1
|
Nejadmansouri M, Eskandari MH, Yousefi GH, Riazi M, Hosseini SMH. Promising application of probiotic microorganisms as Pickering emulsions stabilizers. Sci Rep 2023; 13:15915. [PMID: 37741896 PMCID: PMC10517997 DOI: 10.1038/s41598-023-43087-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
The purpose of this work was to study the ability of nineteen food-grade microorganisms as Pickering emulsion (PE) stabilizers. Medium-chain triacylglycerol (MCT) oil-in-water (50:50) PEs were fabricated by 10 wt% or 15 wt% of thermally-inactivated yeast, cocci, Bacillus spp. and lactobacilli cells. The characteristics of microorganisms related to "Pickering stabilization" including morphology, surface charge, interfacial tension, and "contact angle" were firstly studied. After that, the cells-stabilized PEs were characterized from both kinetic and thermodynamic viewpoints, microstructure and rheological properties. The interfacial tension and "contact angle" values of various microorganisms ranged from 16.33 to 38.31 mN/m, and from 15° to 106°, respectively. The mean droplet size of PEs ranged from 11.51 to 57.69 µm. Generally, the physical stability of cell-stabilized PEs followed this order: lactobacilli > Bacillus spp. > cocci > yeast. These variations were attributed to the morphology and cell wall composition. Increasing the microorganism concentration significantly increased the physical stability of PEs from a maximum of 12 days at 10 wt% to 35 days at 15 wt% as a result of better interface coverage. Shear-thinning and dominant elastic behaviors were observed in PEs. Physical stability was affected by the free energy of detachment. Therefore, food-grade microorganisms are suggested for stabilizing PEs.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholam Hossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz, Iran
- Department of Petroleum Engineering, School of Chemical and Petroleum Eng, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
2
|
A New Biosurfactant/Bioemulsifier from Gordonia alkanivorans Strain 1B: Production and Characterization. Processes (Basel) 2022. [DOI: 10.3390/pr10050845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biosurfactants and bioemulsifiers (BS/BE) are naturally synthesized molecules, which can be used as alternatives to traditional detergents. These molecules are commonly produced by microorganisms isolated from hydrocarbon-rich environments. Gordonia alkanivorans strain 1B was originally found in such an environment, however little was known about its abilities as a BS/BE producer. The goal of this work was to access the potential of strain 1B as a BS/BE producer and perform the initial characterization of the produced compounds. It was demonstrated that strain 1B was able to synthesize lipoglycoprotein compounds with BS/BE properties, both extracellularly and adhered to the cells, without the need for a hydrophobic inducer, producing emulsion in several different hydrophobic phases. Using a crude BS/BE powder, the critical micelle concentration was determined (CMC = 16.94 mg/L), and its capacity to reduce the surface tension to a minimum of 35.63 mN/m was demonstrated, surpassing many commercial surfactants. Moreover, after dialysis, emulsification assays revealed an activity similar to that of Triton X-100 in almond and sunflower oils. In benzene, the E24 value attained was 83.45%, which is 30% greater than that of the commercial alternative. The results obtained highlight for the presence of promising novel BS/BE produced by strain 1B.
Collapse
|
3
|
Mechanistic Understanding of Gordonia sp. in Biodesulfurization of Organosulfur Compounds. Curr Microbiol 2022; 79:82. [PMID: 35107610 DOI: 10.1007/s00284-022-02770-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
Although conventional oil refining process like hydrodesulfurization (HDS) is capable of removing sulfur compounds present in crude oil, it cannot desulfurize recalcitrant organosulfur compounds such as dibenzothiophenes (DBTs), benzothiophenes (BTs), etc. Biodesulfurization (BDS) is a process of selective removal of sulfur moieties from DBT or BT by desulfurizing microbes. Therefore, BDS can be used as a complementary and economically feasible technology to achieve deep desulfurization of crude oil without affecting the calorific value. In the recent past, members of biodesulfurizing actinomycete genus Gordonia, isolated from versatile environments like soil, activated sludge, human beings etc. have been greatly exploited in the field of petroleum refining technology. The bacterium Gordonia sp. is slightly acid-fast and has been used for unconventional but potential oil refining processes like BDS in petroleum refineries. Gordonia sp. is unique in a way, that it can desulfurize both aliphatic and aromatic organosulfurs without affecting the calorific value of hydrocarbon molecules. Till date, approximately six different species and nineteen strains of the genus Gordonia have been recognized for BDS activity. Various factors such as enzyme specificity, availability of essential cofactors, feedback inhibition, toxicity of organic pollutants and the oil-water separations limit the desulfurization rate of microbial biocatalyst and influence its commercial applications. The current review selectively highlights the role of this versatile genus in removing sulfur from fossil fuels, mechanisms and future prospects on sustainable environment friendly technologies for crude oil refining.
