1
|
Vanessa V, Waturangi DE, Yulandi A, Julyantoro PGS, Papuangan N. Antibiofilm activity of Morganella morganii JB8F and Pseudomonas fluorescens JB3B compound to control single and multi-species of aquaculture pathogens. BMC Microbiol 2024; 24:381. [PMID: 39354382 PMCID: PMC11443639 DOI: 10.1186/s12866-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Indonesia is a country that uses half or more aquatic foods as protein intake. The increased production in aquaculture industries might cause several problems, such as bacterial disease resulting in mass mortality and economic losses. Antibiotics are no longer effective because aquaculture pathogens can form biofilm. Biofilm is a microbial community that aggregates and firmly attaches to living or non-living surfaces. Biofilm formation can be caused by environmental stress, the presence of antibiotics, and limited nutrients. Therefore, it is important to explore antibiofilm to inhibit biofilm formation and/or eradicate mature biofilm. Phyllosphere bacteria can produce bioactive compounds for antimicrobial, antibiofilm, and anti-quorum sensing. Three aquaculture pathogens were used in this study, such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. RESULTS Pseudomonas fluorescens JB3B and Morganella morganii JB8F extracts could disrupt single and multi-species biofilms. Both extracts could inhibit single biofilm formation from one to seven days of incubation time. We confirmed the destruction activity on multi-species biofilm using light microscope and scanning electron microscope. Using GC-MS analysis, indole was the most active fraction of the P. fluorescens JB3B extracts and octacosane from the M. morganii JB8F extract. We also conducted a toxicity test using brine shrimp lethality assay on P. fluorescens JB3B and M. morganii JB8F extracts. P. fluorescens JB3B, M. morganii JB8F, and a mixture of both extracts were confirmed non-toxic according to the LC50 value of the brine shrimp lethality test. CONCLUSIONS P. fluorescens JB3B and M. morganii JB8F phyllosphere extracts had antibiofilm activity to inhibit single biofilm and disrupt single and multi-species biofilm of aquaculture pathogens. Both extracts could inhibit single species biofilm until seven days of incubation. Bioactive compounds that might contribute to antibiofilm properties were found in both extracts, such as indole and phenol. P. fluorescens JB3B, M. morganii JB8F extracts, and mixture of both extracts were non-toxic against Artemia salina.
Collapse
Affiliation(s)
- Valencia Vanessa
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia.
| | - Adi Yulandi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| |
Collapse
|
2
|
Salama GG, El-Mahdy TS, Moustafa WH, Emara M. Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BMC Microbiol 2024; 24:312. [PMID: 39182027 PMCID: PMC11344464 DOI: 10.1186/s12866-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria.
Collapse
Affiliation(s)
- Galila G Salama
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Taghrid S El-Mahdy
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology, and Information (MTI), Cairo, Egypt
| | - Walaa H Moustafa
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Mohamed Emara
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt.
| |
Collapse
|
3
|
Chunxiao D, Ma F, Wu W, Li S, Yang J, Chen Z, Lian S, Qu Y. Metagenomic analysis reveals indole signaling effect on microbial community in sequencing batch reactors: Quorum sensing inhibition and antibiotic resistance enrichment. ENVIRONMENTAL RESEARCH 2023; 229:115897. [PMID: 37054839 DOI: 10.1016/j.envres.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Indole is an essential signal molecule in microbial studies. However, its ecological role in biological wastewater treatments remains enigmatic. This study explores the links between indole and complex microbial communities using sequencing batch reactors exposed to 0, 15, and 150 mg/L indole concentrations. A concentration of 150 mg/L indole enriched indole degrader Burkholderiales, while pathogens, such as Giardia, Plasmodium, and Besnoitia were inhibited at 15 mg/L indole concentration. At the same time, indole reduced the abundance of predicted genes in the "signaling transduction mechanisms" pathway via the Non-supervised Orthologous Groups distributions analysis. Indole significantly decreased the concentration of homoserine lactones, especially C14-HSL. Furthermore, the quorum-sensing signaling acceptors containing LuxR, the dCACHE domain, and RpfC showed negative distributions with indole and indole oxygenase genes. Signaling acceptors' potential origins were mainly Burkholderiales, Actinobacteria, and Xanthomonadales. Meanwhile, concentrated indole (150 mg/L) increased the total abundance of antibiotic resistance genes by 3.52 folds, especially on aminoglycoside, multidrug, tetracycline, and sulfonamide. Based on Spearman's correlation analysis, the homoserine lactone degradation genes which were significantly impacted by indole negatively correlated with the antibiotic resistance gene abundance. This study brings new insights into the effect of indole signaling on in biological wastewater treatment plants.
Collapse
Affiliation(s)
- Dai Chunxiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuzhen Li
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Abstract
Phage therapy is challenged by the frequent emergence of bacterial resistance to phages. As an interspecies signaling molecule, indole plays important roles in regulating bacterial behaviors. However, it is unclear whether indole is involved in the phage-bacterium interactions. Here, we report that indole modulated phage resistance of Pseudomonas aeruginosa PAO1. Specifically, we found that the type IV pilus (T4P) acts as an important receptor for P. aeruginosa phages vB_Pae_S1 and vB_Pae_TR, and indole could protect P. aeruginosa against phage infection via decreasing the T4P-mediated phage adsorption. Further investigation demonstrated that indole downregulated the expression of genes pilA, pilB, and pilQ, which are essential for T4P assembly and activity. Indole inhibits phage attacks, but our data suggest that indole functions not through interfering with the AHL-based QS pathway, although las quorum sensing (QS) of P. aeruginosa PAO1 were reported to promote phage infection. Our finding confirms the important roles of indole in virus-host interactions, which will provide important enlightenment in promoting phage therapy for P. aeruginosa infections. IMPORTANCE Our finding is significant with respect to the study of the interactions between phage and host. Although the important roles of indole in bacterial physiology have been revealed, no direct examples of indole participating in phage-host interactions were reported. This study reports that indole could modulate the phage resistance of indole-nonproducing Pseudomonas aeruginosa PAO1 through inhibition of phage adsorption mechanism. Our finding will be significant for guiding phage therapy and fill some gaps in the field of phage-host interactions.
