1
|
Suleman M, Yaseen AR, Ahmed S, Khan Z, Irshad A, Pervaiz A, Rahman HH, Azhar M. Pyocins and Beyond: Exploring the World of Bacteriocins in Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 2025; 17:240-252. [PMID: 39023701 DOI: 10.1007/s12602-024-10322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa significantly induces health-associated infections in a variety of species other than humans. Over the years, the opportunistic pathogen has developed resistance against commonly used antibiotics. Since most P. aeruginosa strains are multi-drug resistant, regular antibiotic treatment of its infections is becoming a dire concern, shifting the global focus towards the development of alternate antimicrobial approaches. Pyocins are one of the most diverse antimicrobial peptide combinations produced by bacteria. They have potent antimicrobial properties, mainly against bacteria from the same phylogenetic group. P. aeruginosa, whether from clinical or environmental origins, produce several different pyocins that show inhibitory activity against other multi-drug-resistant strains of P. aeruginosa. They are, therefore, good candidates for alternate therapeutic antimicrobials because they have a unique mode of action that kills antibiotic-resistant bacteria by attacking their biofilms. Here, we review pseudomonas-derived antimicrobial pyocins with great therapeutic potential against multi-drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Shahbaz Ahmed
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Asma Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Afsah Pervaiz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiza Hiba Rahman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muteeba Azhar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Ma X, Zeng J, Xiao W, Li W, Cheng J, Lin J. Relationship between Pyochelin and Pseudomonas Quinolone Signal in Pseudomonas aeruginosa: A Direction for Future Research. Int J Mol Sci 2024; 25:8611. [PMID: 39201297 PMCID: PMC11354437 DOI: 10.3390/ijms25168611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to survive in the host; however, the host immune system limits the availability of iron. Pyochelin (PCH) is a major siderophore produced by P. aeruginosa during infection, which can help P. aeruginosa survive in an iron-restricted environment and cause infection. The infection activity of P. aeruginosa is regulated by the Pseudomonas quinolone signal (PQS) quorum-sensing system. The system uses 2-heptyl-3-hydroxy-4-quinolone (PQS) or its precursor, 2-heptyl-4-quinolone (HHQ), as the signal molecule. PQS can control specific life processes such as mediating quorum sensing, cytotoxicity, and iron acquisition. This review summarizes the biosynthesis of PCH and PQS, the shared transport system of PCH and PQS, and the regulatory relationship between PCH and PQS. The correlation between the PQS and PCH is emphasized to provide a new direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (X.M.); (J.Z.); (W.X.); (W.L.)
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (X.M.); (J.Z.); (W.X.); (W.L.)
| |
Collapse
|
3
|
Yang L, Jia S, Sun S, Wang L, Zhao B, Zhang M, Yin Y, Yang M, Fulano AM, Shen X, Pan J, Wang Y. A pyocin-like T6SS effector mediates bacterial competition in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0427823. [PMID: 38712967 PMCID: PMC11237486 DOI: 10.1128/spectrum.04278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Within the realm of Gram-negative bacteria, bacteriocins are secreted almost everywhere, and the most representative are colicin and pyocin, which are secreted by Escherichia coli and Pseudomonas aeruginosa, respectively. Signal peptides at the amino terminus of bacteriocins or ABC transporters can secrete bacteriocins, which then enter bacteria through cell membrane receptors and exert toxicity. In general, the bactericidal spectrum is usually narrow, killing only the kin or closely related species. Our previous research indicates that YPK_0952 is an effector of the third Type VI secretion system (T6SS-3) in Yersinia pseudotuberculosis. Next, we sought to determine its identity and characterize its toxicity. We found that YPK_0952 (a pyocin-like effector) can achieve intra-species and inter-species competitive advantages through both contact-dependent and contact-independent mechanisms mediated by the T6SS-3 while enhancing the intestinal colonization capacity of Y. pseudotuberculosis. We further identified YPK_0952 as a DNase dependent on Mg2+, Ni2+, Mn2+, and Co2+ bivalent metal ions, and the homologous immune protein YPK_0953 can inhibit its activity. In summary, YPK_0952 exerts toxicity by degrading nucleic acids from competing cells, and YPK_0953 prevents self-attack in Y. pseudotuberculosis.IMPORTANCEBacteriocins secreted by Gram-negative bacteria generally enter cells through specific interactions on the cell surface, resulting in a narrow bactericidal spectrum. First, we identified a new pyocin-like effector protein, YPK_0952, in the third Type VI secretion system (T6SS-3) of Yersinia pseudotuberculosis. YPK_0952 is secreted by T6SS-3 and can exert DNase activity through contact-dependent and contact-independent entry into nearby cells of the same and other species (e.g., Escherichia coli) to help Y. pseudotuberculosis to exert a competitive advantage and promote intestinal colonization. This discovery lays the foundation for an in-depth study of the different effector protein types within the T6SS and their complexity in competing interactions. At the same time, this study provides a new development for the toolbox of toxin/immune pairs for studying Gram-negative bacteriocin translocation.
