1
|
Setargie A, Wang C, Zhang L, Xu Y. Chromatographic and mass spectroscopic guided discovery of Trichoderma peptaibiotics and their bioactivity. ENGINEERING MICROBIOLOGY 2024; 4:100135. [PMID: 39629330 PMCID: PMC11611045 DOI: 10.1016/j.engmic.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/07/2024]
Abstract
Peptaibiotics are linear or cyclic peptide antibiotics characterized by the non-proteinogenic amino acid, alpha-aminoisobutyric acid. They exhibit a wide range of bioactivity against various pathogens. This report presents a comprehensive review of analytical methods for Trichoderma cultivation, production, isolation, screening, purification, and characterization of peptaibiotics, along with their bioactivity. Numerous techniques are currently available for each step, and we focus on describing the most commonly used and recently developed chromatographic and spectroscopic techniques. Investigating peptaibiotics requires efficient culture media, growth conditions, and isolation and purification techniques. The combination of chromatographic and spectroscopic tools offers a better opportunity for characterizing and identifying peptaibiotics. The evaluation of the chemical and biological properties of this compound has also been explored concerning its potential application in pharmaceutical and other industries. This review aims to summarize available data on the techniques and tools used to screen and purify peptaibiotics from Trichoderma fungi and bioactivity against various pathogens.
Collapse
Affiliation(s)
- Adigo Setargie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Institute of Biotechnology, Bahir Dar University, P.O. Box. 79, Bahir Dar, Ethiopia
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
2
|
Pereira-Dias L, Oliveira-Pinto PR, Fernandes JO, Regalado L, Mendes R, Teixeira C, Mariz-Ponte N, Gomes P, Santos C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol Adv 2023; 68:108223. [PMID: 37536466 DOI: 10.1016/j.biotechadv.2023.108223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.
Collapse
Affiliation(s)
- Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Paulo R Oliveira-Pinto
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Juliana O Fernandes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rafael Mendes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Characterization of Peptaibols Produced by a Marine Strain of the Fungus Trichoderma endophyticum via Mass Spectrometry, Genome Mining and Phylogeny-Based Prediction. Metabolites 2023; 13:metabo13020221. [PMID: 36837841 PMCID: PMC9961477 DOI: 10.3390/metabo13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as "endophytins". The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products.
Collapse
|
4
|
González Y, de los Santos-Villalobos S, Castro-Longoria E. Trichoderma Secondary Metabolites Involved in Microbial Inhibition. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Mishra N, Chauhan P, Verma P, Singh SP, Mishra A. Metabolomic Approaches to Study Trichoderma-Plant Interactions. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Víglaš J, Dobiasová S, Viktorová J, Ruml T, Repiská V, Olejníková P, Gbelcová H. Peptaibol-Containing Extracts of Trichoderma atroviride and the Fight against Resistant Microorganisms and Cancer Cells. Molecules 2021; 26:molecules26196025. [PMID: 34641569 PMCID: PMC8512731 DOI: 10.3390/molecules26196025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
- Correspondence:
| | - Simona Dobiasová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.D.); (J.V.); (T.R.)
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.D.); (J.V.); (T.R.)
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.D.); (J.V.); (T.R.)
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (V.R.); (H.G.)
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; (V.R.); (H.G.)
| |
Collapse
|
7
|
Gavryushina IA, Georgieva ML, Kuvarina AE, Sadykova VS. Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rawa MSA, Nogawa T, Okano A, Futamura Y, Wahab HA, Osada H. Zealpeptaibolin, an 11-mer cytotoxic peptaibol group with 3 Aib-Pro motifs isolated from Trichoderma sp. RK10-F026. J Antibiot (Tokyo) 2021; 74:485-495. [PMID: 34163024 DOI: 10.1038/s41429-021-00429-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023]
Abstract
Six new 11-mer peptaibols designed as zealpeptaibolins, A - F were isolated from the soil fungus, Trichoderma sp. RK10-F026, based on the principal component analysis of the MS data from five different culture compositions. Previously, 20-mer peptaibols from the same fungal strain were identified; 11-mer peptaibols in contrast were discovered from a different culture condition, signifying peptaibol production was culture condition-dependent. These peptaibols contained three Aib-Pro motifs in the sequence. The structures were established by NMR and HR-MS experiments including detailed MS/MS fragmentations. The absolute configurations were determined by Marfey's analysis. Zealpeptaibolin F exhibited the strongest cytotoxicity toward K562 leukemia cells with an IC50 value of 0.91 µM.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Toshihiko Nogawa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Akiko Okano
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan.
| |
Collapse
|
9
|
Shi JC, Shi WL, Zhou YR, Chen XL, Zhang YZ, Zhang X, Zhang WX, Song XY. The Putative Methyltransferase TlLAE1 Is Involved in the Regulation of Peptaibols Production in the Biocontrol Fungus Trichoderma longibrachiatum SMF2. Front Microbiol 2020; 11:1267. [PMID: 32612590 PMCID: PMC7307461 DOI: 10.3389/fmicb.2020.01267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
The biocontrol fungus Trichoderma longibrachiatum SMF2 secretes a large quantity of peptaibols that have been shown to have a range of biological activities and therefore great application values. However, the mechanism of the regulatory expression of peptaibols is still unclear. The putative methyltransferase LaeA/LAE1 is a global regulator involved in the biosynthesis of some secondary metabolites in filamentous fungi. In this study, we demonstrated that the ortholog of LaeA/LAE1 in the biocontrol fungus T. longibrachiatum SMF2, TlLAE1, plays an important role in the regulation of peptaibols production. Deletion of Tllae1 resulted in a slight negative impact on mycelial growth, and a significant defect in conidial production. Deletion of Tllae1 also compromised the production of peptaibols to a large degree. Further analyses indicated that this defect occurred at the transcriptional level of the two synthetases-encoding genes, tlx1 and tlx2, which are responsible for peptaibols production. By contrast, constitutive expression of Tllae1 in T. longibrachiatum SMF2 led to 2-fold increased peptaibols production, suggesting that this is a strategy to improve peptaibols production in Trichoderma fungi. These results demonstrate the important role of LAE1 in the regulation of peptaibols production in T. longibrachiatum SMF2.