Collapse
|
5
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
6
|
Kim K, Kim H, Sung GY. Effects of Indole-3-Lactic Acid, a Metabolite of Tryptophan, on IL-4 and IL-13-Induced Human Skin-Equivalent Atopic Dermatitis Models. Int J Mol Sci 2022; 23:13520. [PMID: 36362303 PMCID: PMC9655012 DOI: 10.3390/ijms232113520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Indole-3-lactic acid (I3LA) is a well-known metabolite involved in tryptophan metabolism. Indole derivatives are involved in the differentiation of immune cells and the synthesis of cytokines via the aryl hydrocarbon receptors for modulating immunity, and the indole derivatives may be involved in allergic responses. I3LA was selected as a candidate substance for the treatment of atopic dermatitis (AD), and its inhibitory effect on AD progression was investigated. Full-thickness human skin equivalents (HSEs) consisting of human-derived cells were generated on microfluidic chips and stimulated with major AD-inducing factors. The induced AD-HSEs were treated with I3LA for 7 days, and this affected the AD-associated genetic biomarkers and increased the expression of the major constituent proteins of the skin barrier. After the treatment for 14 days, the surface became rough and sloughed off, and there was no significant difference between the increased AD-related mRNA expression and the skin barrier protein expression. Therefore, the short-term use of I3LA for approximately one week is considered to be effective in suppressing AD.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
7
|
Styles MJ, Boursier ME, McEwan MA, Santa EE, Mattmann ME, Slinger BL, Blackwell HE. Autoinducer-fluorophore conjugates enable FRET in LuxR proteins in vitro and in cells. Nat Chem Biol 2022; 18:1115-1124. [PMID: 35927585 PMCID: PMC9529866 DOI: 10.1038/s41589-022-01089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/21/2022] [Indexed: 11/09/2022]
Abstract
Cell-to-cell signaling, or quorum sensing (QS), in many Gram-negative bacteria is governed by small molecule signals (N-acyl-L-homoserine lactones, AHLs) and their cognate receptors (LuxR-type proteins). The mechanistic underpinnings of QS in these bacteria are severely limited due to the challenges of isolating and manipulating most LuxR-type proteins. Reports of quantitative direct-binding experiments on LuxR-type proteins are scarce, and robust and generalizable methods that provide such data are largely nonexistent. We report herein a Förster resonance energy transfer (FRET) assay that leverages (1) conserved tryptophans located in the LuxR-type protein ligand-binding site and synthetic fluorophore-AHL conjugates, and (2) isolation of the proteins bound to weak agonists. The FRET assay permits straightforward measurement of ligand-binding affinities with receptor-either in vitro or in cells-and was shown to be compatible with six LuxR-type proteins. These methods will advance fundamental investigations of LuxR-type protein mechanism and the development of small molecule QS modulators.
Collapse
Affiliation(s)
- Matthew J Styles
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Emma E Santa
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Betty L Slinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol 2022; 106:6365-6381. [DOI: 10.1007/s00253-022-12150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
9
|
Deng JJ, Deng D, Wang ZL, Luo XC, Chen HP, Liu SY, Ma XY, Li JZ. Indole metabolism mechanisms in a new, efficient indole-degrading facultative anaerobe isolate Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128890. [PMID: 35452978 DOI: 10.1016/j.jhazmat.2022.128890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Indole is an inter-species and inter-kingdom signaling molecule widespread in the natural world. A large amount of indole in livestock wastes makes it difficult to be degraded, which causes serious malodor. Identifying efficient and eco-friendly ways to eliminate it is an urgent task for the sustainable development of husbandry. While bioconversion is a widely accepted means, the mechanism of indole microbial degradation is little understood, especially under anaerobic conditions. Herein, a new Enterococcus hirae isolate GDIAS-5, effectively degraded 100 mg/L indole within 28 h aerobically or 5 days anaerobically. Three intermediates (oxindole, isatin, and catechol) were identified in indole degradation, and catechol was further degraded by a meta-cleavage catabolic pathway. Two important processes for GDIAS-5 indole utilization were discovered. One is Fe(III) uptake and reduction, which may be a critical process that is coupled with indole oxidation, and the other is the entire pathway directly involved in indole oxidation and metabolism. Furthermore, monooxygenase ycnE responsible for indole oxidation via the indole-oxindole-isatin pathway was identified for the first time. Bioinformatic analyses showed that ycnE from E. hirae formed a phylogenetically separate branch from monooxygenases of other species. These findings provide new targets and strategies for synthetic biological reconstruction of indole-degrading bacteria.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Hong-Ping Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Shu-Yang Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Xian-Yong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
10
|
Indole decreases the virulence of the bivalve model pathogens Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9. Sci Rep 2022; 12:5749. [PMID: 35388110 PMCID: PMC8986839 DOI: 10.1038/s41598-022-09799-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Indole signaling plays an important role in bacterial pathogenesis. In this study, the impact of indole on biofilm formation, swimming and swarming motility were explored in Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9, two model pathogens of bivalves. The results showed that indole decreased swimming and swarming motility in both strains, and decreased biofilm formation in V. crassostreae J2-9. Furthermore, indole affected a large number of genes at RNA level, including genes related to metabolism, ABC transporters, flagellar assembly, chemotaxis, and response regulators. Finally, the bacterial virulence towards mussel larvae was decreased by pretreatment with indole in both V. tasmaniensis LGP32 and V. crassostreae J2-9. After 5 days, the survival rate of mussel larvae increased 2.4-fold and 2.8-fold in mussel larvae challenged with V. tasmaniensis LGP32 pretreated with 200 µM and 500 µM indole, respectively. The survival rate of mussel larvae increased 1.5-fold and 1.9-fold in mussel larvae challenged with V. crassostreae J2-9 pretreated with 200 µM and 500 µM indole, respectively. These data indicate that indole has a significant impact on the virulence of V. tasmaniensis LGP32 and V. crassostreae J2-9, and indole signaling could be a promising target for antivirulence therapy.
Collapse
|
11
|
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 2022; 13:841703. [PMID: 35370963 PMCID: PMC8972051 DOI: 10.3389/fendo.2022.841703] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of metabolic syndrome has become a serious public health problem. Certain bacteria-derived metabolites play a key role in maintaining human health by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid content can be used to predict the occurrence and development of metabolic diseases. Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is considered a promising metabolite. Therefore, this article systematically reviews the latest research on indole-3-propionic acid and elaborates its source of metabolism and its association with metabolic diseases. Indole-3-propionic acid can improve blood glucose and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal immune response. The study of the mechanism of the metabolic benefits of indole-3-propionic acid is expected to be a potential compound for treating metabolic syndrome.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Weidong Du
- Zhejiang Traditional Chinese Medicine Hospital, Hangzhou, China
- *Correspondence: Weidong Du, ; Junping Shi,
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Weidong Du, ; Junping Shi,
| |
Collapse
|
12
|
Li X, İlk S, Liu Y, Raina DB, Demircan D, Zhang B. Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups. Polym Chem 2022. [DOI: 10.1039/d1py01504d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification.
