1
|
Mies US, Hervé V, Kropp T, Platt K, Sillam-Dussès D, Šobotník J, Brune A. Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates. mBio 2024; 15:e0082624. [PMID: 38742878 PMCID: PMC11257099 DOI: 10.1128/mbio.00826-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.
Collapse
Affiliation(s)
- Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tom Kropp
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Gile GH. Protist symbionts of termites: diversity, distribution, and coevolution. Biol Rev Camb Philos Soc 2024; 99:622-652. [PMID: 38105542 DOI: 10.1111/brv.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non-termite-associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep-branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep-branching termites tend to harbour deep-branching protists, reflecting their broad-scale co-diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co-diversification in this symbiosis has been complicated by lineage-specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite-protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.
Collapse
Affiliation(s)
- Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Simultaneous Single-Cell Genome and Transcriptome Sequencing of Termite Hindgut Protists Reveals Metabolic and Evolutionary Traits of Their Endosymbionts. mSphere 2022; 7:e0002122. [PMID: 35107338 PMCID: PMC8809381 DOI: 10.1128/msphere.00021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Some of the protist species which colonize the hindguts of wood-feeding Reticulitermes termites are associated with endosymbiotic bacteria belonging to the genus Endomicrobium. In this study, we focused on the endosymbionts of three protist species from Reticulitermes flavipes, as follows: Pyrsonympha vertens, Trichonympha agilis, and Dinenympha species II. Since these protist hosts represented members of different taxa which colonize separate niches within the hindguts of their termite hosts, we investigated if these differences translated to differential gene content and expression in their endosymbionts. Following assembly and comparative genome and transcriptome analyses, we discovered that these endosymbionts differed with respect to some possible niche-specific traits, such as carbon metabolism. Our analyses suggest that species-specific genes related to carbon metabolism were acquired by horizontal gene transfer (HGT) and may have come from taxa which are common in the termite hind gut. In addition, our analyses suggested that these endosymbionts contain and express genes related to natural transformation (competence) and recombination. Taken together, the presence of genes acquired by HGT and a putative competence pathway suggest that these endosymbionts are not cut off from gene flow and that competence may be a mechanism by which members of Endomicrobium can acquire new traits. IMPORTANCE The composition and structure of wood, which contains cellulose, hemicellulose, and lignin, prevent most organisms from using this common food source. Termites are a rare exception among animals, and they rely on a complex microbiota housed in their hindguts to use wood as a source of food. The lower termite, Reticulitermes flavipes, houses a variety of protists and prokaryotes that are the key players in the disassembly of lignocellulose. Here, we describe the genomes and the gene expression profiles of five Endomicrobium endosymbionts living inside three different protist species from R. flavipes. Data from these genomes suggest that these Endomicrobium species have different mechanisms for using carbon. In addition, they harbor genes that may be used to import DNA from their environment. This process of DNA uptake may contribute to the high levels of horizontal gene transfer noted previously in Endomicrobium species.
Collapse
|
4
|
Handsley-Davis M, Kapellas K, Jamieson LM, Hedges J, Skelly E, Kaidonis J, Anastassiadis P, Weyrich LS. Heritage-specific oral microbiota in Indigenous Australian dental calculus. Evol Med Public Health 2022; 10:352-362. [PMID: 36032329 PMCID: PMC9400808 DOI: 10.1093/emph/eoac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background and objectives
Aboriginal Australians and Torres Strait Islanders (hereafter respectfully referred to as Indigenous Australians) experience a high burden of chronic non-communicable diseases (NCDs). Increased NCD risk is linked to oral diseases mediated by the oral microbiota, a microbial community influenced by both vertical transmission and lifestyle factors. As an initial step towards understanding the oral microbiota as a factor in Indigenous health, we present the first investigation of oral microbiota in Indigenous Australian adults.
Methodology
Dental calculus samples from Indigenous Australians with periodontal disease (PD; n = 13) and non-Indigenous individuals both with (n = 19) and without PD (n = 20) were characterized using 16S ribosomal RNA gene amplicon sequencing. Alpha and beta diversity, differentially abundant microbial taxa and taxa unique to different participant groups were analysed using QIIME2.
Results
Samples from Indigenous Australians were more phylogenetically diverse (Kruskal–Wallis H = 19.86, P = 8.3 × 10−6), differed significantly in composition from non-Indigenous samples (PERMANOVA pseudo-F = 10.42, P = 0.001) and contained a relatively high proportion of unique taxa not previously reported in the human oral microbiota (e.g. Endomicrobia). These patterns were robust to stratification by PD status. Oral microbiota diversity and composition also differed between Indigenous individuals living in different geographic regions.