Collapse
|
4
|
Dupont H, Maingret V, Schmitt V, Héroguez V. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanaé Dupont
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Valentin Maingret
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| |
Collapse
|
5
|
Potential Enhancement of the In-Situ Bioremediation of Contaminated Sites through the Isolation and Screening of Bacterial Strains in Natural Hydrocarbon Springs. WATER 2020. [DOI: 10.3390/w12082090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Petroleum hydrocarbon contamination (PHC) is an issue of major concern worldwide. These compounds represent the most common environmental pollutants and their cleaning up is mandatory. The main goal of this research was to analyze microbial communities in a site in southern Italy characterized by the presence of hydrocarbons of natural origin by using a multidisciplinary approach based on microbiological, geological and hydrological investigations. Bacterial communities of two springs, the surrounding soils, and groundwater were studied through a combination of molecular and culture-dependent methodologies to explore the biodiversity at the study site, to isolate microorganisms with degradative abilities, and to assess their potential to develop effective strategies to restore the environmental quality. Next-generation sequencing revealed the dominance of species of the Proteobacteria phylum but also the presence of other autochthonous hydrocarbon-oxidizing microorganisms affiliated to other phyla (e.g., species of the genera Flavobacterium and Gordonia). The traditional cultivation-based approach led to the isolation and identification of 11 aerobic hydrocarbon-oxidizing proteobacteria, some of which were able to grow with phenanthrene as the sole carbon source. Seven out of the 11 isolated bacterial strains produced emulsion with diesel fuel (most of them showing emulsifying capacity values greater than 50%) with a high stability after 24 h and, in some cases, after 48 h. These results pave the way for further investigations finalized at (1) exploiting both the degradation ability of the bacterial isolates and/or microbial consortia to remediate hydrocarbon-contaminated sites and (2) the capability to produce molecules with a promoting effect for oil polluted matrices restoration.
Collapse
|
6
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Lyu Y, Zhang T, Dou B, Li G, Ma C, Li Y. A lipopeptide biosurfactant from Bacillus sp. Lv13 and their combined effects on biodesulfurization of dibenzothiophene. RSC Adv 2018; 8:38787-38791. [PMID: 35558302 PMCID: PMC9090607 DOI: 10.1039/c8ra06693k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022] Open
Abstract
The process of using biodesulfurization (BDS) to remove sulfur compounds in petroleum has limitations such as low efficiency and low mass transfer. Therefore, it is important to study the combined effects of biosurfactant and the strain on BDS. A thermophilic desulfurization strain, Bacillus sp. Lv13, was isolated from the oilfield and used to produce biosurfactant (BS). The strain was identified as Bacillus licheniformis, a moderate thermophilic bacterium. Its BS was identified as lipopeptide using thin-layer chromatography (TLC), gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FT-IR). The emulsification efficiency after 24 h (E24) and critical micelle concentration (CMC) were determined to be 46.93% and 30 mg L−1, respectively. The combined effects of biosurfactant and the strain on BDS was confirmed using the Gibbs assay, GC-MS and BaCl2 test. Results showed that the yield of 2-hydroxybiphenyl (2-HBP) from dibenzothiophene significantly increased after the addition of lipopeptide into the reaction system. This could be illustrated by the stabilization of emulsion, lower CMC value, higher mass transfer rate with the addition of lipopeptide, and the enhancement in the capacity of BDS as well as the catalytic ability of the microbial cell. Complex interactions among DBT, bacteria and biomolecules play a major role in the absence of lipopeptides. After adding lipopeptides, DBT degrades rapidly to HBP through BDS.![]()
Collapse
Affiliation(s)
- Yinghai Lyu
- Department of Bioengineering
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Tingting Zhang
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Baojuan Dou
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Guijiang Li
- Department of Bioengineering
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Chengxin Ma
- Department of Bioengineering
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Yangyang Li
- Department of Bioengineering
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| |
Collapse
|
8
|
Glonke S, Sadowski G, Brandenbusch C. Applied catastrophic phase inversion: a continuous non-centrifugal phase separation step in biphasic whole-cell biocatalysis. J Ind Microbiol Biotechnol 2016; 43:1527-1535. [PMID: 27650629 DOI: 10.1007/s10295-016-1837-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/11/2016] [Indexed: 11/25/2022]