Collapse
Affiliation(s)
- Xiaoya Li
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240, Niğde, Turkey
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, SE-10691 Stockholm, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
13
|
Zhang P, Mao D, Gao H, Zheng L, Chen Z, Gao Y, Duan Y, Guo J, Luo Y, Ren H. Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment. THE ISME JOURNAL 2021; 16:1284-1293. [PMID: 34903849 PMCID: PMC9038720 DOI: 10.1038/s41396-021-01171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Huihui Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liyang Zheng
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zeyou Chen
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuting Gao
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Yitao Duan
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Yi Luo
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China. .,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| |
Collapse
|
14
|
Zhang S, Yang Q, Defoirdt T. Indole decreases the virulence of pathogenic vibrios belonging to the Harveyi clade. J Appl Microbiol 2021; 132:167-176. [PMID: 34297464 DOI: 10.1111/jam.15227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
AIM Indole is a signaling molecule secreted by over 85 species of bacteria, including several Vibrio species, and it has been reported to affect different bacterial phenotypes such as biofilm formation, motility, and virulence. In this study, we aimed at investigating the inter-strain variability of the effect of indole in 12 different strains belonging to the Harveyi clade of vibrios. METHODS AND RESULTS Indole reduced the virulence of all strains towards gnotobiotic brine shrimp larvae. The survival rate of brine shrimp larvae challenged with vibrios pretreated with indole was increased by 1.3-fold to 1.8-fold. Additionally, indole significantly decreased the biofilm formation in all of the strains, decreased the swimming motility in eight of the strains, and decreased swarming motility in five of the strains. When cultured in the presence of exogenous indole, the mRNA level of the pirA and pirB toxin genes were down-regulated to 65% and 46%, and to 62% and 55% in the AHPND-causing strains Vibrio parahaemolyticus M0904 and Vibrio campbellii S01, respectively. CONCLUSIONS These data indicate that indole has a significant impact on the virulence of different strains belonging to the Harveyi clade of vibrios. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that indole signaling is a valid target for the development of novel therapeutics in order to control infections caused by Harveyi clade vibrios in aquaculture.
Collapse
Affiliation(s)
- Shanshan Zhang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| |
Collapse
|
15
|
Hu L, Zhang K, Wu Z, Xu J, Erb M. Plant volatiles as regulators of plant defense and herbivore immunity: molecular mechanisms and unanswered questions. CURRENT OPINION IN INSECT SCIENCE 2021; 44:82-88. [PMID: 33894408 DOI: 10.1016/j.cois.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Plants release distinct blends of herbivore-induced plant volatiles (HIPVs) upon herbivore attack. HIPVs have long been known to influence the behavior of herbivores and natural enemies. In addition, HIPVs can act as physiological regulators that induce or prime plant defenses. Recent work indicates that the regulatory capacity of HIPVs may extend to herbivore immunity: herbivores that are exposed to HIPVs can become more resistant or susceptible to parasitoids and pathogens. While the mechanisms of HIPV-mediated plant defense regulation are being unraveled, the mechanisms underlying the regulation of herbivore immunity are unclear. Evidence so far suggests a high degree of context dependency. Here, we review the mechanisms by which HIPVs regulate plant defense and herbivore immunity. We address major gaps of knowledge and discuss directions for future mechanistic research to facilitate efforts to use the regulatory capacity of HIPVs for the biological control of insect pests.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Kaidi Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|
16
|
Koga N, Hosomi T, Zwama M, Jirayupat C, Yanagida T, Nishino K, Yamasaki S. Identification of Genetic Variants via Bacterial Respiration Gas Analysis. Front Microbiol 2020; 11:581571. [PMID: 33304330 PMCID: PMC7701088 DOI: 10.3389/fmicb.2020.581571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Indole is a signal molecule derived from the conversion of tryptophan, and it is present in bacterial respiratory gas. Besides influencing bacterial growth, indole exhibits effects on human health, including a positive effect on inflammation and protection against pathogens. However, a high fecal indole concentration (FIC) can suggest an unbalanced gut flora or the presence of certain pathogens. To analyze the indole produced by bacteria, its collection and detection is required. Traditional methods usually require centrifugation of liquid bacterial culture medium and subsequent extraction of indole from the medium or partial purification of indole from fecal samples (e.g., by distillation or extraction). In this study, we demonstrate the possibility of identifying gas contents directly from bacteria, and we distinguish the difference in species and their genetics without the need to centrifuge or extract. Using an absorbent sheet placed above a liquid culture, we were able to collect gas content directly from bacteria. Gas chromatography-mass spectrometry (GC-MS) was used for the analysis. The GC-MS results showed a clear peak attributed to indole for wild-type Escherichia coli cells (MG1655 and MC4100 strains), whereas the indole peak was absent in the chromatograms of cells where proteins, part of the indole production pathway from tryptophan (TnaA and TnaB), were not expressed (by using tnaAB-deleted cells). The indole observed was measured to be present in a low nmol-range. This method can distinguish whether the bacterial genome contains the tnaAB gene or not and can be used to collect gas compounds from bacterial cultures quickly and easily. This method is useful for other goals and future research, such as for measurements in restrooms, for food-handling facilities, and for various applications in medical settings.
Collapse
Affiliation(s)
- Naoki Koga
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takuro Hosomi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Martijn Zwama
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | | - Takeshi Yanagida
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Kunihiko Nishino
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Sethupathy S, Sathiyamoorthi E, Kim YG, Lee JH, Lee J. Antibiofilm and Antivirulence Properties of Indoles Against Serratia marcescens. Front Microbiol 2020; 11:584812. [PMID: 33193228 PMCID: PMC7662412 DOI: 10.3389/fmicb.2020.584812] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Indole and its derivatives have been shown to interfere with the quorum sensing (QS) systems of a wide range of bacterial pathogens. While indole has been previously shown to inhibit QS in Serratia marcescens, the effects of various indole derivatives on QS, biofilm formation, and virulence of S. marcescens remain unexplored. Hence, in the present study, we investigated the effects of 51 indole derivatives on S. marcescens biofilm formation, QS, and virulence factor production. The results obtained revealed that several indole derivatives (3-indoleacetonitrile, 5-fluoroindole, 6-fluoroindole, 7-fluoroindole, 7-methylindole, 7-nitroindole, 5-iodoindole, 5-fluoro-2-methylindole, 2-methylindole-3-carboxaldehyde, and 5-methylindole) dose-dependently interfered with quorum sensing (QS) and suppressed prodigiosin production, biofilm formation, swimming motility, and swarming motility. Further assays showed 6-fluoroindole and 7-methylindole suppressed fimbria-mediated yeast agglutination, extracellular polymeric substance production, and secretions of virulence factors (e.g., proteases and lipases). QS assays on Chromobacterium violaceum CV026 confirmed that indole derivatives interfered with QS. The current results demonstrate the antibiofilm and antivirulence properties of indole derivatives and their potentials in applications targeting S. marcescens virulence.