Conclusions and implications
Indigenous Australians may harbour unique oral microbiota shaped by their long relationships with Country (ancestral homelands). Our findings have implications for understanding the origins of oral and systemic NCDs and for the inclusion of Indigenous peoples in microbiota research, highlighting the microbiota as a novel field of enquiry to improve Indigenous health.
Collapse
Affiliation(s)
- Matilda Handsley-Davis
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide , Adelaide, SA, Australia
- Centre for Australian Biodiversity and Heritage (CABAH), University of Adelaide , Adelaide, SA, Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | - Lisa M Jamieson
- Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | - Joanne Hedges
- Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | - Emily Skelly
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide , Adelaide, SA, Australia
| | - John Kaidonis
- Adelaide Dental School, University of Adelaide , Adelaide, SA, Australia
| | | | - Laura S Weyrich
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide , Adelaide, SA, Australia
- Centre for Australian Biodiversity and Heritage (CABAH), University of Adelaide , Adelaide, SA, Australia
- Department of Anthropology and Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park, PA, USA
| |
Collapse
|
5
|
Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A 2019; 116:19675-19684. [PMID: 31492817 PMCID: PMC6765251 DOI: 10.1073/pnas.1910793116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.
Collapse
Affiliation(s)
- Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42 Vestec, Czech Republic
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Filip Husník
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42 Vestec, Czech Republic;
| |
Collapse
|
6
|
Vďačný P, Érseková E, Šoltys K, Budiš J, Pecina L, Rurik I. Co-existence of multiple bacterivorous clevelandellid ciliate species in hindgut of wood-feeding cockroaches in light of their prokaryotic consortium. Sci Rep 2018; 8:17749. [PMID: 30532066 PMCID: PMC6288088 DOI: 10.1038/s41598-018-36245-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022] Open
Abstract
The hindgut of wood-feeding Panesthia cockroaches harbours a diverse microbial community, whose most morphologically prominent members are bacterivorous clevelandellid ciliates. Co-occurrence and correlation patterns of prokaryotes associated with these endosymbiotic ciliates were investigated. Multidimensional scaling based on taxa interaction-adjusted index showed a very clear separation of the hindgut ciliate samples from the ciliate-free hindgut samples. This division was corroborated also by SparCC analysis which revealed strong negative associations between prokaryotic taxa that were relatively more abundant in the ciliate-free hindgut samples and prokaryotic taxa that were more abundant in the ciliate samples. This very likely reflects the grazing behaviour of hindgut ciliates which prefer Proteobacteria, Firmicutes and Actinobacteria, causing their abundances to be increased in the ciliate samples at the expense of abundances of Euryarchaeota and Bacteroidetes which prevail in the hindgut content. Ciliate species do not distinctly differ in the associated prokaryotes, indicating that minute variations in the proportion of associated bacteria might be sufficient to avoid competition between bacterivorous ciliate species and hence enable their co-occurrence in the same host. The nearest free-living relatives of hindgut ciliates have a different pattern of associations with prokaryotes, i.e., alphaproteobacteria are predominantly associated with free-living ciliates while gammaproteobacteria with hindgut ciliates.
Collapse
Affiliation(s)
- Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia.