Collapse
Affiliation(s)
- Jin-Chao Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan-Rong Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 2020; 8:E817. [PMID: 32486107 PMCID: PMC7356054 DOI: 10.3390/microorganisms8060817] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Phytopathogenic fungi, causing significant economic and production losses, are becoming a serious threat to global food security. Due to an increase in fungal resistance and the hazardous effects of chemical fungicides to human and environmental health, scientists are now engaged to explore alternate non-chemical and ecofriendly management strategies. The use of biocontrol agents and their secondary metabolites (SMs) is one of the potential approaches used today. Trichoderma spp. are well known biocontrol agents used globally. Many Trichoderma species are the most prominent producers of SMs with antimicrobial activity against phytopathogenic fungi. Detailed information about these secondary metabolites, when grouped together, enhances the understanding of their efficient utilization and further exploration of new bioactive compounds for the management of plant pathogenic fungi. The current literature provides the information about SMs of Trichoderma spp. in a different context. In this review, we summarize and group different antifungal SMs of Trichoderma spp. against phytopathogenic fungi along with a comprehensive overview of some aspects related to their chemistry and biosynthesis. Moreover, a brief overview of the biosynthesis pathway, action mechanism, and different approaches for the analysis of SMs and the factors affecting the regulation of SMs in Trichoderma is also discussed.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Institute of Vegetables and Flowers (Plant Pathology Lab), Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.A.A.K.); (S.N.)
| | - Saba Najeeb
- Institute of Vegetables and Flowers (Plant Pathology Lab), Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.A.A.K.); (S.N.)
| | - Shaukat Hussain
- Department of Plant Pathology, The University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Bingyan Xie
- Institute of Vegetables and Flowers (Plant Pathology Lab), Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.A.A.K.); (S.N.)
| | - Yan Li
- Institute of Vegetables and Flowers (Plant Pathology Lab), Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.A.A.K.); (S.N.)
| |
Collapse
|
11
|
Singh VP, Pathania AS, Kushwaha M, Singh S, Sharma V, Malik FA, Khan IA, Kumar A, Singh D, Vishwakarma RA. 14-Residue peptaibol velutibol A from Trichoderma velutinum: its structural and cytotoxic evaluation. RSC Adv 2020; 10:31233-31242. [PMID: 35520634 PMCID: PMC9056410 DOI: 10.1039/d0ra05780k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
Velutibol A (1), a new 14-residue peptaibol was isolated from the Himalayan cold habitat fungus Trichoderma velutinum. The structural characterization was carried out by 1D and 2D NMR studies, and tandem mass studies, and Marfey's method aided in determining the stereochemistry of the amino acids. The CD analysis revealed folding of the peptide in a 310-helical conformation. The intramolecular H-bonding was determined by an NMR-VT experiment. Cytotoxic evaluation was carried out against a panel of cancer cell lines. The cell cycle assay was carried out on human myeloid leukaemia (HL-60) cells and revealed the formation of apoptotic bodies and DNA damage in a dose-dependent manner. Three other peptaibols namely velutibol B (2), velutibol C (3), and velutibol D (4) were also isolated in trace amounts from the psychotropic fungus and characterized through tandem mass spectroscopy and Marfey's analysis. Velutibol A (1), a new 14-residue peptaibol isolated from the Himalayan cold habitat fungus Trichoderma velutinum.![]()
Collapse
Affiliation(s)
- Varun Pratap Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Department of Biotechnology
| | - Anup Singh Pathania
- Pharmacology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Manoj Kushwaha
- Quality Control & Quality Assurance Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Samsher Singh
- Clinical Microbiology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Vandana Sharma
- Quality Control & Quality Assurance Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Academy of Scientific and Innovative Research
| | - Fayaz A. Malik
- Pharmacology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| | - Inshad A. Khan
- Clinical Microbiology Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Department of Microbiology
| | - Anil Kumar
- Department of Biotechnology
- Faculty of Sciences
- Shri Mata Vaishno Devi University
- India
| | - Deepika Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
- Quality Control & Quality Assurance Division
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180 001
- India
| |
Collapse
|
12
|
Trichoderma atroviride: an isolate from forest environment with secondary metabolites with high antimicrobial potential. ACTA CHIMICA SLOVACA 2019. [DOI: 10.2478/acs-2019-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
This work was focused on the characterization of novel isolate of Trichoderma atroviride O1, found in the forest around the village of Zázrivá (the Northern Slovakia, region Orava). The isolate was identified by sequencing its internal transcribed spacer (ITS) region of rDNA. T. atroviride O1 stimulated the development of lateral roots of model plant Lepidium sativum. Simultaneously, the isolate has proved its high mycoparasitic potential as it displayed the ability to attack colonies of phytopathogenic fungi (Alternaria alternata, Fusarium culmorum, Botrytis cinerea). This isolate produced secondary metabolites, which were isolated and tested for the antimicrobial activity against gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus. The growth of these bacteria was suppressed to 10 % and 40 %, respectively. The suppression of the growth of two Candida species was also strong (10 % growth). However, growth parameters of three phytopathogenic fungi (Alternaria alternata, Botrytis cinerea and Fusarium culmorum) were less affected (75 % growth in comparison with the control). Attempts were made to characterize secondary metabolites isolated from T. atroviride O1. Known peptaibols, 20—21 amino acid long, but also shorter peptides, were detected by MALDI-TOF mass spectrometry. Thus, this study demonstrates the plant growth promotion, strong mycoparasitic potential and antimicrobial activity of the isolate T. atroviride O1, which could be in part ascribed to the production of secondary metabolites. This isolate does have a potential in the biocontrol in eco-farming. Further study, particularly, the identification of produced secondary metabolites, is needed.