Collapse
Affiliation(s)
| | | | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
18
|
Zhang J, Zhu S, Ma N, Johnston LJ, Wu C, Ma X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med Res Rev 2020; 41:1061-1088. [PMID: 33174230 DOI: 10.1002/med.21752] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
In a complex, diverse intestinal environment, commensal microbiota metabolizes excessive dietary tryptophan to produce more bioactive metabolites connecting with kinds of diverse process, such as host physiological defense, homeostasis, excessive immune activation and the progression and outcome of different diseases, such as inflammatory bowel disease, irritable bowel syndrome and others. Although commensal microbiota includes bacteria, fungi, and protozoa and all that, they often have the similar metabolites in tryptophan metabolism process via same or different pathways. These metabolites can work as signal to activate the innate immunity of intestinal mucosa and induce the rapid inflammation response. They are critical in reconstruction of lumen homeostasis as well. This review aims to seek the potential function and mechanism of microbiota-derived tryptophan metabolites as targets to regulate and shape intestinal immune function, which mainly focused on two aspects. First, analyze the character of tryptophan metabolism in bacteria, fungi, and protozoa, and assess the functions of their metabolites (including indole and eight other derivatives, serotonin (5-HT) and d-tryptophan) on regulating the integrity of intestinal epithelium and the immunity of the intestinal mucosa. Second, focus on the mediator and pathway for their recognition, transfer and crosstalk between microbiota-derived tryptophan metabolites and intestinal mucosal immunity. Disruption of intestinal homeostasis has been described in different intestinal inflammatory diseases, available data suggest the remarkable potential of tryptophan-derived aryl hydrocarbon receptor agonists, indole derivatives on lumen equilibrium. These metabolites as preventive and therapeutic interventions have potential to promote proinflammatory or anti-inflammatory responses of the gut.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Shengwei Zhu
- Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR and DPANN Associated with Interspecies and Interkingdom Communication. mSystems 2020; 5:5/5/e00414-20. [PMID: 33051376 PMCID: PMC7567580 DOI: 10.1128/msystems.00414-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The selection of predicted genes for interspecies communication within the CPR and DPANN genomes sheds some light onto the underlying mechanisms supporting their inferred symbiotic lifestyle. Also, considering the lack of core pathways such as the de novo synthesis of nucleotides or amino acids in the CPR and DPANN lineages, the persistence of these genes highlights how determinant social traits can be for the survival of some microorganisms. Finally, the considerable number of variants of QS proteins identified among the 69 CPR and DPANN phyla substantially expands our knowledge of prokaryotic communication across the tree of life and suggests that the multiplicity of “dialects” in the microbial world is probably larger than previously appreciated. The bacterial candidate phyla radiation (CPR) and the archaeal DPANN superphylum are two novel lineages that have substantially expanded the tree of life due to their large phylogenetic diversity. Because of their ultrasmall size, reduced genome, and lack of core biosynthetic capabilities, most CPR and DPANN members are predicted to be sustained through their interactions with other species. How the few characterized CPR and DPANN symbionts achieve these critical interactions is, however, poorly understood. Here, we conducted an in silico analysis on 2,597 CPR/DPANN genomes to test whether these ultrasmall microorganisms might encode homologs of reference proteins involved in the synthesis and/or the detection of 26 different types of communication molecules (quorum sensing [QS] signals), since QS signals are well-known mediators of intra- and interorganismic relationships. We report the discovery of 5,693 variants of QS proteins distributed across 63 CPR and 6 DPANN phyla and associated with 14 distinct types of communication molecules, most of which were characterized as interspecies QS signals. IMPORTANCE The selection of predicted genes for interspecies communication within the CPR and DPANN genomes sheds some light onto the underlying mechanisms supporting their inferred symbiotic lifestyle. Also, considering the lack of core pathways such as the de novo synthesis of nucleotides or amino acids in the CPR and DPANN lineages, the persistence of these genes highlights how determinant social traits can be for the survival of some microorganisms. Finally, the considerable number of variants of QS proteins identified among the 69 CPR and DPANN phyla substantially expands our knowledge of prokaryotic communication across the tree of life and suggests that the multiplicity of “dialects” in the microbial world is probably larger than previously appreciated.
Collapse
|
20
|
Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo) 2020; 74:24-41. [PMID: 32647212 DOI: 10.1038/s41429-020-0344-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.
Collapse
|
21
|
Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends Microbiol 2020; 28:566-577. [PMID: 32544443 DOI: 10.1016/j.tim.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Indole is a signalling molecule produced by many bacterial species and involved in intraspecies, interspecies, and interkingdom signalling. Despite the increasing volume of research published in this area, many aspects of indole signalling remain enigmatic. There is disagreement over the mechanism of indole import and export and no clearly defined target through which its effects are exerted. Progress is hindered further by the confused and sometimes contradictory body of indole research literature. We explore the reasons behind this lack of consistency and speculate whether the discovery of a new, pulse mode of indole signalling, together with a move away from the idea of a conventional protein target, might help to overcome these problems and enable the field to move forward.
Collapse
|
22
|
Holoidovsky L, Meijler MM. Synthesis and Evaluation of Indole-Based Autoinducers on Quorum Sensing in Vibrio cholerae. ACS Infect Dis 2020; 6:572-576. [PMID: 32182033 DOI: 10.1021/acsinfecdis.9b00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae (V. cholerae) uses the autoinducer CAI-1 (cholera autoinducer 1) and several linked quorum sensing systems in order to efficiently sense its ever-changing environment and optimally coordinate population-wide gene expression. Indole has been reported as an important signal that is sensed by V. cholerae, and here, we report the synthesis and evaluation of a focused library of synthetic indole-CAI-1 derivatives as tools to probe quorum sensing (QS) in this human pathogen. Our results show interesting and diverging effects for several conjugates, as compared to CAI-1, on virulence factor production and biofilm formation.
Collapse
Affiliation(s)
- Lara Holoidovsky
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Michael M. Meijler
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| |
Collapse
|
23
|
Shin B, Park C, Park W. Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl Microbiol Biotechnol 2020; 104:1423-1435. [DOI: 10.1007/s00253-019-10317-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022]
|
24
|
Shin B, Park C, Park W. OxyR-controlled surface polysaccharide production and biofilm formation in Acinetobacter oleivorans DR1. Appl Microbiol Biotechnol 2019; 104:1259-1271. [PMID: 31863146 DOI: 10.1007/s00253-019-10303-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 11/24/2022]
Abstract
The genomes of several Acinetobacter species possess three distinct polysaccharide-producing operons [two poly-N-acetyl glucosamine (PNAG) and one K-locus]. Using a microfluidic device, an increased amount of polysaccharides and enhanced biofilm formation were observed following continuous exposure to H2O2 and removal of the H2O2-sensing key regulator, OxyR, in Acinetobacter oleivorans DR1 cells. Gene expression analysis revealed that genes located in PNAG1, but not those in PNAG2, were induced and that genes in the K-locus were expressed in the presence of H2O2. Interestingly, the expression of the K-locus gene was enhanced in the PNAG1 mutant and vice versa. The absence of either OxyR or PNAG1 resulted in enhanced biofilm formation, higher surface hydrophobicity, and increased motility, implying that K-locus-driven polysaccharide production in both the oxyR and PNAG1 deletion mutants may be related to these phenotypes. Both the oxyR and K-locus deletion mutants were more sensitive to H2O2 compared with the wildtype and PNAG1 mutant strains. Purified OxyR binds to the promoter regions of both polysaccharide operons with a higher affinity toward the K-locus promoter. Although oxidized OxyR could bind to both promoter regions, the addition of dithiothreitol further enhanced the binding efficiency of OxyR, suggesting that OxyR might function as a repressor for controlling these polysaccharide operons.