| | - Emese Érseková
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Katarína Šoltys
- Comenius University Science Park, Comenius University in Bratislava, 841 04, Bratislava, Slovakia
| | - Jaroslav Budiš
- Department of Computer Science, Comenius University in Bratislava, Mlynská dolina F-1, 842 48, Bratislava, Slovakia
| | - Lukáš Pecina
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Ivan Rurik
- Private computer laboratory, 821 07, Bratislava, Slovakia
| |
Collapse
|
7
|
|
8
|
Taerum SJ, De Martini F, Liebig J, Gile GH. Incomplete Co-cladogenesis Between Zootermopsis Termites and Their Associated Protists. ENVIRONMENTAL ENTOMOLOGY 2018; 47:184-195. [PMID: 29325010 DOI: 10.1093/ee/nvx193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Coevolution is a major driver of speciation in many host-associated symbionts. In the termite-protist digestive symbiosis, the protists are vertically inherited by anal feeding among nest mates. Lower termites (all termite families except Termitidae) and their symbionts have broadly co-diversified over ~170 million yr. However, this inference is based mainly on the restricted distribution of certain protist genera to certain termite families. With the exception of one study, which demonstrated congruent phylogenies for the protist Pseudotrichonympha and its Rhinotermitidae hosts, coevolution in this symbiosis has not been investigated with molecular methods. Here we have characterized the hindgut symbiotic protists (Phylum Parabasalia) across the genus Zootermopsis (Archotermopsidae) using single cell isolation, molecular phylogenetics, and high-throughput amplicon sequencing. We report that the deepest divergence in the Zootermopsis phylogeny (Zootermopsis laticeps [Banks; Isoptera: Termopsidae]) corresponds with a divergence in three of the hindgut protist species. However, the crown Zootermopsis taxa (Zootermopsis angusticollis [Hagen; Isoptera: Termopsidae], Z. nevadensis nevadensis [Hagen; Isoptera: Termopsidae], and Z. nevadensis nuttingi [Haverty & Thorne; Isoptera: Termopsidae]) share the same protist species, with no evidence of co-speciation under our methods. We interpret this pattern as incomplete co-cladogenesis, though the possibility of symbiont exchange cannot be entirely ruled out. This is the first molecular evidence that identical communities of termite-associated protist species can inhabit multiple distinct host species.
Collapse
Affiliation(s)
| | | | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
9
|
Mikaelyan A, Thompson CL, Meuser K, Zheng H, Rani P, Plarre R, Brune A. High-resolution phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic lineages by termite gut flagellates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:477-483. [PMID: 28677262 DOI: 10.1111/1758-2229.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 05/25/2023]
Abstract
Bacteria of the class Endomicrobia form a deep-branching clade in the Elusimicrobia phylum. They are found almost exclusively in the intestinal tract of animals and are particularly abundant in many termites, where they reside as intracellular symbionts in the cellulolytic gut flagellates. Although small populations of putatively free-living lineages have been detected in faunated and flagellate-free hosts, the evolutionary origin of the endosymbionts is obscured by the limited amount of phylogenetic information provided by the 16S rRNA gene fragment amplified with Endomicrobia-specific primers. Here, we present a robust phylogenetic framework based on the near-full-length 16S-23S rRNA gene region of a diverse set of Endomicrobia from termites and cockroaches, which also allowed us to classify the shorter reads from previous studies. Our data revealed that endosymbionts arose independently at least four times from different free-living lineages, which were already present in ancestral cockroaches but became associated with their respective hosts long after the digestive symbiosis between termites and flagellates had been established. Pyrotag sequencing revealed that the proportion of putatively free-living lineages increased, when all flagellates and their symbionts were removed from the gut of lower termites by starvation, starch feeding or hyperbaric oxygen, but results varied between different methods.
Collapse
Affiliation(s)
- Aram Mikaelyan
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Claire L Thompson
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Katja Meuser
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Hao Zheng
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Pinki Rani
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Rudy Plarre
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| |
Collapse
|
10
|
Brune A. Ectosymbiotic Endomicrobia - a transition stage towards intracellular symbionts? ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:474-476. [PMID: 28892291 DOI: 10.1111/1758-2229.12587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Andreas Brune
- Insect Gut Microbiology and Symbiosis Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
11
|
Izawa K, Kuwahara H, Sugaya K, Lo N, Ohkuma M, Hongoh Y. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:411-418. [PMID: 28556617 DOI: 10.1111/1758-2229.12549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The genus Endomicrobium is a dominant bacterial group in the gut of lower termites, and most phylotypes are intracellular symbionts of gut protists. Here we report the discovery of Endomicrobium ectosymbionts of termite gut protists. We found that bristle-like Endomicrobium cells attached to the surface of spirotrichosomid protist cells inhabiting the termite Stolotermes victoriensis. Transmission electron microscopy revealed that a putative Endomicrobium cell likely attached to the protist surface via a protrusion from the tip of the bacterium. A phylotype, sharing 98.9% 16S rRNA sequence identity with the Endomicrobium ectosymbionts of the spirotrichosomid protists, was also found on the cell surface of the protist Trichonympha magna in the gut of the termite Porotermes adamsoni. We propose the novel species 'Candidatus Endomicrobium superficiale' for these bacteria. T. magna simultaneously harboured another Endomicrobium ectosymbiont that shared 93.5-94.2% 16S rRNA sequence identities with 'Ca. Endomicrobium superficiale'. Furthermore, Spirotrichonympha-like protists in P. adamsoni guts were associated with an Endomicrobium phylotype that possibly attached to the host flagella. A phylogenetic analysis suggested that these ectosymbiotic lineages have evolved multiple times from free-living Endomicrobium lineages and are relatively distant from the endosymbionts. Our results provide novel insights into the ecology and evolution of the Endomicrobium.