Collapse
Affiliation(s)
- Leilei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuangkai Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Bobo Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengsi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Alex M. Fulano
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Goult JD, Van DCL, Taylor YV, Inns PG, Kaminska R, Vesely M, Kleanthous C, Paci E. Structural constraints of pyocin S2 import through the ferripyoverdine receptor FpvAI. PNAS NEXUS 2024; 3:pgae124. [PMID: 38577260 PMCID: PMC10994204 DOI: 10.1093/pnasnexus/pgae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
TonB-dependent transporters (TBDTs) mediate energized transport of essential nutrients into gram-negative bacteria. TBDTs are increasingly being exploited for the delivery of antibiotics to drug-resistant bacteria. While much is known about ground state complexes of TBDTs, few details have emerged about the transport process itself. In this study, we exploit bacteriocin parasitization of a TBDT to probe the mechanics of transport. Previous work has shown that the N-terminal domain of Pseudomonas aeruginosa-specific bacteriocin pyocin S2 (PyoS2NTD) is imported through the pyoverdine receptor FpvAI. PyoS2NTD transport follows the opening of a proton-motive force-dependent pore through FpvAI and the delivery of its own TonB box that engages TonB. We use molecular models and simulations to formulate a complete translocation pathway for PyoS2NTD that we validate using protein engineering and cytotoxicity measurements. We show that following partial removal of the FpvAI plug domain which occludes the channel, the pyocin's N-terminus enters the channel by electrostatic steering and ratchets to the periplasm. Application of force, mimicking that exerted by TonB, leads to unraveling of PyoS2NTD as it squeezes through the channel. Remarkably, while some parts of PyoS2NTD must unfold, complete unfolding is not required for transport, a result we confirmed by disulfide bond engineering. Moreover, the section of the FpvAI plug that remains embedded in the channel appears to serve as a buttress against which PyoS2NTD is pushed to destabilize the domain. Our study reveals the limits of structural deformation that accompanies import through a TBDT and the role the TBDT itself plays in accommodating transport.
Collapse
Affiliation(s)
- Jonathan D Goult
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Daniel C L Van
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yasmin V Taylor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Patrick G Inns
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin Vesely
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emanuele Paci
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna 40127, Italy
| |
Collapse
|
5
|
Cornelis P, Dingemans J, Baysse C. Pseudomonas aeruginosa Soluble Pyocins as Antibacterial Weapons. Methods Mol Biol 2024; 2721:125-136. [PMID: 37819519 DOI: 10.1007/978-1-0716-3473-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections and associated with lung infections in cystic fibrosis (CF) patients (Lyczak et al., Microbes Infect 2:1051-1060, 2000). Multiple drug-resistant P. aeruginosa strains pose a serious problem because of antibiotic treatment failure. There is therefore a need for alternative anti-Pseudomonas molecules. Soluble pyocins (S-pyocins) are bacteriocins produced by P. aeruginosa strains that kill sensitive strains of the same species. These bacteriocins and their immunity gene are easily cloned and expressed in E. coli and their activity spectrum against different P. aeruginosa strains can be tested. In this chapter, we describe the procedures for cloning, expression, and sensitivity testing of two different S-pyocins. We also describe how to identify their receptor binding domain in sensitive strains, how to construct chimeric pyocins with extended activity spectra, and how to identify new pyocins in genomes by multiplex PCR.
Collapse
Affiliation(s)
- Pierre Cornelis
- Vrije Universiteit Brussel, Microbiology Group, Brussels, Belgium.
| | - Jozef Dingemans
- Vrije Universiteit Brussel, Microbiology Group, Brussels, Belgium
| | - Christine Baysse
- Institut de Génétique et de Développement de Rennes (IGDR), CNRS UMR 6290, Université de Rennes, Rennes, France
| |
Collapse
|
6
|
Mazzolini R, Rodríguez-Arce I, Fernández-Barat L, Piñero-Lambea C, Garrido V, Rebollada-Merino A, Motos A, Torres A, Grilló MJ, Serrano L, Lluch-Senar M. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat Biotechnol 2023; 41:1089-1098. [PMID: 36658340 PMCID: PMC10421741 DOI: 10.1038/s41587-022-01584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Engineered live bacteria could provide a new modality for treating lung infections, a major cause of mortality worldwide. In the present study, we engineered a genome-reduced human lung bacterium, Mycoplasma pneumoniae, to treat ventilator-associated pneumonia, a disease with high hospital mortality when associated with Pseudomonas aeruginosa biofilms. After validating the biosafety of an attenuated M. pneumoniae chassis in mice, we introduced four transgenes into the chromosome by transposition to implement bactericidal and biofilm degradation activities. We show that this engineered strain has high efficacy against an acute P. aeruginosa lung infection in a mouse model. In addition, we demonstrated that the engineered strain could dissolve biofilms formed in endotracheal tubes of patients with ventilator-associated pneumonia and be combined with antibiotics targeting the peptidoglycan layer to increase efficacy against Gram-positive and Gram-negative bacteria. We expect our M. pneumoniae-engineered strain to be able to treat biofilm-associated infections in the respiratory tract.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Irene Rodríguez-Arce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Victoria Garrido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anna Motos
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Maria Lluch-Senar
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Pulmobiotics Ltd, Barcelona, Spain.
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
7
|
Premsuriya J, Mosbahi K, Atanaskovic I, Kleanthous C, Walker D. Outer membrane translocation of pyocins via the copper regulated TonB-dependent transporter CrtA. Biochem J 2023; 480:1035-1049. [PMID: 37399084 PMCID: PMC10422930 DOI: 10.1042/bcj20220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Pseudomonas aeruginosa is a common cause of serious hospital-acquired infections, the leading proven cause of mortality in people with cystic fibrosis and is associated with high levels of antimicrobial resistance. Pyocins are narrow-spectrum protein antibiotics produced by P. aeruginosa that kill strains of the same species and have the potential to be developed as therapeutics targeting multi-drug resistant isolates. We have identified two novel pyocins designated SX1 and SX2. Pyocin SX1 is a metal-dependent DNase while pyocin SX2 kills cells through inhibition of protein synthesis. Mapping the uptake pathways of SX1 and SX2 shows these pyocins utilize a combination of the common polysaccharide antigen (CPA) and a previously uncharacterized TonB-dependent transporter (TBDT) PA0434 to traverse the outer membrane. In addition, TonB1 and FtsH are required by both pyocins to energize their transport into cells and catalyze their translocation across the inner membrane, respectively. Expression of PA0434 was found to be specifically regulated by copper availability and we have designated PA0434 as Copper Responsive Transporter A, or CrtA. To our knowledge these are the first S-type pyocins described that utilize a TBDT that is not involved in iron uptake.