Collapse
Affiliation(s)
- Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
25
|
Lee WT, Tan BK, Eng SA, Yuen GC, Chan KL, Sim YK, Sulaiman SF, Shu-Chien AC. Black sea cucumber (Holothuria atra Jaeger, 1833) rescues Pseudomonas aeruginosa-infected Caenorhabditis elegans via reduction of pathogen virulence factors and enhancement of host immunity. Food Funct 2019; 10:5759-5767. [PMID: 31453615 DOI: 10.1039/c9fo01357a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity. Black sea cucumber (Holothuria atra) is a tropical sea cucumber species traditionally consumed as a remedy for many ailments. There is a paucity of knowledge on the anti-infective capacity of H. atra and the underlying mechanisms involved. The objective of this study is to utilize the Caenorhabditis elegans-P. aeruginosa infection model to elucidate the anti-infective properties of H. atra. A bioactive H. atra extract and subsequently its fraction were shown to have the capability of promoting the survival of C. elegans during a customarily lethal P. aeruginosa infection. The same entities also attenuate the production of elastase, protease, pyocyanin and biofilm in P. aeruginosa. The treatment of infected transgenic lys-7::GFP worms with this H. atra fraction restores the repressed expression of the defense enzyme lys-7, indicating an improved host immunity. QTOF-LCMS analysis revealed the presence of aspidospermatidine, an indole alkaloid, and inosine in this fraction. Collectively, our findings show that H. atra possesses anti-infective properties against P. aeruginosa infection, by inhibiting pathogen virulence and, eventually, reinstating host lys-7 expression.
Collapse
Affiliation(s)
- Wan-Ting Lee
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Energy, Science, Technology, Environment and Climate Change, Bukit Gambir, Malaysia
| | - Boon-Khai Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Energy, Science, Technology, Environment and Climate Change, Bukit Gambir, Malaysia
| | - Su-Anne Eng
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Gan Chee Yuen
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Kit Lam Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yee Kwang Sim
- Center for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Shaida Fariza Sulaiman
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia. and School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Energy, Science, Technology, Environment and Climate Change, Bukit Gambir, Malaysia and School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia. and Centre for Chemical Biology, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
26
|
Defoirdt T. Amino acid-derived quorum sensing molecules controlling the virulence of vibrios (and beyond). PLoS Pathog 2019; 15:e1007815. [PMID: 31295324 PMCID: PMC6622552 DOI: 10.1371/journal.ppat.1007815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tom Defoirdt
- Center for Microbial Ecology and Technology (cmet), Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
27
|
Saipriya K, Swathi CH, Ratnakar KS, Sritharan V. Quorum-sensing system in Acinetobacter baumannii: a potential target for new drug development. J Appl Microbiol 2019; 128:15-27. [PMID: 31102552 DOI: 10.1111/jam.14330] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Acinetobacter baumannii causes several nosocomial infections and poses major threat when it is multidrug resistant. Even pan drug-resistant strains have been reported in some countries. The intensive care unit (ICU) mortality rate ranged from 45.6% to 60.9% and it is as high as 84.3% when ventilator-associated pneumonia was caused by XDR (extensively drug resistant) A. baumannii. Acinetobacter baumannii constituted 9.4% of all Gram-negative organisms throughout the hospital and 22.6% in the ICUs according to a study carried out in an Indian hospital. One of the major factors contributing to drug resistance in A. baumannii infections is biofilm development. Quorum sensing (QS) facilitates biofilm formation and therefore the search for 'quorum quenchers' has increased recently. Such compounds are expected to inhibit biofilm formation and hence reduce/prevent development of drug resistance in the bacteria. Some of these compounds also target synthesis of some virulence factors (VF). Several candidate drugs have been identified and are at various stages of drug development. Since quorum quenching, inhibition of biofilm formation and inhibition of VF synthesis do not pose any threat to the DNA replication and cell division of the bacteria, chances of resistance development to such compounds is presumably rare. Thus, these compounds ideally qualify as adjunct therapeutics and could be administered along with an antibiotic to reduce chances of resistance development and also to increase the effectiveness of antimicrobial therapy. This review describes the state-of-art in QS process in Gram-negative bacteria in general and in A. baumannii in particular. This article elaborates the nature of QS mediators, their characteristics, and the methods for their detection and quantification. Various potential sites in the QS pathway have been highlighted as drug targets and the candidate quorum quenchers which inhibit the mediator's synthesis or function are enlisted.
Collapse
Affiliation(s)
- K Saipriya
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| | - C H Swathi
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| | - K S Ratnakar
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| | - V Sritharan
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| |
Collapse
|
28
|
Indole Inhibits ToxR Regulon Expression in Vibrio cholerae. Infect Immun 2019; 87:IAI.00776-18. [PMID: 30617203 DOI: 10.1128/iai.00776-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Indole is a degradation product of tryptophan that functions as a signaling molecule in many bacteria. This includes Vibrio cholerae, where indole was shown to regulate biofilm and type VI secretion in nontoxigenic environmental isolates. Indole is also produced by toxigenic V. cholerae strains in the human intestine, but its significance in the host is unknown. We investigated the effects of indole on toxigenic V. cholerae O1 El Tor during growth under virulence inducing conditions. The indole transcriptome was defined by RNA sequencing and showed widespread changes in the expression of genes involved in metabolism, biofilm production, and virulence factor production. In contrast, genes involved in type VI secretion were not affected by indole. We subsequently found that indole repressed genes involved in V. cholerae pathogenesis, including the ToxR virulence regulon. Consistent with this, indole inhibited cholera toxin and toxin-coregulated pilus production in a dose-dependent manner. The effects of indole on virulence factor production and biofilm were linked to ToxR and the ToxR-dependent regulator LeuO. The expression of leuO was increased by exogenous indole and linked to repression of the ToxR virulence regulon. This process was dependent on the ToxR periplasmic domain, suggesting that indole was a ToxR agonist. This conclusion was further supported by results showing that the ToxR periplasmic domain contributed to indole-mediated increased biofilm production. Collectively, our results suggest that indole may be a niche-specific cue that can function as a ToxR agonist to modulate virulence gene expression and biofilm production in V. cholerae.