Collapse
|
13
|
Katoch M, Singh D, Kapoor KK, Vishwakarma RA. Trichoderma lixii (IIIM-B4), an endophyte of Bacopa monnieri L. producing peptaibols. BMC Microbiol 2019; 19:98. [PMID: 31096902 PMCID: PMC6524271 DOI: 10.1186/s12866-019-1477-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background Exploration of microbes isolated from north western Himalayas for bioactive natural products. Results A strain of Trichoderma lixii (IIIM-B4) was isolated from Bacopa monnieri L. The ITS based rDNA gene sequence of strain IIIM-B4 displayed 99% sequence similarity with different Trichoderma harzianum species complex. The highest score was displayed for Hypocrea lixii strain FJ462763 followed by H. nigricans strain NBRC31285, Trichoderma lixii strain CBS 110080, T. afroharzianum strain CBS124620 and Trichoderma guizhouense BPI:GJS 08135 respectively. Position of T. lixii (IIIM-B4) in phylogenetic tree suggested separate identity of the strain. Microbial dynamics of T. lixii (IIIM-B4) was investigated for small peptides. Medium to long chain length peptaibols of 11 residue (Group A), 14 residue (Group B) and 17 residue (Group C) were identified using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometer. Optimization is undeniably a desideratum for maximized production of desirable metabolites from microbial strain. Here optimization studies were carried out on T. lixii (IIIM-B4) using different growth media through Intact Cell Mass Spectrometry (ICMS). A multifold increase was obtained in production of 11 residue peptaibols using rose bengal medium. Out of these, one of them named as Tribacopin AV was isolated and sequenced through mass studied. It was found novel as having unique sequence Ac-Gly-Leu-Leu-Leu-Ala-Leu-Pro-Leu-Aib-Val-Gln-OH. It was found to have antifungal activity against Candida albicans (25 μg/mL MIC). Conclusion In this study, we isolated a strain of T. lixii (IIIM-B4) producing medium and long chain peptaibols. One of them named as Tribacopin AV was found novel as having unique sequence Ac-Gly-Leu-Leu-Leu-Ala-Leu-Pro-Leu-Aib-Val-Gln-OH, which had antifungal properties. Electronic supplementary material The online version of this article (10.1186/s12866-019-1477-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meenu Katoch
- Microbial Biotechnology Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Deepika Singh
- Quality Control and Quality Assurance Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu, 180001, India
| | - R A Vishwakarma
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
14
|
Rath S, Das SR, Padhy RN. Bayesian analysis of two methods MALDI-TOF-MS system and culture test in otomycosis infection. World J Otorhinolaryngol Head Neck Surg 2019; 5:6-13. [PMID: 30775695 PMCID: PMC6364575 DOI: 10.1016/j.wjorl.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/19/2017] [Accepted: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
Objective Identification of otomycotic fungi using matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectroscopy (MS) and to quantify pervasive errors with Bayes rule; values of sensitivity and specificity of culture test and MALDI-TOF-MS method are quantified. Method Fungi cultured ear discharge samples were identified with culture test and MALDI-TOF-MS system. Minimum inhibitory concentration (MIC) or MEC (minimum effective concentration) for 6 antifungals were determined by antifungal susceptibility testing in vitro. With Bayes rule, sensitivity and specificity of both MALDI-TOF MS and culture test methods were computed. Results Cultures yielded 42 fungal isolates which were confirmed as species (specified against each species) belonging to 8 genera, A. niger 22, Candida sp. 7, A. fumigatus 3, A. flavus 3, mixed Aspergillus sp. 3, Mucor sp. 2, Rhizopus sp. 1, and Scopulariopsis sp.1; and MALDI-TOF-MS system also confirmed those isolates. In vitro antifungal susceptibility testing with terms of MIC 50 and MIC 90, isolates fungi were highly susceptible to 6 antifungals; and caspofungin was the most active antifungal. The high value of specificity 84.6%, suggested a limited loss of confidence on the culture test at the absence of an infection, in comparison to MALDI-TOF-MS. Sensitivity of the culture test was 87.5%; this high figure strongly approves the culture test to be the dependable method for the otomycosis diagnosis, when the infection is stable. Conclusion Based on sensitivity and specificity together the culture test could be done in face of the gold-standard MALDI-TOF-MS system the estimating both methods.