Collapse
Affiliation(s)
- Kazuki Izawa
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kaito Sugaya
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Moriya Ohkuma
- RIKEN BioResource Center, Japan Collection of Microorganisms, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- RIKEN BioResource Center, Japan Collection of Microorganisms, Tsukuba, 305-0074, Japan
| |
Collapse
|
12
|
Izawa K, Kuwahara H, Kihara K, Yuki M, Lo N, Itoh T, Ohkuma M, Hongoh Y. Comparison of Intracellular "Ca. Endomicrobium Trichonymphae" Genomovars Illuminates the Requirement and Decay of Defense Systems against Foreign DNA. Genome Biol Evol 2016; 8:3099-3107. [PMID: 27635050 PMCID: PMC5174739 DOI: 10.1093/gbe/evw227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
“Candidatus Endomicrobium trichonymphae” (Bacteria; Elusimicrobia) is an obligate intracellular symbiont of the cellulolytic protist genus Trichonympha in the termite gut. A previous genome analysis of “Ca. Endomicrobium trichonymphae” phylotype Rs-D17 (genomovar Ri2008), obtained from a Trichonympha agilis cell in the gut of the termite Reticulitermes speratus, revealed that its genome is small (1.1 Mb) and contains many pseudogenes; it is in the course of reductive genome evolution. Here we report the complete genome sequence of another Rs-D17 genomovar, Ti2015, obtained from a different T. agilis cell present in an R. speratus gut. These two genomovars share most intact protein-coding genes and pseudogenes, showing 98.6% chromosome sequence similarity. However, characteristic differences were found in their defense systems, which comprised restriction-modification and CRISPR/Cas systems. The repertoire of intact restriction-modification systems differed between the genomovars, and two of the three CRISPR/Cas loci in genomovar Ri2008 are pseudogenized or missing in genomovar Ti2015. These results suggest relaxed selection pressure for maintaining these defense systems. Nevertheless, the remaining CRISPR/Cas system in each genomovar appears to be active; none of the “spacer” sequences (112 in Ri2008 and 128 in Ti2015) were shared whereas the “repeat” sequences were identical. Furthermore, we obtained draft genomes of three additional endosymbiotic Endomicrobium phylotypes from different host protist species, and discovered multiple, intact CRISPR/Cas systems in each genome. Collectively, unlike bacteriome endosymbionts in insects, the Endomicrobium endosymbionts of termite-gut protists appear to require defense against foreign DNA, although the required level of defense has likely been reduced during their intracellular lives.
Collapse
Affiliation(s)
- Kazuki Izawa
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Hirokazu Kuwahara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Kumiko Kihara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan Department of Biological and Chemical Systems Engineering, National Institute of Technology Kumamoto College, Yatsushiro, Japan
| | - Masahiro Yuki
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Nathan Lo
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Takehiko Itoh
- Department of Biological Information, Tokyo Institute of Technology, Tokyo, Japan
| | - Moriya Ohkuma
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, Japan Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| |
Collapse
|
13
|
Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I, McHardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. ‘Candidatus
Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria
and a putative homoacetogen. Environ Microbiol 2016; 18:2548-64. [DOI: 10.1111/1462-2920.13234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Jürgen F. H. Strassert
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Tim Köhler
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Aram Mikaelyan
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Ivan Gregor
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | | | - Phil Hugenholtz
- Department of Energy Joint Genome Institute; Walnut Creek; CA 94598 USA
- Australian Centre for Ecogenomics, The University of Queensland; Brisbane QLD 4072 Australia
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Andreas Brune
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| |
Collapse
|
14
|
Benjamino J, Graf J. Characterization of the Core and Caste-Specific Microbiota in the Termite, Reticulitermes flavipes. Front Microbiol 2016; 7:171. [PMID: 26925043 PMCID: PMC4756164 DOI: 10.3389/fmicb.2016.00171] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/01/2016] [Indexed: 02/01/2023] Open
Abstract