Collapse
|
29
|
Gasmi L, Martínez-Solís M, Frattini A, Ye M, Collado MC, Turlings TCJ, Erb M, Herrero S. Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens? Appl Environ Microbiol 2019; 85:e01468-18. [PMID: 30366995 PMCID: PMC6293100 DOI: 10.1128/aem.01468-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
In response to insect herbivory, plants mobilize various defenses. Defense responses include the release of herbivore-induced plant volatiles (HIPVs) that can serve as signals to alert undamaged tissues and to attract natural enemies of the herbivores. Some HIPVs can have a direct negative impact on herbivore survival, but it is not well understood by what mechanisms. Here, we tested the hypothesis that exposure to HIPVs renders insects more susceptible to natural pathogens. Exposure of the caterpillars of the noctuid Spodoptera exigua to indole and linalool, but not exposure to (Z)-3-hexenyl acetate, increased the susceptibility to Spodoptera exiguamultiple nucleopolyhedrovirus (SeMNPV). We also found that exposure to indole, but not exposure to linalool or (Z)-3-hexenyl acetate, increased the pathogenicity of Bacillus thuringiensis Additional experiments revealed significant changes in microbiota composition after forty-eight hours of larval exposure to indole. Overall, these results provide evidence that certain HIPVs can strongly enhance the susceptibility of caterpillars to pathogens, possibly through effects on the insect gut microbiota. These findings suggest a novel mechanism by which HIPVs can protect plants from herbivorous insects.IMPORTANCE Multitrophic interactions involving insect pests, their natural enemies, microorganisms, and plant hosts are increasingly being recognized as relevant factors in pest management. In response to herbivory attacks, plants activate a wide range of defenses that aim to mitigate the damage. Attacked plants release herbivore-induced plant volatiles (HIPVs), which can act as priming signals for other plants and attract natural enemies of herbivores, and which may have a direct negative impact on herbivore survival. In the present work, we show that exposure of the insects to the induced volatiles could increase the insects' susceptibility to the entomopathogens naturally occurring in the plant environment. These findings suggest a novel role for plant volatiles by influencing insect interactions with natural pathogens, probably mediated by alterations in the insect microbiota composition. In addition, this work provides evidence for selectable plant traits (production of secondary metabolites) that can have an influence on the ecology of the pests and could be relevant in the improvement of pest management strategies using natural entomopathogens.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - María Martínez-Solís
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Ada Frattini
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Meng Ye
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Salvador Herrero
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
30
|
Liu S, He F, Lin N, Chen Y, Liang Z, Liao L, Lv M, Chen Y, Chen S, Zhou J, Zhang LH. Pseudomonas sp. ST4 produces variety of active compounds to interfere fungal sexual mating and hyphal growth. Microb Biotechnol 2018; 13:107-117. [PMID: 29931737 PMCID: PMC6922531 DOI: 10.1111/1751-7915.13289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 11/27/2022] Open
Abstract
Sexual mating of compatible sporida is essential for Sporisorium scitamineum to form dikaryotic mycelia and then cause infection on sugarcane. Our previous work identified a Pseudomonas sp. ST4 from a soil sample, which showed a promising biocontrol potential by inhibiting the mating of S. scitamineum sporida and hyphal growth. In this study, we set to isolate the active compounds from Pseudomonas sp. ST4 through solid fermentation. High‐performance liquid chromatography (HPLC) separation coupling with bioassay showed that Pseudomonas sp. ST4 produced a range of antimicrobial compounds. Two of the major components were purified following acetate extraction, silica gel and HPLC separation. Nuclear magnetic resonance (NMR) and liquid chromatography–mass spectrometry (LC‐MS) analysis identified these active compounds are 4‐hydroxybenzaldehyde and indole‐3‐carbaldehyde respectively. Further analysis showed that the former compound only inhibited the hyphal growth of the fungus at a concentration of 3 mM, while the latter interfered the fungal sexual mating at a concentration of 0.6 mM and affected hyphal growth at a concentration of 2 mM. Treatment of corn plants with 3 mM indole‐3‐carbaldehyde significantly inhibited corn smut infection, with a control rate up to 94%. Further analysis of the structure and activity relationship revealed that indole has a much stronger inhibitory activity against the fungal sexual mating than indole‐3‐carbaldehyde. The results from this study provide new agents for control and prevention of the sugarcane smut disease, and the active compounds could also be used to probe the molecular mechanisms of fungal sexual mating.
Collapse
Affiliation(s)
- Shiyin Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Nuoqiao Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yumei Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yufan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Liu J, Summers D. Indole at low concentration helps exponentially growing Escherichia coli survive at high temperature. PLoS One 2017; 12:e0188853. [PMID: 29216232 PMCID: PMC5720752 DOI: 10.1371/journal.pone.0188853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
A culture of stationary phase Escherichia coli cells has been reported to produce copious indole when exposed to high temperature (50°C), and this response has been proposed to aid survival. We reinvestigated this phenomenon and found that indole production under these conditions is probably not a direct response to heat stress. Rather, E. coli produces indole when growth is prevented, irrespective of whether this is due to heat stress, antibiotic treatment or the removal of nutrients. Moreover, 300μM indole produced at 50°C does not improve the viability of heat stressed cells. Interestingly, a much lower concentration of indole (20 μM) improves the survival of an indole-negative strain (ΔtnaA) when heat stressed during exponential growth. In addition we have shown that the distribution of tryptophanase, the enzyme responsible for indole synthesis, is highly heterogeneous among cells in a population, except during the transition between exponential and stationary phases. The observation that, despite the presence of the tryptophanase, very little indole is produced during early exponential phase suggests that there is post-translational regulation of the enzyme.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Summers
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 2017; 200:203-217. [PMID: 29188341 DOI: 10.1007/s00203-017-1459-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Manoj Kumar Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
33
|
Indole Biodegradation in Acinetobacter sp. Strain O153: Genetic and Biochemical Characterization. Appl Environ Microbiol 2017; 83:AEM.01453-17. [PMID: 28778892 DOI: 10.1128/aem.01453-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Indole is a molecule of considerable biochemical significance, acting as both an interspecies signal molecule and a building block of biological elements. Bacterial indole degradation has been demonstrated for a number of cases; however, very little is known about genes and proteins involved in this process. This study reports the cloning and initial functional characterization of genes (iif and ant cluster) responsible for indole biodegradation in Acinetobacter sp. strain O153. The catabolic cascade was reconstituted in vitro with recombinant proteins, and each protein was assigned an enzymatic function. Degradation starts with oxidation, mediated by the IifC and IifD flavin-dependent two-component oxygenase system. Formation of indigo is prevented by IifB, and the final product, anthranilic acid, is formed by IifA, an enzyme which is both structurally and functionally comparable to cofactor-independent oxygenases. Moreover, the iif cluster was identified in the genomes of a wide range of bacteria, suggesting the potential of widespread Iif-mediated indole degradation. This work provides novel insights into the genetic background of microbial indole biodegradation.IMPORTANCE The key finding of this research is identification of the genes responsible for microbial biodegradation of indole, a toxic N-heterocyclic compound. A large amount of indole is present in urban wastewater and sewage sludge, creating a demand for an efficient and eco-friendly means to eliminate this pollutant. A common strategy of oxidizing indole to indigo has the major drawback of producing insoluble material. Genes and proteins of Acinetobacter sp. strain O153 (DSM 103907) reported here pave the way for effective and indigo-free indole removal. In addition, this work suggests possible novel means of indole-mediated bacterial interactions and provides the basis for future research on indole metabolism.