Collapse
Affiliation(s)
- Sibanarayan Rath
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Odisha, India
| | - Saumya Ranjan Das
- Department of Ear Nose and Throat, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Odisha, India
| |
Collapse
|
15
|
Fanelli F, Liuzzi VC, Logrieco AF, Altomare C. Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain. BMC Genomics 2018; 19:662. [PMID: 30200883 PMCID: PMC6131884 DOI: 10.1186/s12864-018-5049-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND So far, biocontrol agent selection has been performed mainly by time consuming in vitro confrontation tests followed by extensive trials in greenhouse and field. An alternative approach is offered by application of high-throughput techniques, which allow extensive screening and comparison among strains for desired genetic traits. In the genus Trichoderma, the past assignments of particular features or strains to one species need to be reconsidered according to the recent taxonomic revisions. Here we present the genome of a biocontrol strain formerly known as Trichoderma harzianum ITEM 908, which exhibits both growth promoting capabilities and antagonism against different fungal pathogens, including Fusarium graminearum, Rhizoctonia solani, and the root-knot nematode Meloidogyne incognita. By genomic analysis of ITEM 908 we investigated the occurrence and the relevance of genes associated to biocontrol and stress tolerance, providing a basis for future investigation aiming to unravel the complex relationships between genomic endowment and exhibited activities of this strain. RESULTS The MLST analysis of ITS-TEF1 concatenated datasets reclassified ITEM 908 as T. atrobrunneum, a species recently described within the T. harzianum species complex and phylogenetically close to T. afroharzianum and T. guizhouense. Genomic analysis revealed the presence of a broad range of genes encoding for carbohydrate active enzymes (CAZYmes), proteins involved in secondary metabolites production, peptaboils, epidithiodioxopiperazines and siderophores potentially involved in parasitism, saprophytic degradation as well as in biocontrol and antagonistic activities. This abundance is comparable to other Trichoderma spp. in the T. harzianum species complex, but broader than in other biocontrol species and in the species T. reesei, known for its industrial application in cellulase production. Comparative analysis also demonstrated similar genomic organization of major secondary metabolites clusters, as in other Trichoderma species. CONCLUSIONS Reported data provide a contribution to a deeper understanding of the mode of action and identification of activity-specific genetic markers useful for selection and improvement of biocontrol strains. This work will also enlarge the availability of genomic data to perform comparative studies with the aim to correlate phenotypic differences with genetic diversity of Trichoderma species.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Vania Cosma Liuzzi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| |
Collapse
|
16
|
Marik T, Tyagi C, Racić G, Rakk D, Szekeres A, Vágvölgyi C, Kredics L. New 19-Residue Peptaibols from Trichoderma Clade Viride. Microorganisms 2018; 6:microorganisms6030085. [PMID: 30103563 PMCID: PMC6165201 DOI: 10.3390/microorganisms6030085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma koningiopsis and T. gamsii belong to clade Viride of Trichoderma, the largest and most diverse group of this genus. They produce a wide range of bioactive secondary metabolites, including peptaibols with antibacterial, antifungal, and antiviral properties. The unusual amino acid residues of peptaibols, i.e., α-aminoisobutyric acid (Aib), isovaline (Iva), and the C-terminal 1,2-amino alcohol make them unique among peptides. In this study, the peptaibiomes of T. koningiopsis and T. gamsii were investigated by HPLC-ESI-MS. The examined strains appeared to produce 19-residue peptaibols, most of which are unknown from literature, but their amino acid sequences are similar to those of trikoningins, tricholongins, trichostrigocins, trichorzianins, and trichorzins. A new group of peptaibols detected in T. koningiopsis are described here under the name “Koningiopsin”. Trikoningin KA V, the closest peptaibol compound to the peptaibols produced by these two strains, was selected for structural investigation by short MD simulation, which revealed that many residues show high preference for left handed helix formation. The bioactivity of the peptaibol mixtures produced by T. koningiopsis and T. gamsii was tested on agar plates against bacteria, yeasts, and filamentous fungi. The results revealed characteristic differences in bioactivities towards the different groups of target microorganisms, which can be explained with the differences in their cell wall structures.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Gordana Racić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia.
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
17
|
Jongman M, Korsten L. Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1289385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Samuels GJ, Ismaiel A. Hypocrea peltata: a mycological Dr Jekyll and Mr Hyde? Mycologia 2017; 103:616-30. [DOI: 10.3852/10-227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Adnan Ismaiel
- United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Room 213, B-010a, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| |
Collapse
|
19
|
Shamim M, Kumar P, Kumar RR, Kumar M, Kumar RR, Singh KN. Assessing Fungal Biodiversity Using Molecular Markers. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Hamad I, Raoult D, Bittar F. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods. Parasite Immunol 2016; 38:12-36. [PMID: 26434599 DOI: 10.1111/pim.12284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Eukaryotes are an important component of the human gut, and their relationship with the human host varies from parasitic to commensal. Understanding the diversity of human intestinal eukaryotes has important significance for human health. In the past few decades, most of the multitudes of techniques that are involved in the diagnosis of the eukaryotic population in the human intestinal tract were confined to pathological and parasitological aspects that mainly rely on traditionally based methods. However, development of culture-independent molecular techniques comprised of direct DNA extraction from faeces followed by sequencing, offer new opportunities to estimate the occurrence of eukaryotes in the human gut by providing data on the entire eukaryotic community, particularly not-yet-cultured or fastidious organisms. Further broad surveys of the eukaryotic communities in the gut based on high throughput tools such as next generation sequencing might lead to uncovering the real diversity of these ubiquitous organisms in the human intestinal tract and discovering the unrecognized roles of these eukaryotes in modulating the host immune system and inducing changes in host gut physiology and ecosystem.
Collapse
Affiliation(s)
- I Hamad
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - D Raoult
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - F Bittar
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| |
Collapse
|
21
|
Sharma R, Singh VP, Singh D, Yusuf F, Kumar A, Vishwakarma RA, Chaubey A. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1. Appl Microbiol Biotechnol 2016; 100:9091-9102. [DOI: 10.1007/s00253-016-7622-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
|
22
|
Zeilinger S, Gruber S, Bansal R, Mukherjee PK. Secondary metabolism in Trichoderma – Chemistry meets genomics. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Holzlechner M, Reitschmidt S, Gruber S, Zeilinger S, Marchetti-Deschmann M. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging. Proteomics 2016; 16:1742-6. [PMID: 26959280 PMCID: PMC4982067 DOI: 10.1002/pmic.201500510] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 11/09/2022]
Abstract
Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home-built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism.