The hindgut of the termite Reticulitermes flavipes harbors a complex symbiotic community consisting of protists, bacteria, and archaea. These symbionts aid in the digestion of lignocellulose from the termite’s wood meal. Termite hindguts were sampled and the V4 hyper-variable region of the 16S rRNA gene was sequenced and analyzed from individual termites. The core microbiota of worker termites consisted of 69 OTUs at the 97% identity level, grouped into 16 taxa, and together accounted for 67.05% of the sequences from the bacterial community. The core was dominated by Treponema, which contained 36 different OTUs and accounted for ∼32% of the sequences, which suggests Treponema sp. have an important impact on the overall physiology in the hindgut. Bray–Curtis beta diversity metrics showed that hindgut samples from termites of the same colony were more similar to each other than to samples from other colonies despite possessing a core that accounted for the majority of the sequences. The specific tasks and dietary differences of the termite castes could have an effect on the composition of the microbial community. The hindgut microbiota of termites from the alate castes differed from the worker caste with significantly lower abundances of Treponema and Endomicrobia, which dominated the hindgut microbiota in workers and soldiers. Protist abundances were also quantified in the same samples using qPCR of the 18S rRNA gene. Parabasalia abundances dropped significantly in the winged alates and the Oxymonadida abundances dropped in both alate castes. These data suggest that the changes in diet or overall host physiology affected the protist and bacterial populations in the hindgut. The in-depth bacterial characterization and protist quantification in this study sheds light on the potential community dynamics within the R. flavipes hindgut and identified a large and complex core microbiota in termites obtained from multiple colonies and castes.
Collapse
Affiliation(s)
- Jacquelynn Benjamino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, StorrsCT, USA; Institute for Systems Genomics, University of Connecticut, StorrsCT, USA
| |
Collapse
|
15
|
Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)--an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Microbiol 2015; 18:191-204. [PMID: 26119974 DOI: 10.1111/1462-2920.12960] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Abstract
The bacterial tree contains many deep-rooting clades without any cultured representatives. One such clade is 'Endomicrobia', a class-level lineage in the phylum Elusimicrobia represented so far only by intracellular symbionts of termite gut flagellates. Here, we report the isolation and characterization of the first free-living member of this clade from sterile-filtered gut homogenate of defaunated (starch-fed) Reticulitermes santonensis. Strain Rsa215 is a strictly anaerobic ultramicrobacterium that grows exclusively on glucose, which is fermented to lactate, acetate, hydrogen and CO2. Ultrastructural analysis revealed a Gram-negative cell envelope and a peculiar cell cycle. The genome contains a single set of nif genes that encode homologues of Group IV nitrogenases, which were so far considered to have functions other than nitrogen fixation. We documented nitrogenase activity and diazotrophic growth by measuring acetylene reduction activity and (15)N2 incorporation into cell mass, and demonstrated that transcription of nifH and nitrogenase activity occur only in the absence of ammonium. Based on the ancestral relationship to 'Candidatus Endomicrobium trichonymphae' and other obligate endosymbionts, we propose the name 'Endomicrobium proavitum' gen. nov., sp. nov. for the first isolate of this lineage and the name 'Endomicrobia' class. nov. for the entire clade.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Carsten Dietrich
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Strasse 1-3, 14195, Berlin, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, 35043, Marburg, Germany
| |
Collapse
|
16
|
Butera G, Ferraro C, Alonzo G, Colazza S, Quatrini P. The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1101-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015; 28:208-36. [PMID: 25567228 DOI: 10.1128/cmr.00110-14] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A pure bacterial culture remains essential for the study of its virulence, its antibiotic susceptibility, and its genome sequence in order to facilitate the understanding and treatment of caused diseases. The first culture conditions empirically varied incubation time, nutrients, atmosphere, and temperature; culture was then gradually abandoned in favor of molecular methods. The rebirth of culture in clinical microbiology was prompted by microbiologists specializing in intracellular bacteria. The shell vial procedure allowed the culture of new species of Rickettsia. The design of axenic media for growing fastidious bacteria such as Tropheryma whipplei and Coxiella burnetii and the ability of amoebal coculture to discover new bacteria constituted major advances. Strong efforts associating optimized culture media, detection methods, and a microaerophilic atmosphere allowed a dramatic decrease of the time of Mycobacterium tuberculosis culture. The use of a new versatile medium allowed an extension of the repertoire of archaea. Finally, to optimize the culture of anaerobes in routine bacteriology laboratories, the addition of antioxidants in culture media under an aerobic atmosphere allowed the growth of strictly anaerobic species. Nevertheless, among usual bacterial pathogens, the development of axenic media for the culture of Treponema pallidum or Mycobacterium leprae remains an important challenge that the patience and innovations of cultivators will enable them to overcome.