Collapse
Affiliation(s)
- Jiraphan Premsuriya
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Khedidja Mosbahi
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
| | - Iva Atanaskovic
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Daniel Walker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| |
Collapse
|
8
|
Dolan SK. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics. mBio 2023; 14:e0332622. [PMID: 36946760 PMCID: PMC10128021 DOI: 10.1128/mbio.03326-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is a leading cause of infections and mortality in immunocompromised patients. This organism can overcome iron deprivation during infection via the synthesis of two iron-chelating siderophores, pyoverdine and pyochelin, which scavenge iron from host proteins. P. aeruginosa can also uptake xenosiderophores produced by other bacteria or fungi using dedicated transporter systems. The precise substrate specificity of these siderophore transporters remains to be determined. The thiopeptide antibiotic thiostrepton exploits the pyoverdine transporters FpvA and FpvB to cross the outer membrane and reach intracellular targets. Using a series of intricate biochemical experiments, a recent study by Chan and Burrows capitalized on the specificity of thiostrepton to uncover that FpvB transports the xenosiderophores ferrichrome and ferrioxamine B with higher affinity than pyoverdine. This surprising result highlights an alternative uptake pathway for these siderophores and has significant implications for our understanding of iron acquisition in this organism.
Collapse
Affiliation(s)
- Stephen K Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Robinson LA, Collins ACZ, Murphy RA, Davies JC, Allsopp LP. Diversity and prevalence of type VI secretion system effectors in clinical Pseudomonas aeruginosa isolates. Front Microbiol 2023; 13:1042505. [PMID: 36687572 PMCID: PMC9846239 DOI: 10.3389/fmicb.2022.1042505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and a major driver of morbidity and mortality in people with Cystic Fibrosis (CF). The Type VI secretion system (T6SS) is a molecular nanomachine that translocates effectors across the bacterial membrane into target cells or the extracellular environment enabling intermicrobial interaction. P. aeruginosa encodes three T6SS clusters, the H1-, H2- and H3-T6SS, and numerous orphan islands. Genetic diversity of T6SS-associated effectors in P. aeruginosa has been noted in reference strains but has yet to be explored in clinical isolates. Here, we perform a comprehensive bioinformatic analysis of the pangenome and T6SS effector genes in 52 high-quality clinical P. aeruginosa genomes isolated from CF patients and housed in the Personalised Approach to P. aeruginosa strain repository. We confirm that the clinical CF isolate pangenome is open and principally made up of accessory and unique genes that may provide strain-specific advantages. We observed genetic variability in some effector/immunity encoding genes and show that several well-characterised vgrG and PAAR islands are absent from numerous isolates. Our analysis shows clear evidence of disruption to T6SS genomic loci through transposon, prophage, and mobile genetic element insertions. We identified an orphan vgrG island in P. aeruginosa strain PAK and five clinical isolates using in silico analysis which we denote vgrG7, predicting a gene within this cluster to encode a Tle2 lipase family effector. Close comparison of T6SS loci in clinical isolates compared to reference P. aeruginosa strain PAO1 revealed the presence of genes encoding eight new T6SS effectors with the following putative functions: cytidine deaminase, lipase, metallopeptidase, NADase, and pyocin. Finally, the prevalence of characterised and putative T6SS effectors were assessed in 532 publicly available P. aeruginosa genomes, which suggests the existence of accessory effectors. Our in silico study of the P. aeruginosa T6SS exposes a level of genetic diversity at T6SS genomic loci not seen to date within P. aeruginosa, particularly in CF isolates. As understanding the effector repertoire is key to identifying the targets of T6SSs and its efficacy, this comprehensive analysis provides a path for future experimental characterisation of these mediators of intermicrobial competition and host manipulation.
Collapse
Affiliation(s)
- Luca A. Robinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alice C. Z. Collins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ronan A. Murphy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
11
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
12
|
Liu R, De Sotto RB, Ling H. MvaT negatively regulates pyocin S5 expression in Pseudomonas aeruginosa. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:102-107. [PMID: 39416449 PMCID: PMC11446386 DOI: 10.1016/j.biotno.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 10/19/2024]
Abstract
Regulatory mechanisms that direct the synthesis and release of pyocin S5, a surface-acting bacteriocin produced by Pseudomonas aeruginosa, are relatively unknown. This study aims to identify transcription factors that regulate pyocin S5 expression in P. aeruginosa PAO1. We captured the transcription factor MvaT using the promoter region upstream of S5 gene (S5P). Further, we demonstrated specific binding of MvaT and its paralog MvaU to S5P using a gel-shift assay. Lastly, we showed that MvaT negatively regulates the S5 gene expression by gene deletion and transcriptomic analysis. Our findings provide valuable insights into the regulation of pyocin S5 production, which paves the way to develop novel therapeutics against P. aeruginosa infections.
Collapse
Affiliation(s)
- Ruirui Liu
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryan Bartolome De Sotto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Paškevičius Š, Dapkutė V, Misiūnas A, Balzaris M, Thommes P, Sattar A, Gleba Y, Ražanskienė A. Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Sci Rep 2022; 12:5865. [PMID: 35440606 PMCID: PMC9018753 DOI: 10.1038/s41598-022-09865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Rampant rise of multidrug resistant strains among Gram-negative bacteria has necessitated investigation of alternative antimicrobial agents with novel modes of action including antimicrobial proteins such as bacteriocins. The main hurdle in the clinical development of bacteriocin biologics is their narrow specificity and limited strain activity spectrum. Genome mining of bacteria for broadly active bacteriocins have identified a number of promising candidates but attempts to improve these natural multidomain proteins further, for example by combining domains of different origin, have so far met with limited success. We have found that domain swapping of Pseudomonas bacteriocins of porin type, when carried out between phylogenetically related molecules with similar mechanism of activity, allows the generation of highly active molecules with broader spectrum of activity, for example by abolishing strain resistance due to the presence of immunity proteins. The most broadly active chimera engineered in this study, S5-PmnH, exhibits excellent control of Pseudomonas aeruginosa infection in validated murine keratitis and lung infection models.