Abstract
Biphasic whole-cell biotransformations are known to be efficient alternatives to common chemical synthesis routes, especially for the production of, e.g. apolar enantiopure organic compounds. They provide high stereoselectivity combined with high product concentrations owing to the presence of an organic phase serving as substrate reservoir and product sink. Industrial implementation suffers from the formation of stable Pickering emulsions caused by the presence of cells. State-of-the-art downstream processing includes inefficient strategies such as excessive centrifugation, use of de-emulsifiers or thermal stress. In contrast, using the catastrophic phase inversion (CPI) phenomenon (sudden switch of emulsion type caused by addition of dispersed phase), Pickering-type emulsions can be destabilized efficiently. Within this work a model system using bis(2-ethylhexyl) phthalate (BEHP) as organic phase in combination with E. coli, JM101 was successfully separated using a continuous mixer settler setup. Compared to the state-of-the-art centrifugal separations, this process allows complete phase separation with no detectable water content or cells in the organic phase with no utilities/additives required. Furthermore, the concentration of the product is not affected by the separation. It is therefore a simple applicable method that can be used for separation of stable Pickering-type emulsions based on the knowledge of the point of inversion.
Collapse
Affiliation(s)
- Sebastian Glonke
- Laboratory of Thermodynamics, TU Dortmund University, 44227, Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, TU Dortmund University, 44227, Dortmund, Germany
| | | |
Collapse
|
9
|
Paixão SM, Silva TP, Arez BF, Alves L. Advances in the Reduction of the Costs Inherent to Fossil Fuels' Biodesulfurization towards Its Potential Industrial Application. APPLYING NANOTECHNOLOGY TO THE DESULFURIZATION PROCESS IN PETROLEUM ENGINEERING 2016. [DOI: 10.4018/978-1-4666-9545-0.ch013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biodesulfurization (BDS) process consists on the use of microorganisms for the removal of sulfur from fossil fuels. Through BDS it is possible to treat most of the organosulfur compounds recalcitrant to the conventional hydrodesulfurization (HDS), the petroleum industry's solution, at mild operating conditions, without the need for molecular hydrogen or metal catalysts. This technique results in lower emissions, smaller residue production and less energy consumption, which makes BDS an eco-friendly process that can complement HDS making it more efficient. BDS has been extensively studied and much is already known about the process. Clearly, BDS presents advantages as a complementary technique to HDS; however its commercial use has been delayed by several limitations both upstream and downstream the process. This study will comprehensively review and discuss key issues, like reduction of the BDS costs, advances and/or challenges for a competitive BDS towards its potential industrial application aiming ultra low sulfur fuels.
Collapse
Affiliation(s)
| | | | - Bruno F. Arez
- Laboratório Nacional de Energia e Geologia, Portugal
| | - Luís Alves
- Laboratório Nacional de Energia e Geologia, Portugal
| |
Collapse
|
10
|
The dynamic influence of cells on the formation of stable emulsions in organic–aqueous biotransformations. ACTA ACUST UNITED AC 2015; 42:1011-26. [DOI: 10.1007/s10295-015-1621-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Abstract
Emulsion stability plays a crucial role for mass transfer and downstream processing in organic–aqueous bioprocesses based on whole microbial cells. In this study, emulsion stability dynamics and the factors determining them during two-liquid phase biotransformation were investigated for stereoselective styrene epoxidation catalyzed by recombinant Escherichia coli. Upon organic phase addition, emulsion stability rapidly increased correlating with a loss of solubilized protein from the aqueous cultivation broth and the emergence of a hydrophobic cell fraction associated with the organic–aqueous interface. A novel phase inversion-based method was developed to isolate and analyze cellular material from the interface. In cell-free experiments, a similar loss of aqueous protein did not correlate with high emulsion stability, indicating that the observed particle-based emulsions arise from a convergence of factors related to cell density, protein adsorption, and bioreactor conditions. During styrene epoxidation, emulsion destabilization occurred correlating with product-induced cell toxification. For biphasic whole-cell biotransformations, this study indicates that control of aqueous protein concentrations and selective toxification of cells enables emulsion destabilization and emphasizes that biological factors and related dynamics must be considered in the design and modeling of respective upstream and especially downstream processes.