Collapse
Affiliation(s)
- Matthias Holzlechner
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Sonja Reitschmidt
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Sabine Gruber
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Susanne Zeilinger
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria.,Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | |
Collapse
|
24
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
25
|
Development and validation of LC–MS methods for peptaibol quantification in fungal extracts according to their lengths. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:25-33. [DOI: 10.1016/j.jchromb.2015.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/21/2015] [Indexed: 01/31/2023]
|
26
|
Tata A, Perez C, Campos ML, Bayfield MA, Eberlin MN, Ifa DR. Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi. Anal Chem 2015; 87:12298-305. [PMID: 26637047 DOI: 10.1021/acs.analchem.5b03614] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Direct analysis of microbial cocultures grown on agar media by desorption electrospray ionization mass spectrometry (DESI-MS) is quite challenging. Due to the high gas pressure upon impact with the surface, the desorption mechanism does not allow direct imaging of soft or irregular surfaces. The divots in the agar, created by the high-pressure gas and spray, dramatically change the geometry of the system decreasing the intensity of the signal. In order to overcome this limitation, an imprinting step, in which the chemicals are initially transferred to flat hard surfaces, was coupled to DESI-MS and applied for the first time to fungal cocultures. Note that fungal cocultures are often disadvantageous in direct imaging mass spectrometry. Agar plates of fungi present a complex topography due to the simultaneous presence of dynamic mycelia and spores. One of the most devastating diseases of cocoa trees is caused by fungal phytopathogen Moniliophthora roreri. Strategies for pest management include the application of endophytic fungi, such as Trichoderma harzianum, that act as biocontrol agents by antagonizing M. roreri. However, the complex chemical communication underlying the basis for this phytopathogen-dependent biocontrol is still unknown. In this study, we investigated the metabolic exchange that takes place during the antagonistic interaction between M. roreri and T. harzianum. Using imprint-DESI-MS imaging we annotated the secondary metabolites released when T. harzianum and M. roreri were cultured in isolation and compared these to those produced after 3 weeks of coculture. We identified and localized four phytopathogen-dependent secondary metabolites, including T39 butenolide, harzianolide, and sorbicillinol. In order to verify the reliability of the imprint-DESI-MS imaging data and evaluate the capability of tape imprints to extract fungal metabolites while maintaining their localization, six representative plugs along the entire M. roreri/T. harzianum coculture plate were removed, weighed, extracted, and analyzed by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Our results not only provide a better understanding of M. roreri-dependent metabolic induction in T. harzianum, but may seed novel directions for the advancement of phytopathogen-dependent biocontrol, including the generation of optimized Trichoderma strains against M. roreri, new biopesticides, and biofertilizers.
Collapse
Affiliation(s)
- Alessandra Tata
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University , Chemistry Building, 4700 Keele Street, M3J 1P3 Toronto, Ontario, Canada.,ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas , Rua Josué Castro, s/n Cidade Universitária, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Consuelo Perez
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University , Chemistry Building, 4700 Keele Street, M3J 1P3 Toronto, Ontario, Canada
| | - Michel L Campos
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University , Chemistry Building, 4700 Keele Street, M3J 1P3 Toronto, Ontario, Canada.,Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University , Rodovia Araraquara-Jaú, km 1, CEP 14 801-902 Araraquara, São Paulo, Brazil
| | - Mark A Bayfield
- Department of Biology, York University , 4700 Keele Street, M3J 1P3 Toronto, Ontario, Canada
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas , Rua Josué Castro, s/n Cidade Universitária, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Demian R Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University , Chemistry Building, 4700 Keele Street, M3J 1P3 Toronto, Ontario, Canada
| |
Collapse
|
27
|
Sadykova VS, Kurakov AV, Kuvarina AE, Rogozhin EA. Antimicrobial activity of fungi strains of Trichoderma from Middle Siberia. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s000368381503014x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. Peptaibol, Secondary-Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of theTrichoderma harzianumComplex. Chem Biodivers 2015; 12:662-84. [DOI: 10.1002/cbdv.201400300] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 11/05/2022]
|
29
|
Biosynthesis and Molecular Genetics of Peptaibiotics—Fungal Peptides Containing Alpha, Alpha-Dialkyl Amino Acids. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. FUNGAL DIVERS 2014; 69:117-146. [PMID: 25722662 PMCID: PMC4338523 DOI: 10.1007/s13225-013-0276-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 950 individual sequences of non-ribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocrea that belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are comprehensively named peptaibiotics. Notably, peptaibiotics represent ca. 80 % of the total inventory of secondary metabolites currently known from Trichoderma/Hypocrea. Their unique membrane-modifying bioactivity results from amphipathicity and helicity, thus making them ideal candidates in assisting both colonisation and defence of the natural habitats by their fungal producers. Despite this, reports on the in vivo-detection of peptaibiotics have scarcely been published in the past. In order to evaluate the significance of peptaibiotic production for a broader range of potential producers, we screened nine specimens belonging to seven hitherto uninvestigated fungicolous or saprotrophic Trichoderma/Hypocrea species by liquid chromatography coupled to electrospray high resolution mass spectrometry. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. Of the nine species examined, five were screened positive for peptaibiotics. A total of 78 peptaibiotics were sequenced, 56 (=72 %) of which are new. Notably, dihydroxyphenylalaninol and O-prenylated tyrosinol, two C-terminal residues, which have not been reported for peptaibiotics before, were found as well as new and recurrent sequences carrying the recently described tyrosinol residue at their C-terminus. The majority of peptaibiotics sequenced are 18- or 19-residue peptaibols. Structural homologies with 'classical representatives' of subfamily 1 (SF1)-peptaibiotics argue for the formation of transmembrane ion channels, which are prone to facilitate the producer capture and defence of its substratum.