Collapse
|
18
|
Zheng H, Dietrich C, Thompson CL, Meuser K, Brune A. Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.). Microbes Environ 2015; 30:92-8. [PMID: 25739443 PMCID: PMC4356469 DOI: 10.1264/jsme2.me14169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/04/2015] [Indexed: 01/21/2023] Open
Abstract
The gut microbiota of many phylogenetically lower termites is dominated by the cellulolytic flagellates of the genus Trichonympha, which are consistently associated with bacterial symbionts. In the case of Endomicrobia, an unusual lineage of endosymbionts of the Elusimicrobia phylum that is also present in other gut flagellates, previous studies have documented strict host specificity, leading to the cospeciation of "Candidatus Endomicrobium trichonymphae" with their respective flagellate hosts. However, it currently remains unclear whether one Trichonympha species is capable of harboring more than one Endomicrobia phylotype. In the present study, we selected single Trichonympha cells from the guts of Zootermopsis nevadensis and Reticulitermes santonensis and characterized their Endomicrobia populations based on internal transcribed spacer (ITS) region sequences. We found that each host cell harbored a homogeneous population of symbionts that were specific to their respective host species, but phylogenetically distinct between each host lineage, corroborating cospeciation being caused by vertical inheritance. The experimental design of the present study also allowed for the identification of an unexpectedly large amount of tag-switching between samples, which indicated that any high-resolution analysis of microbial community structures using the pyrosequencing technique has to be interpreted with great caution.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
| | - Carsten Dietrich
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
| | - Claire L. Thompson
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg35043 MarburgGermany
| | - Katja Meuser
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg35043 MarburgGermany
| |
Collapse
|
19
|
Abdul Rahman N, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. MICROBIOME 2015; 3:5. [PMID: 25830022 PMCID: PMC4379614 DOI: 10.1186/s40168-015-0067-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 01/02/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This important symbiosis is obligate but relatively open and more complex in comparison to other well-known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative roles of vertical inheritance and environmental factors such as diet in shaping the termite gut microbiome are not well understood. RESULTS The gut microbiomes of 66 specimens representing seven higher and nine lower termite genera collected in Australia and North America were profiled by small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-independent gut microbiome data for three higher termite genera: Tenuirostritermes, Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in ≥50% of collected specimens. Archaea are generally considered to comprise only a minority of the termite gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either reacquired after protists loss in higher termites or persisted in low numbers across this transition. Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the relative abundance, but not membership, of the gut communities. CONCLUSIONS Vertical inheritance is the primary force shaping the termite gut microbiome indicating that species are successfully and faithfully passed from one generation to the next via trophallaxis or coprophagy. Changes in relative abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary fluctuations.
Collapse
Affiliation(s)
- Nurdyana Abdul Rahman
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
| | - Donovan H Parks
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
| | - Dana L Willner
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
- />Current address: Department of Statistics, University of Illinois Urbana-Champaign, Champaign, IL USA
| | - Anna L Engelbrektson
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Current address: Energy Biosciences Institute, University of California, Berkeley, CA USA
| | | | - Falk Warnecke
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Jena School for Microbial Communication (JSMC) and Microbial Ecology Group, Friedrich Schiller University Jena, Jena, Germany
| | - Rudolf H Scheffrahn
- />Fort Lauderdale Research and Education Center, University of Florida, Davie, FL USA
| | - Philip Hugenholtz
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| |
Collapse
|
20
|
Bauer E, Lampert N, Mikaelyan A, Köhler T, Maekawa K, Brune A. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol Ecol 2014; 91:1-14. [PMID: 25764554 DOI: 10.1093/femsec/fiu028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the gut microbiota of termites and its role in symbiotic digestion have been studied for decades, little is known about the bacteria colonizing the intestinal tract of the distantly related wood-feeding cockroaches (Blaberidae: Panesthiinae). Here, we show that physicochemical gut conditions and microbial fermentation products in the gut of Panesthia angustipennis resemble that of other cockroaches. Microsensor measurements confirmed that all gut compartments were anoxic at the center and had a slightly acidic to neutral pH and a negative redox potential. While acetate dominated in all compartments, lactate and hydrogen accumulated only in the crop. The high, hydrogen-limited rates of methane emission from living cockroaches were in agreement with the restriction of F420-fluorescent methanogens to the hindgut. The gut microbiota of both P. angustipennis and Salganea esakii differed strongly between compartments, with the highest density and diversity in the hindgut, but similarities between homologous compartments of both cockroaches indicated a specificity of the microbiota for their respective habitats. While some lineages were most closely related to the gut microbiota of omnivorous cockroaches and wood- or litter-feeding termites, others have been encountered also in vertebrates, reinforcing the hypothesis that strong environmental selection drives community structure in the cockroach gut.