Collapse
|
34
|
Zhang S, Zhang W, Liu N, Song T, Liu H, Zhao X, Xu W, Li C. Indole reduces the expression of virulence related genes in Vibrio splendidus pathogenic to sea cucumber Apostichopus japonicus. Microb Pathog 2017; 111:168-173. [PMID: 28867630 DOI: 10.1016/j.micpath.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/06/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
Indole is a metabolite of tryptophan that can be synthesized by various bacteria. In the present study, production of indole by Vibrio splendidus Vs was determined using Kovac's reagent, and m/z was further determined by HPLC-MS. Extracellular indole reached a maximum concentration of 160 μM, when OD600 of V. splendidus Vs was approximately 0.9. In addition, glucose could reduce indole level, and 1% (m/v) glucose could reduce the mRNA level of tnaA, the gene encoding tryptophanase, down to 0.2%. To investigate the effects of indole on the mRNA levels of virulence related genes of V. splendidus Vs, mRNA levels of vsm, vsh and ABC respectively related to protease activity, haemolytic activity and ABC transporter ATP-binding protein were determined. Exogenous indole supplemented at a concentration of 125 μΜ could respectively down regulate the mRNA level of vsm, vsh and ABC to 16%, 13% and 11%. Meanwhile, indole could alter the expressions of immune related gene in Apostichopus japonicus. When coelomocytes were co-cultured with exogenous indole at a concentration of 125 μΜ, the mRNA level of Ajp105 and AjLBP/BPI1, were up regulated by 1.6-fold and 2.1-fold, respectively. Combined all the results in our study suggested that indole could alter the expressions of the virulence related genes in pathogenic V. splendidus Vs as well as the immune related genes in A. japonicus.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ningning Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Tongxiang Song
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Huijie Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Xu
- Louisiana State University, Agricultural Center, USA
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Louisiana State University, Agricultural Center, USA.
| |
Collapse
|
35
|
Dogs M, Wemheuer B, Wolter L, Bergen N, Daniel R, Simon M, Brinkhoff T. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Syst Appl Microbiol 2017; 40:370-382. [PMID: 28641923 DOI: 10.1016/j.syapm.2017.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle.
Collapse
Affiliation(s)
- Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Bernd Wemheuer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Nils Bergen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
36
|
Yang Q, Pande GSJ, Wang Z, Lin B, Rubin RA, Vora GJ, Defoirdt T. Indole signalling and (micro)algal auxins decrease the virulence of Vibrio campbellii, a major pathogen of aquatic organisms. Environ Microbiol 2017; 19:1987-2004. [PMID: 28251783 DOI: 10.1111/1462-2920.13714] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 12/23/2022]
Abstract
Vibrios belonging to the Harveyi clade are major pathogens of marine vertebrates and invertebrates, causing major losses in wild and cultured organisms. Despite their significant impact, the pathogenicity mechanisms of these bacteria are not yet completely understood. In this study, the impact of indole signalling on the virulence of Vibrio campbellii was investigated. Elevated indole levels significantly decreased motility, biofilm formation, exopolysaccharide production and virulence to crustacean hosts. Indole furthermore inhibited the three-channel quorum sensing system of V. campbellii, a regulatory mechanism that is required for full virulence of the pathogen. Further, indole signalling was found to interact with the stress sigma factor RpoS. Together with the observations that energy-consuming processes (motility and bioluminescence) are downregulated, and microarray-based transcriptomics demonstrating that indole decreases the expression of genes involved in energy and amino acid metabolism, the data suggest that indole is a starvation signal in V. campbellii. Finally, it was found that the auxins indole-3-acetic acid and indole-3-acetamide, which were produced by various (micro)algae sharing the aquatic environment with V. campbellii, have a similar effect as observed for indole. Auxins might, therefore, have a significant impact on the interactions between vibrios, (micro)algae and higher organisms, with major ecological and practical implications.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium
| | | | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Robert A Rubin
- Mathematics Department, Whittier College, Whittier, CA, USA
| | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Tom Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium.,Center for Microbial Ecology and Technology (cmet), Ghent University, Gent, Belgium
| |
Collapse
|
37
|
Kim J, Shin B, Park C, Park W. Indole-Induced Activities of β-Lactamase and Efflux Pump Confer Ampicillin Resistance in Pseudomonas putida KT2440. Front Microbiol 2017; 8:433. [PMID: 28352264 PMCID: PMC5348495 DOI: 10.3389/fmicb.2017.00433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Indole, which is widespread in microbial communities, has received attention because of its effects on bacterial physiology. Pseudomonas putida and Pseudomonas aeruginosa can acquire ampicillin (Amp) resistance during growth on indole-Amp agar. Transcriptome, mutant, and inhibitor studies have suggested that Amp resistance induced by indole can be attributed to increased gene expression of ttgAB encoding two genes of RND-type multidrug efflux operons and an ampC encoding β-lactamase. Expression, enzyme activities, and mutational analyses indicated that AmpC β-lactamase is important for acquiring Amp resistance of P. putida in the presence of indole. Here, we show, for the first time, that volatile indole increased Amp-resistant cells. Consistent with results of the volatile indole assay, a low concentration of indole in liquid culture promoted growth initially, but led to mutagenesis after indole was depleted, which could not be observed at high indole concentrations. Interestingly, ttgAB and ampC gene expression levels correlate with the concentration of indole, which might explain the low number of Amp-mutated cells in high indole concentrations. The expression levels of genes involved in mutagenesis, namely rpoS, recA, and mutS, were also modulated by indole. Our data indicates that indole reduces Amp-induced heterogeneity by promoting expression of TtgABC or MexAB-OprM efflux pumps and the indole-induced β-lactamase in P. putida and P. aeruginosa.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul Korea
| |
Collapse
|
38
|
Kim J, Park C, Imlay JA, Park W. Lineage-specific SoxR-mediated Regulation of an Endoribonuclease Protects Non-enteric Bacteria from Redox-active Compounds. J Biol Chem 2017; 292:121-133. [PMID: 27895125 PMCID: PMC5217672 DOI: 10.1074/jbc.m116.757500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Bacteria use redox-sensitive transcription factors to coordinate responses to redox stress. The [2Fe-2S] cluster-containing transcription factor SoxR is particularly tuned to protect cells against redox-active compounds (RACs). In enteric bacteria, SoxR is paired with a second transcription factor, SoxS, that activates downstream effectors. However, SoxS is absent in non-enteric bacteria, raising questions as to how SoxR functions. Here, we first show that SoxR of Acinetobacter oleivorans displayed similar activation profiles in response to RACs as did its homolog from Escherichia coli but controlled a different set of target genes, including sinE, which encodes an endoribonuclease. Expression, gel mobility shift, and mutational analyses indicated that sinE is a direct target of SoxR. Redox potentials and permeability of RACs determined optimal sinE induction. Bioinformatics suggested that only a few γ- and β-proteobacteria might have SoxR-regulated sinE Purified SinE, in the presence of Mg2+ ions, degrades rRNAs, thus inhibiting protein synthesis. Similarly, pretreatment of cells with RACs demonstrated a role for SinE in promoting persistence in the presence of antibiotics that inhibit protein synthesis. Our data improve our understanding of the physiology of soil microorganisms by suggesting that both non-enteric SoxR and its target SinE play protective roles in the presence of RACs and antibiotics.
Collapse
Affiliation(s)
- Jisun Kim
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea and
| | - Chulwoo Park
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea and
| | - James A Imlay
- the Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Woojun Park
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea and
| |
Collapse
|
39
|
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 2016; 8:46. [PMID: 27102537 PMCID: PMC4840492 DOI: 10.1186/s13073-016-0296-x] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of dietary components have significant effects on physiological processes such as gut and immune homeostasis, energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and disease, and review current strategies to modulate levels of these metabolites to promote human health. We also suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.