Collapse
Affiliation(s)
- Christian R Röhrich
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany. Present Address: AB SCIEX Germany GmbH, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Anita Iversen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark. Present Address: Danish Emergency Management Agency, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany; Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
31
|
Carroux A, Van Bohemen AI, Roullier C, Robiou du Pont T, Vansteelandt M, Bondon A, Zalouk-Vergnoux A, Pouchus YF, Ruiz N. Unprecedented 17-residue peptaibiotics produced by marine-derived Trichoderma atroviride. Chem Biodivers 2013; 10:772-86. [PMID: 23681725 DOI: 10.1002/cbdv.201200398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 11/07/2022]
Abstract
In the course of investigations on marine-derived toxigenic fungi, five strains of Trichoderma atroviride were studied for their production of peptaibiotics. While these five strains were found to produce classical 19-residue peptaibols, three of them exhibited unusual peptidic sodium-adduct [M + 2 Na](2+) ion peaks at m/z between 824 and 854. The sequencing of these peptides led to two series of unprecedented 17-residue peptaibiotics based on the model Ac-XXX-Ala-Ala-XXX-XXX-Gln-Aib-Aib-Aib-Ala/Ser-Lxx-Aib-Pro-XXX-Aib-Lxx-[C(129) ]. The C-terminus of these new peptides was common to all of them, and its elemental formula C5 H9 N2 O2 was established by HR-MS. It could correspond to the cyclized form of N(δ) -hydroxyornithine which has already been observed at the C-terminus of various peptidic siderophores. The comparison of the sequences of 17- and 19-residue peptides showed similarities for positions 1-16. This observation seems to indicate a common biosynthesis pathway. Both new 17-residue peptaibiotics and 19-residue peptaibols exhibited weak in vitro cytotoxicities against KB cells.
Collapse
Affiliation(s)
- Angélique Carroux
- University of Nantes, LUNAM, Faculty of Pharmacy, MMS, F-44000 Nantes
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chalupová J, Raus M, Sedlářová M, Sebela M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 2013; 32:230-41. [PMID: 24211254 DOI: 10.1016/j.biotechadv.2013.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000-20000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions.
Collapse
Affiliation(s)
- Jana Chalupová
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Martin Raus
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
33
|
Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Screening the biosphere: the fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem Biodivers 2013; 10:787-812. [PMID: 23681726 PMCID: PMC3734673 DOI: 10.1002/cbdv.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 02/04/2023]
Abstract
To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group of non-ribosomal antibiotic polypeptides, peptaibiotics, which contain the non-proteinogenic marker amino acid, α-aminoisobutyric acid, was biosynthesized in the natural habitat by the fungicolous producer and, consequently, released into the host. By means of liquid chromatography coupled to electrospray high-resolution time-of-flight mass spectrometry, we detected ten 20-residue peptaibols in the specimen. Sequences of peptaibiotics found in vivo were independently confirmed by analyzing the peptaibiome of an agar plate culture of T. phellinicola CBS 119283 (ex-type) grown under laboratory conditions. Notably, this strain could be identified as a potent producer of 39 new 17-, 18-, and 19-residue peptaibiotics, which display the same building scheme as the 20-residue peptaibols found in the specimen. Two of the 19-residue peptaibols are tentatively assigned to carry tyrosinol, a novel C-terminal residue, as deduced from high-resolution tandem mass-spectrometry data. For the new peptaibiotics produced by T. phellinicola, the name 'hypophellin(s)', based on the teleomorph name, is introduced.
Collapse
Affiliation(s)
- Christian René Röhrich
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project GroupWinchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: ; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: )
| | - Anita Iversen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Walter Michael Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of ViennaRennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: ; H. V.: phone: +43-4277-54050, e-mail: )
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of ViennaRennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: ; H. V.: phone: +43-4277-54050, e-mail: )
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project GroupWinchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: ; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: )
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU)Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: )
| | - Kristian Fog Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Ulf Thrane
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of BerlinFranklinstraße 29, D-10587 Berlin (phone: +49-30-314-22697; fax: +49-30-314-24783; e-mail: )
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of GiessenHeinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-711-349919; e-mail: )
| | - Thomas Degenkolb
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU)Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: )
| |
Collapse
|
34
|
Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3-GENES GENOMES GENETICS 2013; 3:369-78. [PMID: 23390613 PMCID: PMC3564997 DOI: 10.1534/g3.112.005140] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 11/25/2022]
Abstract
The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi, and it can modify heterochromatin structure in Aspergillus nidulans. We have recently shown that the LaeA ortholog of Trichoderma reesei (LAE1), a fungus that is an industrial producer of cellulase and hemicellulase enzymes, regulates the expression of cellulases and polysaccharide hydrolases. To learn more about the function of LAE1 in T. reesei, we assessed the effect of deletion and overexpression of lae1 on genome-wide gene expression. We found that in addition to positively regulating 7 of 17 polyketide or nonribosomal peptide synthases, genes encoding ankyrin-proteins, iron uptake, heterokaryon incompatibility proteins, PTH11-receptors, and oxidases/monoxygenases are major gene categories also regulated by LAE1. chromatin immunoprecipitation sequencing with antibodies against histone modifications known to be associated with transcriptionally active (H3K4me2 and -me3) or silent (H3K9me3) chromatin detected 4089 genes bearing one or more of these methylation marks, of which 75 exhibited a correlation between either H3K4me2 or H3K4me3 and regulation by LAE1. Transformation of a laeA-null mutant of A. nidulans with the T. reesei lae1 gene did not rescue sterigmatocystin formation and further impaired sexual development. LAE1 did not interact with A. nidulans VeA in yeast two-hybrid assays, whereas it interacted with the T. reesei VeA ortholog, VEL1. LAE1 was shown to be required for the expression of vel1, whereas the orthologs of velB and VosA are unaffected by lae1 deletion. Our data show that the biological roles of A. nidulans LaeA and T. reesei LAE1 are much less conserved than hitherto thought. In T. reesei, LAE1 appears predominantly to regulate genes increasing relative fitness in its environment.