Collapse
Affiliation(s)
- Eugen Bauer
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Niclas Lampert
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Aram Mikaelyan
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tim Köhler
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
21
|
The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 2014; 81:1059-70. [PMID: 25452280 DOI: 10.1128/aem.02945-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.
Collapse
|
22
|
Schauer C, Thompson C, Brune A. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLoS One 2014; 9:e85861. [PMID: 24454939 PMCID: PMC3893267 DOI: 10.1371/journal.pone.0085861] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
Although blattid cockroaches and termites share a common ancestor, their diets are distinctly different. While termites consume a highly specialized diet of lignocellulose, cockroaches are omnivorous and opportunistic feeders. The role of the termite gut microbiota has been studied intensively, but little is known about the cockroach gut microbiota and its function in digestion and nutrition, particularly the adaptation to different diets. Our analyses of the bacterial gut microbiota of the blattid cockroach Shelfordella lateralis combining terminal restriction fragment length polymorphism of their 16S rRNA genes with physiological parameters (microbial metabolites, hydrogen and methane emission) indicated substantial variation between individuals but failed to identify any diet-related response. Subsequent deep-sequencing of the 16S rRNA genes of the colonic gut microbiota of S. lateralis fed either a high- or a low-fiber diet confirmed the absence of bacterial taxa that responded to diet. Instead, we found a small number of abundant phylotypes that were consistently present in all samples and made up half of the community in both diet groups. They varied strongly in abundance between individual samples at the genus but not at the family level. The remaining phylotypes were inconsistently present among replicate batches. Our findings suggest that S. lateralis harbors a highly dynamic core gut microbiota that is maintained even after fundamental dietary shifts, and that any dietary effects on the gut community are likely to be masked by strong individual variations.
Collapse
Affiliation(s)
- Christine Schauer
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Claire Thompson
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, Scharf ME. The hindgut lumen prokaryotic microbiota of the termiteReticulitermes flavipesand its responses to dietary lignocellulose composition. Mol Ecol 2013; 22:1836-53. [PMID: 23379767 DOI: 10.1111/mec.12230] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/27/2022]
Affiliation(s)
- Drion G. Boucias
- Department of Entomology and Nematology; University of Florida; Gainesville FL 32610-3622 USA
| | - Yunpeng Cai
- Shenzhen Institute of Advanced Technology; Chinese Academy of Science; Shenzhen China
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research; University of Florida; Gainesville FL 32610-3622 USA
| | - Verena-Ulrike Lietze
- Department of Entomology and Nematology; University of Florida; Gainesville FL 32610-3622 USA
| | - Ruchira Sen
- Department of Entomology; Purdue University; West Lafayette IN 47907-2089 USA
| | | | - Michael E. Scharf
- Department of Entomology; Purdue University; West Lafayette IN 47907-2089 USA
| |
Collapse
|
24
|
Abstract
The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.
Collapse
|
25
|
Mattéotti C, Bauwens J, Brasseur C, Tarayre C, Thonart P, Destain J, Francis F, Haubruge E, De Pauw E, Portetelle D, Vandenbol M. Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expr Purif 2012; 83:117-27. [DOI: 10.1016/j.pep.2012.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022]
|
26
|
Suzuki K, Asano S, Iijima K, Kitamoto K. Sake and Beer Spoilage Lactic Acid Bacteria - A Review. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2008.tb00331.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
The bacterial community in the gut of the Cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 2012; 78:2758-67. [PMID: 22327579 DOI: 10.1128/aem.07788-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.
Collapse
|
28
|
Noda S, Mantini C, Meloni D, Inoue JI, Kitade O, Viscogliosi E, Ohkuma M. Molecular phylogeny and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1α. PLoS One 2012; 7:e29938. [PMID: 22253832 PMCID: PMC3253790 DOI: 10.1371/journal.pone.0029938] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/08/2011] [Indexed: 11/27/2022] Open
Abstract
Background Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa—in particular determining the root—is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. Principal Findings Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. Conclusions/Significance We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids.