Collapse
Affiliation(s)
- Šarūnas Paškevičius
- Nomads UAB, Geležinio vilko 29A, 01112, Vilnius, Lithuania.,Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 10257, Vilnius, Lithuania
| | - Viktorija Dapkutė
- Nomads UAB, Geležinio vilko 29A, 01112, Vilnius, Lithuania.,Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 10257, Vilnius, Lithuania
| | | | | | - Pia Thommes
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK
| | - Abdul Sattar
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK
| | - Yuri Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Weinbergweg 22, 06120, Halle (Saale), Germany
| | | |
Collapse
|
14
|
Genetic and Transcriptomic Characteristics of RhlR-Dependent Quorum Sensing in Cystic Fibrosis Isolates of Pseudomonas aeruginosa. mSystems 2022; 7:e0011322. [PMID: 35471121 PMCID: PMC9040856 DOI: 10.1128/msystems.00113-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In people with the genetic disease cystic fibrosis (CF), bacterial infections involving the opportunistic pathogen Pseudomonas aeruginosa are a significant cause of morbidity and mortality. P. aeruginosa uses a cell-cell signaling mechanism called quorum sensing (QS) to regulate many virulence functions. One type of QS consists of acyl-homoserine lactone (AHL) signals produced by LuxI-type signal synthases, which bind a cognate LuxR-type transcription factor. In laboratory strains and conditions, P. aeruginosa employs two AHL synthase/receptor pairs arranged in a hierarchy, with the LasI/R system controlling the RhlI/R system and many downstream virulence factors. However, P. aeruginosa isolates with inactivating mutations in lasR are frequently isolated from chronic CF infections. We and others have shown that these isolates frequently use RhlR as the primary QS regulator. RhlR is rarely mutated in CF and environmental settings. We were interested in determining whether there were reproducible genetic characteristics of these isolates and whether there was a central group of genes regulated by RhlR in all isolates. We examined five isolates and found signatures of adaptation common to CF isolates. We did not identify a common genetic mechanism to explain the switch from Las- to Rhl-dominated QS. We describe a core RhlR regulon encompassing 20 genes encoding 7 products. These results suggest a key group of QS-regulated factors important for pathogenesis of chronic infections and position RhlR as a target for anti-QS therapeutics. Our work underscores the need to sample a diversity of isolates to understand QS beyond what has been described in laboratory strains. IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa can cause chronic infections that are resistant to treatment in immunocompromised individuals. Over the course of these infections, the original infecting organism adapts to the host environment. P. aeruginosa uses a cell-cell signaling mechanism termed quorum sensing (QS) to regulate virulence factors and cooperative behaviors. The key QS regulator in laboratory strains, LasR, is frequently mutated in infection-adapted isolates, leaving another transcription factor, RhlR, in control of QS gene regulation. Such isolates provide an opportunity to understand Rhl-QS regulation without the confounding effects of LasR, as well as the scope of QS in the context of within-host evolution. We show that a core group of virulence genes is regulated by RhlR in a variety of infection-adapted LasR-null isolates. Our results reveal commonalities in infection-adapted QS gene regulation and key QS factors that may serve as therapeutic targets in the future.
Collapse
|
15
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Six A, Mosbahi K, Barge M, Kleanthous C, Evans T, Walker D. Pyocin efficacy in a murine model of Pseudomonas aeruginosa sepsis. J Antimicrob Chemother 2021; 76:2317-2324. [PMID: 34142136 PMCID: PMC8361349 DOI: 10.1093/jac/dkab199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Bloodstream infections with antibiotic-resistant Pseudomonas aeruginosa are common and increasingly difficult to treat. Pyocins are naturally occurring protein antibiotics produced by P. aeruginosa that have potential for human use. OBJECTIVES To determine if pyocin treatment is effective in a murine model of sepsis with P. aeruginosa. METHODS Recombinant pyocins S5 and AP41 were purified and tested for efficacy in a Galleria mellonella infection model and a murine model of P. aeruginosa sepsis. RESULTS Both pyocins produced no adverse effects when injected alone into mice and showed good in vitro antipseudomonal activity. In an invertebrate model of sepsis using G. mellonella, both pyocins significantly prolonged survival from 1/10 (10%) survival in controls to 80%-100% survival among groups of 10 pyocin-treated larvae. Following injection into mice, both showed extensive distribution into different organs. When administered 5 h after infection, pyocin S5 significantly increased survival from 33% (2/6) to 83% (5/6) in a murine model of sepsis (difference significant by log-rank test, P < 0.05). CONCLUSIONS Pyocins S5 and AP41 show in vivo biological activity and can improve survival in two models of P. aeruginosa infection. They hold promise as novel antimicrobial agents for treatment of MDR infections with this microbe.