Collapse
|
35
|
Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H. The Production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea. Chem Biodivers 2012; 9:499-535. [DOI: 10.1002/cbdv.201100212] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Velazquez-Robledo R, Contreras-Cornejo HA, Macias-Rodriguez L, Hernandez-Morales A, Aguirre J, Casas-Flores S, Lopez-Bucio J, Herrera-Estrella A. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1459-1471. [PMID: 21830953 DOI: 10.1094/mpmi-02-11-0045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Trichoderma virens is a ubiquitous soil fungus successfully used in biological control due to its efficient colonization of plant roots. In fungi, 4-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary and secondary metabolism. Therefore, we cloned the PPTase gene ppt1 from T. virens and generated PPTase-deficient (?ppt1) and overexpressing strains to investigate the role of this enzyme in biocontrol and induction of plant defense responses. The ?ppt1 mutants were auxotrophic for lysine, produced nonpigmented conidia, and were unable to synthesize nonribosomal peptides. Although spore germination was severely compromised under both low and high iron availability, mycelial growth occurred faster than the wild type, and the mutants were able to efficiently colonize plant roots. The ?ppt1 mutants were unable of inhibiting growth of phytopathogenic fungi in vitro. Arabidopsis thaliana seedlings co-cultivated with wild-type T. virens showed increased expression of pPr1a:uidA and pLox2:uidA markers, which correlated with enhanced accumulation of salicylic acid (SA), jasmonic acid, camalexin, and resistance to Botrytis cinerea. Co-cultivation of A. thaliana seedlings with ?ppt1 mutants compromised the SA and camalexin responses, resulting in decreased protection against the pathogen. Our data reveal an important role of T. virens PPT1 in antibiosis and induction of SA and camalexin-dependent plant defense responses.
Collapse
|
37
|
Welker M, Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 2011; 34:2-11. [DOI: 10.1016/j.syapm.2010.11.013] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 11/19/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
|
38
|
Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM. Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 2010; 286:4544-54. [PMID: 21123172 DOI: 10.1074/jbc.m110.159723] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptaibols are a group of small peptides having a high α-aminoisobutyric acid (Aib) content and produced by filamentous fungi, especially by the members of the genus Trichoderma (anamorph Hypocrea). These antibiotics are economically important for their anti-microbial and anti-cancer properties as well as ability to induce systemic resistance in plants against microbial invasion. In this study we present sequences of two classes (11-residue and 14-residue) of peptaibols produced by the biocontrol fungus Trichoderma virens. Of the 35 11-residue peptaibols sequenced, 18 are hitherto not described, and all the 53 14-residue sequences described by us here are new. We have also identified a peptaibol synthetase (non-ribosomal peptide synthetase, NRPS) with 14 complete modules in the genome of this fungus and disruption of this single gene (designated as tex2) resulted in the loss of both the classes of peptaibols. We, thus present here an unprecedented case where a single NRPS encodes for two classes of peptaibols. The new peptaibols identified here could have applications as therapeutic agents for the management of human and plant health.
Collapse
Affiliation(s)
- Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
40
|
Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O. Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 2010; 102:944-66. [PMID: 20648760 DOI: 10.3852/09-243] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Analysis of a worldwide collection of strains of Trichoderma asperellum sensu lato using multilocus genealogies of four genomic regions (tef1, rpb2, act, ITS1, 2 and 5.8s rRNA), sequence polymorphism-derived (SPD) markers, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) of the proteome and classical mycological techniques revealed two morphologically cryptic sister species within T. asperellum, T. asperellum, T. asperelloides sp. nov. and a third closely related but morphologically distinct species. T. yunnanense. Trichoderma asperellum and T. asperelloides have wide sympatric distribution on multiple continents; T. yunnanense is represented by a single strain from China. Several strains reported in the literature or represented in GenBank as T. asperellum are re-identified as T. asperelloides. Four molecular SPD typing patterns (I-IV) were found over a large geographic range. Patterns I-III were produced only by T. asperellum and pattern IV by T. asperelloides and T. yunnanense. Pattern I was found in North America, South America, Africa and Europe and Asia (Saudi Arabia). Pattern III was found in Africa, North America, South America and Asia, not in Europe. Pattern II was found only in Cameroon (central Africa) and Peru. Pattern IV was found in all continents. All SPD II pattern strains formed a strongly supported subclade within the T. asperellum clade in the phylogenetic tree based on rpb2 and MLS (combined multilocus sequence). The diversity of DNA sequences, SPD markers and polypeptides in T. asperellum suggests that further speciation is under way within T. asperellum. MALDI-TOF MS distinguished T. yunnanense from related taxa by UPGMA clustering, but separation between T. asperellum and T. asperelloides was less clear.
Collapse
Affiliation(s)
- Gary J Samuels
- United States Department of Agriculture, Agriculture Research Service, Systematic Mycology & Microbiology Laboratory, Room 304, B-0lla, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA.
