03124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| | - Peter Mai
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| | - Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| | - Georg Zocher
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| |
Collapse
|
7
|
Convenient synthetic approach for tri- and tetraprenylated cyclodipeptides by consecutive enzymatic prenylations. Appl Microbiol Biotechnol 2018; 102:2671-2681. [PMID: 29372298 DOI: 10.1007/s00253-018-8761-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
The prenyltransferases EchPT1 and EchPT2 from Aspergillus ruber are responsible for the consecutive prenylations of cyclo-L-Trp-L-Ala, leading to the formation of the triprenylated echinulin as the predominant product. In this study, we demonstrate that EchPT1 also accepts all stereoisomers of cyclo-Trp-Ala and cyclo-Trp-Pro and catalyses regiospecific reverse C2-prenylation at the indole nucleus. EchPT1 products were well accepted by EchPT2 for multiple consecutive prenylations, with conversion yields of 84 to 98% for six of the eight substrates. C2-, C5- and C7-triprenylated derivatives are identified as major enzyme products, with product yields of 40 to 86% in seven cases. High product yields of 25-36%, i.e. approximate 30% of the total enzyme products, were observed for tetraprenylated derivatives in the four reaction mixtures with one D- and one L-configured amino acid residues. To the best of our knowledge, enzymatic preparation of tetraprenylated cyclodipeptides with such high efficacy has not been reported prior to this study.
Collapse
|
8
|
Fan A, Winkelblech J, Li SM. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Appl Microbiol Biotechnol 2015; 99:7399-415. [PMID: 26227408 DOI: 10.1007/s00253-015-6813-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
Abstract
Prenylated compounds are ubiquitously found in nature and demonstrate interesting biological and pharmacological activities. Prenyltransferases catalyze the attachment of prenyl moieties from different prenyl donors to various acceptors and contribute significantly to the structural and biological diversity of natural products. In the last decade, significant progress has been achieved for the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. More than 40 members of these soluble enzymes are identified in microorganisms and characterized biochemically. These enzymes were also successfully used for production of a large number of prenylated derivatives. N1-, C4-, C5-, C6-, and C7-prenylated tryptophan and N1-, C2-, C3-, C4-, and C7-prenylated tryptophan-containing peptides were obtained by using DMATS enzymes as biocatalysts. Tyrosine and xanthone prenyltransferases were used for production of prenylated derivatives of their analogs. More interestingly, the members of the DMATS superfamily demonstrated intriguing substrate and catalytic promiscuity and also used structurally quite different compounds as prenyl acceptors. Prenylated hydroxynaphthalenes, flavonoids, indolocarbazoles, and acylphloroglucinols, which are typical bacterial or plant metabolites, were produced by using several fungal DMATS enzymes. Furthermore, the potential usage of these enzymes was further expanded by using natural or unnatural DMAPP analogs as well as by coexpression with other genes like NRPS and by development of whole cell biocatalyst.
Collapse
Affiliation(s)
- Aili Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | |
Collapse
|
9
|
|
10
|
Wunsch C, Mundt K, Li SM. Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus. Appl Microbiol Biotechnol 2015; 99:4213-23. [DOI: 10.1007/s00253-015-6490-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
|
11
|
C7-prenylation of tryptophanyl and O-prenylation of tyrosyl residues in dipeptides by an Aspergillus terreus prenyltransferase. Appl Microbiol Biotechnol 2014; 99:1719-30. [PMID: 25125042 DOI: 10.1007/s00253-014-5999-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/19/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-L-Tyr-L-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-L-Trp-L-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s(-1). Cyclo-L-Tyr-L-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s(-1).
Collapse
|
12
|
Schmidt-Dannert C. Biosynthesis of terpenoid natural products in fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:19-61. [PMID: 25414054 DOI: 10.1007/10_2014_283] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tens of thousands of terpenoid natural products have been isolated from plants and microbial sources. Higher fungi (Ascomycota and Basidiomycota) are known to produce an array of well-known terpenoid natural products, including mycotoxins, antibiotics, antitumor compounds, and phytohormones. Except for a few well-studied fungal biosynthetic pathways, the majority of genes and biosynthetic pathways responsible for the biosynthesis of a small number of these secondary metabolites have only been discovered and characterized in the past 5-10 years. This chapter provides a comprehensive overview of the current knowledge on fungal terpenoid biosynthesis from biochemical, genetic, and genomic viewpoints. Enzymes involved in synthesizing, transferring, and cyclizing the prenyl chains that form the hydrocarbon scaffolds of fungal terpenoid natural products are systematically discussed. Genomic information and functional evidence suggest differences between the terpenome of the two major fungal phyla--the Ascomycota and Basidiomycota--which will be illustrated for each group of terpenoid natural products.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minneapolis, MN, 55108, USA,
| |
Collapse
|