Collapse
Affiliation(s)
- Anne Six
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Khedidja Mosbahi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Madhuri Barge
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Thomas Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
17
|
Chan DCK, Burrows LL. Thiocillin and micrococcin exploit the ferrioxamine receptor of Pseudomonas aeruginosa for uptake. J Antimicrob Chemother 2021; 76:2029-2039. [PMID: 33907816 DOI: 10.1093/jac/dkab124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. OBJECTIVES To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. METHODS Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. RESULTS The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. CONCLUSIONS Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster Children's Hospital, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster Children's Hospital, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
18
|
Zhang L, Zhao SQ, Zhang J, Sun Y, Xie YL, Liu YB, Ma CC, Jiang BG, Liao XY, Li WF, Cheng XJ, Wang ZL. Proteomic Analysis of Vesicle-Producing Pseudomonas aeruginosa PAO1 Exposed to X-Ray Irradiation. Front Microbiol 2020; 11:558233. [PMID: 33384665 PMCID: PMC7770229 DOI: 10.3389/fmicb.2020.558233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Qiao Zhao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Liu Xie
- Department of Otolaryngology, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Yan-Bin Liu
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Cui Ma
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Guang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Yuan Liao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Fang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Snopkova K, Dufkova K, Klimesova P, Vanerkova M, Ruzicka F, Hola V. Prevalence of bacteriocins and their co-association with virulence factors within Pseudomonas aeruginosa catheter isolates. Int J Med Microbiol 2020; 310:151454. [PMID: 33068882 DOI: 10.1016/j.ijmm.2020.151454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections represent common nosocomial infectious diseases. Bacteriocin production has been recently described as a putative virulence factor in these infections but studies focusing particularly on Pseudomonas aeruginosa are not available. Therefore, we assessed the prevalence of the bacteriocin genes, their co-occurrence and their co-association with previously detected virulence factors in a set of 135 P. aeruginosa strains from catheter-associated urinary tract infections (CAUTIs). The overall bacteriocinogeny reached 96.3 % with an average of 3.6 genes per strain. The most frequently detected determinants were the encoded pyocins S4 (76.3 %), R (69.6 %), and S2 (67.4 %). A statistically significant co-occurrence and a negative relationship were observed between several pyocin types. Particular pyocins exhibited associations with biofilm formation, production of pyochelin, pyocyanin, antibiotic-degrading enzymes, overall strain susceptibility and resistance, and motility of the strain. Co-occurrence of the pyocins S2 and S4 (p<<0.0001; Z = 13.15), both utilizating the ferripyoverdine receptor FpvAI, was found but no relation to pyoverdine production was detected. A negative association (p = 0.0047; Z=-2.83) was observed between pyochelin and pyocin S5 utilising the ferripyochelin receptor FptA. Pairwise assays resulted in 52.1 % inhibition which was equally distributed between soluble and particle types of antimicrobials. In conclusion, pyocin determinants appear to be important characteristics of CAUTI-related P. aeruginosa isolates and could contribute to their urovirulence.
Collapse
Affiliation(s)
- Katerina Snopkova
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Kristyna Dufkova
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Petra Klimesova
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martina Vanerkova
- Molecular and Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Pekarska 53, 656 91 Brno, Czech Republic
| | - Filip Ruzicka
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Hola
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
20
|
ICEs Are the Main Reservoirs of the Ciprofloxacin-Modifying crpP Gene in Pseudomonas aeruginosa. Genes (Basel) 2020; 11:genes11080889. [PMID: 32759827 PMCID: PMC7463715 DOI: 10.3390/genes11080889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 01/18/2023] Open
Abstract
The ciprofloxacin-modifying crpP gene was recently identified in a plasmid isolated from a Pseudomonas aeruginosa clinical isolate. Homologues of this gene were also identified in Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. We set out to explore the mobile elements involved in the acquisition and spread of this gene in publicly available and complete genomes of Pseudomonas spp. All Pseudomonas complete genomes were downloaded from NCBI’s Refseq library and were inspected for the presence of the crpP gene. The mobile elements carrying this gene were further characterized. The crpP gene was identified only in P. aeruginosa, in more than half of the complete chromosomes (61.9%, n = 133/215) belonging to 52 sequence types, of which the high-risk clone ST111 was the most frequent. We identified 136 crpP-harboring integrative and conjugative elements (ICEs), with 93.4% belonging to the mating-pair formation G (MPFG) family. The ICEs were integrated at the end of a tRNALys gene and were all flanked by highly conserved 45-bp direct repeats. The crpP-carrying ICEs contain 26 core genes (2.2% of all 1193 genes found in all the ICEs together), which are present in 99% or more of the crpP-harboring ICEs. The most frequently encoded traits on these ICEs include replication, transcription, intracellular trafficking and cell motility. Our work suggests that ICEs are the main vectors promoting the dissemination of the ciprofloxacin-modifying crpP gene in P. aeruginosa.
Collapse
|
21
|
Behrens HM, Lowe ED, Gault J, Housden NG, Kaminska R, Weber TM, Thompson CMA, Mislin GLA, Schalk IJ, Walker D, Robinson CV, Kleanthous C. Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport. mBio 2020; 11:e03230-19. [PMID: 32156826 PMCID: PMC7064778 DOI: 10.1128/mbio.03230-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria.IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria.
Collapse
Affiliation(s)
- Hannah M Behrens
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joseph Gault
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - T Moritz Weber
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Catriona M A Thompson
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gaëtan L A Mislin
- UMR 7242, Biotechnologie et Signalisation Cellulaire, ESBS, Illkirch, France
| | - Isabelle J Schalk
- UMR 7242, Biotechnologie et Signalisation Cellulaire, ESBS, Illkirch, France
| | - Daniel Walker
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Diversity of Contact-Dependent Growth Inhibition Systems of Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00776-18. [PMID: 31036723 DOI: 10.1128/jb.00776-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied in Escherichia coli and several other bacteria, but little is known about the extent of this diversity in Pseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems of P. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology of P. aeruginosa.
Collapse
|
23
|
Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Antimicrob Agents Chemother 2019; 63:AAC.00342-19. [PMID: 30962344 DOI: 10.1128/aac.00342-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
The prevalence of multidrug-resistant Pseudomonas aeruginosa has stimulated development of alternative therapeutics. Bacteriophage peptidoglycan hydrolases, termed lysins, represent an emerging antimicrobial option for targeting Gram-positive bacteria. However, lysins against Gram-negatives are generally deterred by the outer membrane and their inability to work in serum. One solution involves exploiting evolved delivery systems used by colicin-like bacteriocins (e.g., S-type pyocins of P. aeruginosa) to translocate through the outer membrane. Following surface receptor binding, colicin-like bacteriocins form Tol- or TonB-dependent translocons to actively import bactericidal domains through outer membrane protein channels. With this understanding, we developed lysocins, which are bioengineered lysin-bacteriocin fusion molecules capable of periplasmic import. In our proof-of-concept studies, components from the P. aeruginosa bacteriocin pyocin S2 (PyS2) responsible for surface receptor binding and outer membrane translocation were fused to the GN4 lysin to generate the PyS2-GN4 lysocin. PyS2-GN4 delivered the GN4 lysin to the periplasm to induce peptidoglycan cleavage and log-fold killing of P. aeruginosa with minimal endotoxin release. While displaying narrow-spectrum antipseudomonal activity in human serum, PyS2-GN4 also efficiently disrupted biofilms, outperformed standard-of-care antibiotics, exhibited no cytotoxicity toward eukaryotic cells, and protected mice from P. aeruginosa challenge in a bacteremia model. In addition to targeting P. aeruginosa, lysocins can be constructed to target other prominent Gram-negative bacterial pathogens.