Collapse
|
11
|
Furtado GF, Picone CS, Cuellar MC, Cunha RL. Breaking oil-in-water emulsions stabilized by yeast. Colloids Surf B Biointerfaces 2015; 128:568-576. [DOI: 10.1016/j.colsurfb.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
12
|
Sharma D, Saharan BS, Chauhan N, Procha S, Lal S. Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SPRINGERPLUS 2015; 4:4. [PMID: 25674491 PMCID: PMC4320184 DOI: 10.1186/2193-1801-4-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The objective of the present study was to isolate the biosurfactant (BS) producing lactic acid bacteria (LAB) from traditional fermented food (buttermilk) and its functional and structural characterization. BS isolated from strain MRTL9 reduced surface tension from 72.0 to 40.2 mN m(-1). The critical micelle concentration (CMC) of BS was 2.25 mg ml(-1) with emulsification efficiency (E24) after 24 h of 64% against kerosene oil. The cell bound BS was partially purified by silica gel column chromatography and found as glycolipid. The gas chromatography and mass spectroscopy data revealed the fatty acid as hexadecanoic acid. Xylose was determined as hydrophilic moiety. The BS was found to be stable to pH changes over a range of 4.0-12.0, being most effective at pH 7 and showed no apparent loss of surface tension and emulsification efficiency after heat treatment at 120°C for 15 min. The outcomes of cellular toxicity showed lower toxicity of BS in comparison to SDS and rhamnolipids. Current study confirmed the preventive anti-adhesion activity of BS. These amphiphilic molecules, interferes with the microbial adhesion and found to be least cytotoxic with cellular compatibility with mouse fibroblasts cells.
Collapse
Affiliation(s)
- Deepansh Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136 119 INDIA
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana 132 001 India
| | | | - Nikhil Chauhan
- Division of Microbiology and Immunology, Vector Control Research Center, Puducherry, 605006 India
| | - Suresh Procha
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119 India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119 India
| |
Collapse
|
13
|
Lam S, Velikov KP, Velev OD. Pickering stabilization of foams and emulsions with particles of biological origin. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.07.003] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 2014; 32:221-9. [DOI: 10.1016/j.tibtech.2014.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
|
15
|
Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1. Colloids Surf B Biointerfaces 2012; 98:120-8. [DOI: 10.1016/j.colsurfb.2012.04.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 11/23/2022]
|
16
|
Drzyzga O. The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 2012; 38:300-16. [PMID: 22551505 DOI: 10.3109/1040841x.2012.668134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review about the genus Gordonia provides a current overview of recent research on a young genus that was introduced in the year 1997 ( Stackebrandt et al., 1997 ). This emerging genus has attracted increasing environmental, industrial, biotechnological and medical interest during the last few years, in particular due to the capabilities of its members to degrade, transform, and synthesize organic compounds as well as to the pathogenic effects that have been described in many case studies. The number of publications about Gordonia has increased significantly after the year 2004 (the year of the first Gordonia review published by Arenskötter et al.) describing 13 new validly published species (type strains), many newly described physiological and metabolic capabilities, new patent applications and many new case reports of bacterial infections. Members of the genus Gordonia are widely distributed in nature and it is therefore important to unravel the species richness and metabolic potential of gordoniae in future studies to demonstrate their environmental impact especially on the degradation of persistent organic compounds and their ecological participation in the carbon cycle of organic material in soil and water. This review summarizes mainly the current state of importance and potential of the members of this genus for the environmental and biotechnological industry ("the strengthsâ) and briefly its pathogenic impact to humans ("the weaknessesâ).