Collapse
Affiliation(s)
- Linda S Zhang
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
40
|
Lee JH, Wood TK, Lee J. Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends Microbiol 2015; 23:707-718. [DOI: 10.1016/j.tim.2015.08.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
|
41
|
Ziesche L, Bruns H, Dogs M, Wolter L, Mann F, Wagner-Döbler I, Brinkhoff T, Schulz S. Homoserine Lactones, Methyl Oligohydroxybutyrates, and Other Extracellular Metabolites of Macroalgae-Associated Bacteria of the Roseobacter Clade: Identification and Functions. Chembiochem 2015. [PMID: 26212108 DOI: 10.1002/cbic.201500189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Twenty-four strains of marine Roseobacter clade bacteria were isolated from macroalgae and investigated for the production of quorum-sensing autoinducers, N-acylhomoserine lactones (AHLs). GC/MS analysis of the extracellular metabolites allowed us to evaluate the release of other small molecules as well. Nineteen strains produced AHLs, ranging from 3-OH-C10:0-HSL (homoserine lactone) to (2E,11Z)-C18:2-HSL, but no specific phylogenetic or ecological pattern of individual AHL occurrence was observed when cluster analysis was performed. Other identified compounds included indole, tropone, methyl esters of oligomers of 3-hydroxybutyric acid, and various amides, such as N-9-hexadecenoylalanine methyl ester (9-C16:1-NAME), a structural analogue of AHLs. Several compounds were tested for their antibacterial and antialgal activity on marine isolates likely to occur in the habitat of the macroalgae. Both AHLs and 9-C16:1-NAME showed high antialgal activity against Skeletonema costatum, whereas their antibacterial activity was low.
Collapse
Affiliation(s)
- Lisa Ziesche
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Hilke Bruns
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26111, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
42
|
Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J Microbiol 2015; 53:421-8. [PMID: 26115989 DOI: 10.1007/s12275-015-5273-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Indole is an organic compound that is widespread in microbial communities inhabiting diverse habitats, like the soil environment and human intestines. Measurement of indole production is a traditional method for the identification of microbial species. Escherichia coli can produce millimolar concentrations of indole in the stationary growth phase under nutrient-rich conditions. Indole has received considerable attention because of its remarkable effects on various biological functions of the microbial communities, for example, biofilm formation, motility, virulence, plasmid stability, and antibiotic resistance. Indole may function as an intercellular signaling molecule, like a quorum-sensing signal. Nevertheless, a receptor system for indole and the function of this compound in coordinated behavior of a microbial population (which are requirements for a true signaling molecule) have not yet been confirmed. Recent findings suggest that a long-known quorum-sensing regulator, E. coli's SdiA, cannot recognize indole and that this compound may simply cause membrane disruption and energy reduction, which can lead to various changes in bacterial physiology including unstable folding of a quorum-sensing regulator. Indole appears to be responsible for acquisition of antibiotic resistance via the formation of persister cells and activation of an exporter. This review highlights and summarizes the current knowledge about indole as a multitrophic molecule among bacteria, together with recently identified new avenues of research.
Collapse
|
43
|
Arora PK, Bae H. Biodegradation of 4-chloroindole by Exiguobacterium sp. PMA. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:261-268. [PMID: 25463241 DOI: 10.1016/j.jhazmat.2014.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Exiguobacterium sp. PMA utilized 4-chloroindole as its sole source of carbon and energy. The effect of initial concentrations of substrate on the 4-chloroindole degradation was studied and observed that strain PMA was capable of degrading 4-chloroindole up to concentration of 0.5mM. The degradation pathway of 4-chloroindole was studied for Exiguobacterium sp. PMA based on metabolites identified by gas chromatography-mass spectrometry. 4-Chloroindole was initially dehalogenated to indole that was further degraded via isatin, anthranilic acid, and salicylic acid. The potential of strain PMA to degrade 4-chloroindole in soil was monitored using soil microcosms, and it was observed that the cells of strain PMA efficiently degraded 4-chloroindole in the soil. The results of microcosm studies show that strain PMA may be used for bioremediation of 4-chloroindole-contaminated sites. This is the first report of the bacterial degradation of 4-chloroindole.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea.
| |
Collapse
|
44
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
45
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
46
|
Li G, Young KD. A new suite of tnaA mutants suggests that Escherichia coli tryptophanase is regulated by intracellular sequestration and by occlusion of its active site. BMC Microbiol 2015; 15:14. [PMID: 25650045 PMCID: PMC4323232 DOI: 10.1186/s12866-015-0346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022] Open
Abstract
Background The Escherichia coli enzyme tryptophanase (TnaA) converts tryptophan to indole, which triggers physiological changes and regulates interactions between bacteria and their mammalian hosts. Tryptophanase production is induced by external tryptophan, but the activity of TnaA is also regulated by other, more poorly understood mechanisms. For example, the enzyme accumulates as a spherical inclusion (focus) at midcell or at one pole, but how or why this localization occurs is unknown. Results TnaA activity is low when the protein forms foci during mid-logarithmic growth but its activity increases as the protein becomes more diffuse, suggesting that foci may represent clusters of inactive (or less active) enzyme. To determine what protein characteristics might mediate these localization effects, we constructed 42 TnaA variants: 6 truncated forms and 36 missense mutants in which different combinations of 83 surface-exposed residues were converted to alanine. A truncated TnaA protein containing only domains D1 and D3 (D1D3) localized to the pole. Mutations affecting the D1D3-to-D1D3 interface did not affect polar localization of D1D3 but did delay assembly of wild type TnaA foci. In contrast, alterations to the D1D3-to-D2 domain interface produced diffuse localization of the D1D3 variant but did not affect the wild type protein. Altering several surface-exposed residues decreased TnaA activity, implying that tetramer assembly may depend on interactions involving these sites. Interestingly, changing any of three amino acids at the base of a loop near the catalytic pocket decreased TnaA activity and caused it to form elongated ovoid foci in vivo, indicating that the alterations affect focus formation and may regulate how frequently tryptophan reaches the active site. Conclusions The results suggest that TnaA activity is regulated by subcellular localization and by a loop-associated occlusion of its active site. Equally important, these new TnaA variants are immediately available to the research community and should be useful for investigating how tryptophanase is localized and assembled, how substrate accesses its active site, the functional role of acetylation, and other structural and functional questions. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0346-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA.
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA.
| |
Collapse
|
47
|
Hidalgo-Romano B, Gollihar J, Brown SA, Whiteley M, Valenzuela E, Kaplan HB, Wood TK, McLean RJC. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. MICROBIOLOGY-SGM 2014; 160:2464-2473. [PMID: 25165125 DOI: 10.1099/mic.0.081729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria.
Collapse
Affiliation(s)
- Benjamin Hidalgo-Romano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jimmy Gollihar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Stacie A Brown
- Department of Biology, Southwestern University, Georgetown, TX 78626, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernesto Valenzuela
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|