Collapse
|
24
|
Atanaskovic I, Kleanthous C. Tools and Approaches for Dissecting Protein Bacteriocin Import in Gram-Negative Bacteria. Front Microbiol 2019; 10:646. [PMID: 31001227 PMCID: PMC6455109 DOI: 10.3389/fmicb.2019.00646] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins of Gram-negative bacteria are typically multi-domain proteins that target and kill bacteria of the same or closely related species. There is increasing interest in protein bacteriocin import; from a fundamental perspective to understand how folded proteins are imported into bacteria and from an applications perspective as species-specific antibiotics to combat multidrug resistant bacteria. In order to translocate across the cell envelope and cause cell death, protein bacteriocins hijack nutrient uptake pathways. Their import is energized by parasitizing intermembrane protein complexes coupled to the proton motive force, which delivers a toxic domain into the cell. A plethora of genetic, structural, biochemical, and biophysical methods have been applied to find cell envelope components involved in bacteriocin import since their discovery almost a century ago. Here, we review the various approaches that now exist for investigating how protein bacteriocins translocate into Gram-negative bacteria and highlight areas of research that will need methodological innovations to fully understand this process. We also highlight recent studies demonstrating how bacteriocins can be used to probe organization and architecture of the Gram-negative cell envelope itself.
Collapse
Affiliation(s)
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Ghequire MGK, Öztürk B. A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner. Appl Environ Microbiol 2018; 84:e00716-18. [PMID: 29980560 PMCID: PMC6121995 DOI: 10.1128/aem.00716-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Pyocins are bacteriocins secreted by Pseudomonas aeruginosa, and they assist in the colonization of different niches. A major subset of these antibacterial proteins adopt a modular organization characteristic of polymorphic toxins. They include a receptor-binding domain, a segment enabling membrane passage, and a toxin module at the carboxy terminus, which eventually kills the target cells. To protect themselves from their own products, bacteriocin-producing strains express an immunity gene concomitantly with the bacteriocin. We show here that a pyocin equipped with a phylogenetically distinct ColM toxin domain, PaeM4, mediates antagonism against a large set of P. aeruginosa isolates. Immunity to PaeM4 is provided by the inner membrane protein PmiC, which is equipped with a transmembrane topology not previously described for the ColM family. Given that strains lacking a pmiC gene are killed by PaeM4, the presence of such an immunity partner likely is a key criterion for escaping cellular death mediated by PaeM4. The presence of a TonB box in PaeM4 and enhanced bacteriocin activity under iron-poor conditions strongly suggested the targeting of a TonB-dependent receptor. Evaluation of PaeM4 activities against TonB-dependent receptor knockout mutants in P. aeruginosa PAO1 revealed that the heme receptor HxuC (PA1302) serves as a PaeM4 target at the cellular surface. Because other ColM-type pyocins may target the ferrichrome receptor FiuA, our results illustrate the versatility in target recognition conferred by the polymorphic nature of ColM-type bacteriocins.IMPORTANCE The antimicrobial armamentarium of a bacterium is a major asset for colonizing competitive environments. Bacteriocins comprise a subset of these compounds. Pyocins are an example of such antibacterial proteins produced by Pseudomonas aeruginosa, killing other P. aeruginosa strains. A large group of these molecules show a modular protein architecture that includes a receptor-binding domain for initial target cell attachment and a killer domain. In this study, we have shown that a novel modular pyocin (PaeM4) that kills target bacteria via interference with peptidoglycan assembly takes advantage of the HxuC heme receptor. Cells can protect themselves from killing by the presence of a dedicated immunity partner, an integral inner membrane protein that adopts a transmembrane topology distinct from that of proteins currently known to provide immunity against such toxin activity. Understanding the receptors with which pyocins interact and how immunity to pyocins is achieved is a pivotal step toward the rational design of bacteriocin cocktails for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
26
|
Bara JJ, Matson Z, Remold SK. Life in the cystic fibrosis upper respiratory tract influences competitive ability of the opportunistic pathogen Pseudomonas aeruginosa. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180623. [PMID: 30839703 PMCID: PMC6170537 DOI: 10.1098/rsos.180623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Understanding characteristic differences between host-associated and free-living opportunistic pathogens can provide insight into the fundamental requirements for success after dispersal to the host environment, and more generally into the ecological and evolutionary processes by which populations respond to simultaneous selection on complex interacting traits. We examined how cystic fibrosis (CF)-associated and environmental isolates of the opportunistic pathogen Pseudomonas aeruginosa differ in the production of an ecologically important class of proteinaceous toxins known as bacteriocins, and how overall competitive ability depends on the production of and resistance to these bacteriocins. We determined bacteriocin gene content in a diverse collection of environmental and CF isolates and measured bacteriocin-mediated inhibition, resistance and the outcome of competition in a shared environment between all possible pairs of these isolates at 25°C and 37°C. Although CF isolates encoded significantly more bacteriocin genes, our phenotypic assays suggest that they have diminished bacteriocin-mediated killing and resistance capabilities relative to environmental isolates, regardless of incubation temperature. Notably, however, although bacteriocin killing and resistance profiles significantly predicted head-to-head competitive outcomes, CF and environmental isolates did not differ significantly in their competitive ability. This suggests that the contribution of bacteriocins to competitive ability involves selection on other traits that may be pleiotropically linked to interference competition mediated by bacteriocins.