| | | | | | | | | |
Collapse
|
41
|
Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010; 87:787-99. [PMID: 20461510 PMCID: PMC2886115 DOI: 10.1007/s00253-010-2632-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 01/01/2023]
Abstract
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Collapse
|
42
|
Santos C, Paterson R, Venâncio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol 2010; 108:375-85. [DOI: 10.1111/j.1365-2672.2009.04448.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
De Respinis S, Vogel G, Benagli C, Tonolla M, Petrini O, Samuels GJ. MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 2009. [DOI: 10.1007/s11557-009-0621-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Brückner H, Becker D, Gams W, Degenkolb T. Aib and iva in the biosphere: neither rare nor necessarily extraterrestrial. Chem Biodivers 2009; 6:38-56. [PMID: 19180454 DOI: 10.1002/cbdv.200800331] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fourty-nine species and strains of filamentous fungi of the genera Acremonium, Bionectria, Clonostachys, Emericellopsis, Hypocrea/Trichoderma, Lecythophora, Monocillium, Nectriopsis, Niesslia, Tolypocladium, and Wardomyces, deposited with the culture collection of the Centraalbureau voor Schimmelcultures (CBS) in Utrecht, The Netherlands, were grown on nutrient agar plates. Organic extracts of mycelia were analyzed after acidic total hydrolysis and derivatization by GC/SIM-MS on Chirasil-L-Val for the presence of Aib (=alpha-aminoisobutyric acid, 2-methylalanine) and DL-Iva (=isovaline, 2-ethylalanine). In 37 of the hydrolysates, Aib was detected, and in several of them D-Iva or mixtures of D- and L-Iva. Non-proteinogenic Aib, in particular, is a highly specific marker for a distinctive group of fungal polypeptides named peptaibols or, comprehensively, peptaibiotics, i.e., peptides containing Aib and displaying (anti)biotic activities. The biotic synthesis of these amino acids by filamentous fungi contradicts the still widespread belief that alpha,alpha-dialkyl-alpha-amino acids do not or rarely occur in the biosphere and, if detected, are of extraterrestrial origin. The abundant production of peptaibiotics by cosmopolitan species of microfungi has also to be considered in the discussion on the occurrence of Aib and Iva in ancient and recent sediments. The detection of trace amounts of Aib in ice samples of Antarctica that are devoid of meteorites might also be related to the presence of Aib-producing microorganisms, being either indigenous psychrophiles, or being transported and localized by mechanisms related to bioaerosols and cryoconites. The presence of microfungi being capable of producing alpha,alpha-dialkyl alpha-amino acids in terrestrial samples, and possible contamination of extraterrestrial materials are pointed out to be of relevance for the reliable interpretation of cosmogeochemical data.
Collapse
Affiliation(s)
- Hans Brückner
- Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen.
| | | | | | | |
Collapse
|
45
|
Kubicek CP, Komon-Zelazowska M, Druzhinina IS. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 2008; 9:753-63. [PMID: 18837102 DOI: 10.1631/jzus.b0860015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypocrea/Trichoderma is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans and animals, while others can cause damage to cultivated mushroom. With the recent advent of a reliable, BarCode-aided identification system for all known taxa of Trichoderma and Hypocrea, it became now possible to study some of the biological fundamentals of the diversity in this fungal genus in more detail. In this article, we will therefore review recent progress in (1) the understanding of the geographic distribution of individual taxa; (2) mechanisms of speciation leading to development of mushroom diseases and facultative human mycoses; and (3) the possible correlation of specific traits of secondary metabolism and molecular phylogeny.
Collapse
Affiliation(s)
- Christian P Kubicek
- Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9/E1665, A-1060 Vienna, Austria.
| | | | | |
Collapse
|
46
|
Degenkolb T, Brückner H. Peptaibiomics: Towards a Myriad of Bioactive Peptides Containing Cα-Dialkylamino Acids? Chem Biodivers 2008; 5:1817-43. [DOI: 10.1002/cbdv.200890171] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Degenkolb T, Gams W, Brückner H. Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodivers 2008; 5:693-706. [PMID: 18493956 DOI: 10.1002/cbdv.200890066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Linearity is not considered a prerequisite anymore, and extension of the current definition of 'peptaibiotics' to cyclic, Aib-containing peptides is proposed. Sequences and bioactivities, together with ecophysiological importance of cyclopeptaibiotics and related cyclic tetrapeptides, and their fungal-taxonomic relationships, are discussed.
Collapse
Affiliation(s)
- Thomas Degenkolb
- Interdisciplinary Research Centre (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Giessen, Germany.
| | | | | |
Collapse
|
48
|
The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 2008. [DOI: 10.1007/s11557-008-0563-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Stoppacher N, Zeilinger S, Omann M, Lassahn PG, Roitinger A, Krska R, Schuhmacher R. Characterisation of the peptaibiome of the biocontrol fungus Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1889-1898. [PMID: 18470867 DOI: 10.1002/rcm.3568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study describes the liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based screening and characterisation of linear antibiotic alpha-aminoisobutyric acid (Aib)-containing non-ribosomal peptides (NRP) in culture samples of the filamentous fungus Trichoderma atroviride ATCC 74058. Fungal culture filtrates were enriched by solid-phase extraction (SPE) and separated by reversed-phase high-performance liquid chromatography (HPLC), prior to mass spectrometric (MS) and tandem mass spectrometric (MS/MS) analysis on a triple quadrupole-linear ion trap tandem mass spectrometer. A workflow consisting of two alternative screening strategies was applied to search for NRP. Various MS full scan and MS/MS measurement modes led to the identification of 16 trichorzianines and diagnostic in-source fragment ions of another four trichorzianines. Furthermore, we detected 15 novel Aib-containing peptides with putative molecular weights ranging from 951.7 to 1043.7 g/mol (monoisotopic masses), composed of up to 9 amino acids. While the amino acid sequences of the novel peptaibiotics showed typical microheterogeneity and consisted of the amino acids Leu/Ile, Aib, Ser, Val/Iva, Gly, Ac-Aib, Tyr and Phe, the mass increments at the C-termini of the peptides were not assignable to any residues described in the literature. The amino acid sequences were confirmed and structure proposals made for both molecule termini by high-resolution MS and MS/MS analysis. We propose the group name 'trichoatrokontins' for the newly identified peptaibiotics. As no other peptaibiotics were found in the culture samples, the peptaibiome of the investigated strain of T. atroviride consists of at least 20 trichorzianines and 15 trichoatrokontins.
Collapse
Affiliation(s)
- Norbert Stoppacher
- Department for Agrobiotechnology , University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | | | | | | | | | | | | |
Collapse
|
50
|
Degenkolb T, von Döhren H, Fog Nielsen K, Samuels G, Brückner H. Recent Advances and Future Prospects in Peptaibiotics, Hydrophobin, and Mycotoxin Research, and Their Importance for Chemotaxonomy ofTrichoderma andHypocrea. Chem Biodivers 2008; 5:671-80. [DOI: 10.1002/cbdv.200890064] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|