Collapse
Affiliation(s)
- Oliver Drzyzga
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Aminsefat A, Rasekh B, Ardakani MR. Biodesulfurization of dibenzothiophene by Gordonia sp. AHV-01 and optimization by using of response surface design procedure. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Irani ZA, Mehrnia MR, Yazdian F, Soheily M, Mohebali G, Rasekh B. Analysis of petroleum biodesulfurization in an airlift bioreactor using response surface methodology. BIORESOURCE TECHNOLOGY 2011; 102:10585-10591. [PMID: 21945162 DOI: 10.1016/j.biortech.2011.08.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
For the first time, growing cells of Gordonia alkanivorans RIPI90A were used for biodesulfurization (BDS) of diesel. This process was carried out in an internal airlift bioreactor. BDS parameters (oil/water phase ratio and initial sulfur concentration) were optimized in flasks using response surface methodology. Predicted results were found to be in good agreement with experimental results. Initial sulfur concentration had a remarkable effect on BDS process. Maximum removal of sulfur (21 mg/l) can be achieved at oil/water phase ratio of 25% (v/v) and initial sulfur concentration of 28 mg/l. Moreover, effect of superficial gas velocity (Ug) and working volume (v) on volumetric gas liquid mass transfer coefficient was studied in an airlift bioreactor for BDS of diesel. The best results were achieved at Ug and v of 2.5l/min and 6.6l, respectively. Subsequently, BDS of diesel was investigated in an airlift bioreactor under optimized conditions. Sulfur reduction after 30 h was 14 mg/l.
Collapse
Affiliation(s)
- Zahra Azimzadeh Irani
- School of Chemical Engineering, Department of Life Science Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B Biointerfaces 2010; 82:477-82. [PMID: 21030223 DOI: 10.1016/j.colsurfb.2010.10.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery.
Collapse
Affiliation(s)
- Mahmoud Shavandi
- Biotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran.
| | | | | | | | | |
Collapse
|
21
|
She YH, Zhang F, Xia JJ, Kong SQ, Wang ZL, Shu FC, Hu JM. Investigation of Biosurfactant-Producing Indigenous Microorganisms that Enhance Residue Oil Recovery in an Oil Reservoir After Polymer Flooding. Appl Biochem Biotechnol 2010; 163:223-34. [DOI: 10.1007/s12010-010-9032-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
22
|
Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K. Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. BIORESOURCE TECHNOLOGY 2009; 100:475-479. [PMID: 18653330 DOI: 10.1016/j.biortech.2008.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 05/26/2023]
Abstract
The dszABC genes from newly reported dibenzothiophene biodesulfurizing bacterium, Gordonia alkanivorans RIPI90A were cloned and sequenced. The overall nucleotide sequence similarity between the dszABC genes of G. alkanivorans RIPI90A and those of Rhodococcus erythropolis IGTS8 and Gordonia nitida were 83.1% and 83.2%, respectively. A gene transfer system for G. alkanivorans RIPI90A was established employing the Escherichia coli-Rhodococcus shuttle vector pRSG43 as suitable cloning vector, resulting in transformation efficiencies up to 1.6 x 10(5)CFUs microg(-1) plasmid DNA. This stable vector was applied to cloning and efficient expression of the dsz genes under the control of lac promoter. The recombinant strain was able to desulfurize dibenzothiophene in the presence of inorganic sulfate and sulfur-containing amino acids. The maximum desulfurization activity by recombinant resting cells (131.8 microM2-hydroxybiphenylg(dry cell weight)(-1)h(-1)) was increased 2.67-fold in comparison to the highest desulfurization activity of native resting cells.
Collapse
Affiliation(s)
- Mahmoud Shavandi
- Department of Genetics, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Mohebali G, Ball AS. Biocatalytic desulfurization (BDS) of petrodiesel fuels. MICROBIOLOGY-SGM 2008; 154:2169-2183. [PMID: 18667551 DOI: 10.1099/mic.0.2008/017608-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.
Collapse
Affiliation(s)
- Ghasemali Mohebali
- Department of Petroleum Biotechnology, Biotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran
| | - Andrew S Ball
- School of Biological Sciences, Flinders University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|