Collapse
Affiliation(s)
- Jeffrey J. Bara
- Department of Biology, University of Louisville, Louisville, KY, USA
- Department of Biology, Shenandoah University, Winchester, VA, USA
| | - Zachary Matson
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Susanna K. Remold
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
27
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|
28
|
Karig DK, Bessling S, Thielen P, Zhang S, Wolfe J. Preservation of protein expression systems at elevated temperatures for portable therapeutic production. J R Soc Interface 2018; 14:rsif.2016.1039. [PMID: 28446704 PMCID: PMC5414909 DOI: 10.1098/rsif.2016.1039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability.
Collapse
Affiliation(s)
- David K Karig
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Seneca Bessling
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Sherry Zhang
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Joshua Wolfe
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| |
Collapse
|
29
|
Plant-expressed pyocins for control of Pseudomonas aeruginosa. PLoS One 2017; 12:e0185782. [PMID: 28973027 PMCID: PMC5626474 DOI: 10.1371/journal.pone.0185782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023] Open
Abstract
The emergence, persistence and spread of antibiotic-resistant human pathogenic bacteria heralds a growing global health crisis. Drug-resistant strains of gram-negative bacteria, such as Pseudomonas aeruginosa, are especially dangerous and the medical and economic burden they impose underscore the critical need for finding new antimicrobials. Recent studies have demonstrated that plant-expressed bacteriocins of the colicins family can be efficient antibacterials against all major enteropathogenic strains of E. coli. We extended our studies of colicin-like bacteriocins to pyocins, which are produced by strains of P. aeruginosa for ecological advantage against other strains of the same species. Using a plant-based transient expression system, we expressed six different pyocins, namely S5, PaeM, L1, L2, L3 and one new pyocin, PaeM4, and purified them to homogeneity. Among these pyocins, PaeM4 demonstrated the broadest spectrum of activity by controlling 53 of 100 tested clinical isolates of P. aeruginosa. The activity of plant-made pyocins was confirmed in the agar drop, liquid culture susceptibility and biofilm assays, and in the Galleria mellonella animal infection model.
Collapse
|
30
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
31
|
A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter. mBio 2017; 8:mBio.01961-16. [PMID: 28223456 PMCID: PMC5358913 DOI: 10.1128/mbio.01961-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities.IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the cell envelope of a target cell, a translocation domain enabling subsequent cellular entry, and a toxin module that kills target cells via enzymatic or pore-forming activity. We here demonstrate the antagonistic function of a Pseudomonas bacteriocin with unique architecture that combines a putative enzymatic colicin M-like domain and a novel pore-forming toxin module. For target cell recognition and entry, this bacteriocin hybrid takes advantage of the ferrichrome transporter, also parasitized by enzymatic Pseudomonas bacteriocins devoid of the pore-forming module. Bacteriocins with an expanded toxin potential may represent an inventive bacterial strategy to alleviate immunity in target cells.
Collapse
|
32
|
Ghoul M, West SA, Johansen HK, Molin S, Harrison OB, Maiden MCJ, Jelsbak L, Bruce JB, Griffin AS. Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc Biol Sci 2016; 282:rspb.2015.0972. [PMID: 26311664 DOI: 10.1098/rspb.2015.0972] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations,especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that(i) isolates from later infection stages inhibited earlier infecting strains less,but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage overtime; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.
Collapse
|
33
|
Abstract
Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. Biofilm formation by Pseudomonas aeruginosa is one of the hallmarks of chronic cystic fibrosis (CF) lung infections. The biofilm matrix protects this bacterium from antibiotics as well as from the immune system. Hence, the prevention or reversion of biofilm formation is believed to have a great impact on treatment of chronic P. aeruginosa CF lung infections. In the present study, we showed that it is possible to modulate the behavior of a highly adapted transmissible P. aeruginosa CF isolate at both the transcriptomic and phenotypic levels by introducing shear stress in a CF-like environment, driving it from a biofilm to a planktonic lifestyle. Consequently, the results obtained in this study are of great importance with regard to therapeutic applications that introduce shear stress in the lungs of CF patients.
Collapse
|
34
|
McCaughey LC, Ritchie ND, Douce GR, Evans TJ, Walker D. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci Rep 2016; 6:30201. [PMID: 27444885 PMCID: PMC4957109 DOI: 10.1038/srep30201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023] Open
Abstract
Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens.
Collapse
Affiliation(s)
- Laura C McCaughey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Neil D Ritchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Thomas J Evans
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
35
|
Structural and biophysical analysis of nuclease protein antibiotics. Biochem J 2016; 473:2799-812. [PMID: 27402794 PMCID: PMC5264503 DOI: 10.1042/bcj20160544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 01/28/2023]
Abstract
Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.
Collapse
|
36
|
Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa. Biochem J 2016; 473:2345-58. [PMID: 27252387 PMCID: PMC4964976 DOI: 10.1042/bcj20160470] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/01/2016] [Indexed: 11/17/2022]
Abstract
Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right.
Collapse
|
37
|
Wood TL, Wood TK. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiologyopen 2016; 5:499-511. [PMID: 26987441 PMCID: PMC4906001 DOI: 10.1002/mbo3.346] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/30/2023] Open
Abstract
Toxin/antitoxin (TA) systems are prevalent in most bacterial and archaeal genomes, and one of the emerging physiological roles of TA systems is to help regulate pathogenicity. Although TA systems have been studied in several model organisms, few studies have investigated the role of TA systems in pseudomonads. Here, we demonstrate that the previously uncharacterized proteins HigB (unannotated) and HigA (PA4674) of Pseudomonas aeruginosa PA14 form a type II TA system in which antitoxin HigA masks the RNase activity of toxin HigB through direct binding. Furthermore, toxin HigB reduces production of the virulence factors pyochelin, pyocyanin, swarming, and biofilm formation; hence, this system affects the pathogencity of this strain in a manner that has not been demonstrated previously for TA systems.
Collapse
Affiliation(s)
- Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
38
|
Dingemans J, Ghequire MGK, Craggs M, De Mot R, Cornelis P. Identification and functional analysis of a bacteriocin, pyocin S6, with ribonuclease activity from a Pseudomonas aeruginosa cystic fibrosis clinical isolate. Microbiologyopen 2016; 5:413-23. [PMID: 26860427 PMCID: PMC4905994 DOI: 10.1002/mbo3.339] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023] Open
Abstract
S‐type pyocins are bacteriocins produced by Pseudomonas aeruginosa isolates to antagonize or kill other strains of the same species. They have a modular organization comprising a receptor‐binding domain recognizing a surface constituent of the target bacterium, a domain for translocation through the periplasm, and a killing or toxic domain with DNase, tRNase, or pore‐forming activity. Pyocins S2, S3, S4, and S5 recognize TonB‐dependent ferri‐siderophore receptors in the outer membrane. We here describe a new nuclease bacteriocin, pyocin S6, encoded in the genome of a P. aeruginosa cystic fibrosis (CF) clinical isolate, CF_PA39. Similarly to pyocins S1 and S2, the S6 toxin–immunity gene tandem was recruited to the genomic region encoding exotoxin A. The pyocin S6 receptor‐binding and translocation domains are identical to those of pyocin S1, whereas the killing domain is similar to the 16S ribonuclease domain of Escherichia coli colicin E3. The cytotoxic activity was abolished in pyocin S6 forms with a mutation in the colicin E3‐equivalent catalytic motif. The CF_PA39 S6 immunity gene displays a higher expression level than the gene encoding the killing protein, the latter being only detected when bacteria are grown under iron‐limiting conditions. In the S1‐pyocinogenic strain P. aeruginosa ATCC 25324 and pyocin S2 producer P. aeruginosa PAO1, a remnant of the pyocin S6 killing domain and an intact S6‐type immunity gene are located downstream of their respective pyocin operons. Strain PAO1 is insensitive for pyocin S6, and its S6‐type immunity gene provides protection against pyocin S6 activity. Purified pyocin S6 inhibits one‐fifth of 110 P. aeruginosa CF clinical isolates tested, showing clearer inhibition zones when the target cells are grown under iron limitation. In this panel, about half of the CF clinical isolates were found to host the S6 genes. The pyocin S6 locus is also present in the genome of some non‐CF clinical isolates.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Bioengineering Sciences, Research group Microbiology and VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Maarten G K Ghequire
- Department Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven Kasteelpark Arenberg 20 - bus 2460, Heverlee, B-3001, Belgium
| | - Michael Craggs
- Department of Bioengineering Sciences, Research group Microbiology and VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - René De Mot
- Department Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven Kasteelpark Arenberg 20 - bus 2460, Heverlee, B-3001, Belgium
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research group Microbiology and VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
39
|
Tyrrell J, Callaghan M. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. MICROBIOLOGY-SGM 2015; 162:191-205. [PMID: 26643057 DOI: 10.1099/mic.0.000220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.
Collapse
Affiliation(s)
- Jean Tyrrell
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| |
Collapse
|
40
|
Ghequire MGK, Dillen Y, Lambrichts I, Proost P, Wattiez R, De Mot R. Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates. Genome Biol Evol 2015; 7:2810-28. [PMID: 26412856 PMCID: PMC4684702 DOI: 10.1093/gbe/evv184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with bacteriocin-like specificity. Functional characterization of bactericidal tailocins of two Pseudomonas putida rhizosphere isolates revealed not only extensive similarity with the tail assembly module of the Pseudomonas aeruginosa R-type pyocins but also differences in genomic integration site, regulatory genes, and lytic release modules. Conversely, these three features are quite similar between strains of the P. putida and Pseudomonas fluorescens clades, although phylogenetic analysis of tail genes suggests them to have evolved separately. Unlike P. aeruginosa R pyocin elements, the tailocin gene clusters of other pseudomonads frequently carry cargo genes, including bacteriocins. Compared with P. aeruginosa, the tailocin tail fiber sequences that act as specificity determinants have diverged much more extensively among the other pseudomonad species, mostly isolates from soil and plant environments. Activity of the P. putida antibacterial particles requires a functional lipopolysaccharide layer on target cells, but contrary to R pyocins from P. aeruginosa, strain susceptibilities surpass species boundaries.
Collapse
Affiliation(s)
- Maarten G K Ghequire
- Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Heverlee, Belgium
| | - Yörg Dillen
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Leuven, Belgium
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, University of Leuven, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Heverlee, Belgium
| |
Collapse
|
41
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
42
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
43
|
Dingemans J, Ye L, Hildebrand F, Tontodonati F, Craggs M, Bilocq F, De Vos D, Crabbé A, Van Houdt R, Malfroot A, Cornelis P. The deletion of TonB-dependent receptor genes is part of the genome reduction process that occurs during adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung. Pathog Dis 2014; 71:26-38. [PMID: 24659602 DOI: 10.1111/2049-632x.12170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/02/2023] Open
Abstract
Chronic Pseudomonas aeruginosa infections are the main cause of morbidity among patients with cystic fibrosis (CF) due to persistent lung inflammation caused by interaction between this bacterium and the immune system. Longitudinal studies of clonally related isolates of a dominant CF clone have indicated that genome reduction frequently occurs during adaptation of P. aeruginosa in the CF lung. In this study, we have evaluated the P. aeruginosa population structure of patients attending the Universitair Ziekenhuis Brussel (UZ Brussel) CF reference center using a combination of genotyping methods. Although the UZ Brussel P. aeruginosa CF population is characterized by the absence of a dominant CF clone, some potential interpatient transmissions could be detected. Interestingly, one of these clones showed deletion of the alternative type I ferripyoverdine receptor gene fpvB. Furthermore, we found that several other TonB-dependent receptors are deleted as well. The genome of one potentially transmissible CF clone was sequenced, revealing large deleted regions including all type III secretion system genes and several virulence genes. Remarkably, a large number of deleted genes are shared between the P. aeruginosa CF clone described in this study and isolates belonging to the dominant Copenhagen CF DK2 clone, suggesting parallel evolution.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Brussels, Belgium; Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|