Collapse
Affiliation(s)
- Satoko Noda
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama, Japan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan
- * E-mail: (SN); (MO)
| | - Cléa Mantini
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France, and Inserm U1019, CNRS UMR 8204, and University Lille – Nord de France, Lille, France
| | - Dionigia Meloni
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France, and Inserm U1019, CNRS UMR 8204, and University Lille – Nord de France, Lille, France
- Department of Biomedical Sciences, Division of Experimental and Clinical Microbiology, University of Sassari, Sassari, Italy
| | - Jun-Ichi Inoue
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama, Japan
| | - Osamu Kitade
- Natural History Laboratory, College of Science, Ibaraki University, Mito, Ibaraki, Japan
| | - Eric Viscogliosi
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France, and Inserm U1019, CNRS UMR 8204, and University Lille – Nord de France, Lille, France
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama, Japan
- * E-mail: (SN); (MO)
| |
Collapse
|
29
|
Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME JOURNAL 2011; 6:1302-13. [PMID: 22189498 DOI: 10.1038/ismej.2011.194] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., 'Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of 'Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host.
Collapse
|
30
|
Gile GH, James ER, Scheffrahn RH, Carpenter KJ, Harper JT, Keeling PJ. Molecular and morphological analysis of the family Calonymphidae with a description of Calonympha chia sp. nov., Snyderella kirbyi sp. nov., Snyderella swezyae sp. nov. and Snyderella yamini sp. nov. Int J Syst Evol Microbiol 2011; 61:2547-2558. [DOI: 10.1099/ijs.0.028480-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calonymphids are a group of multinucleate, multiflagellate protists belonging to the order Cristamonadida (Parabasalia) that are found exclusively in the hindgut of termites from the family Kalotermitidae. Despite their impressive morphological complexity and diversity, few species have been formally described and fewer still have been characterized at the molecular level. In this study, four novel species of calonymphids were isolated and characterized: Calonympha chia and Snyderella yamini spp. nov., from Neotermes castaneus and Calcaritermes nearcticus from Florida, USA, and Snyderella kirbyi and Snyderella swezyae, spp. nov., from Calcaritermes nigriceps and Cryptotermes cylindroceps from Colombia. Each of these species was distinguished from its congeners by residing in a distinct host and by differences at the molecular level. Phylogenetic analyses of small subunit (SSU) rDNA indicated that the genera Calonympha and Stephanonympha were probably not monophyletic, though the genus Snyderella, previously only represented by one sequence in molecular analyses, appeared with these new data to be monophyletic. This was in keeping with the traditional evolutionary view of the group in which the morphology of the genus Snyderella is considered to be derived, while that of the genus Stephanonympha is ancestral and therefore probably plesiomorphic.
Collapse
Affiliation(s)
- Gillian H. Gile
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Erick R. James
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Rudolf H. Scheffrahn
- University of Florida Research & Education Center, 3205 College Avenue, Davie, FL 33314, USA
| | - Kevin J. Carpenter
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - James T. Harper
- Department of Biology, Douglas College, 700 Royal Avenue, New Westminster, BC V3M 5Z5, Canada
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
31
|
Phylogenetic position of Lophomonas striata Bütschli (Parabasalia) from the hindgut of the cockroach Periplaneta americana. Protist 2011; 163:274-83. [PMID: 21840257 DOI: 10.1016/j.protis.2011.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/26/2011] [Indexed: 11/22/2022]
Abstract
Lophomonas striata is a multiflagellate parabasalid commensal in the hindgut of the omnivorous cockroaches Blatta orientalis and Periplaneta americana. Its closest relatives were traditionally thought to include similar multiflagellate parabasalids with a single flagellar area that degenerates during mitosis, such as Joenia and Kofoidia. However, molecular phylogenetic analyses have shown that "lophomonads" are not monophyletic. We have determined the SSU rRNA sequence of L. striata and we find that it branches sister to the Trichonymphida with strong support. This is surprising because all other lophomonads sampled to date branch within the Cristamonadida, and the order Trichonymphida (e.g. Trichonympha, Pseudotrichonympha, and Hoplonympha) is both morphologically coherent and monophyletic in SSU rRNA phylogenies. Trichonymphida, unlike the lophomonads, share a bilateral symmetry, in which their multiple flagella occur in two (or sometimes four) regions, and instead of degenerating upon mitosis, half of the flagella are passed to each daughter cell. The single apical flagellar region characteristic of lophomonads is therefore either plesiomorphic or it has arisen multiple times in parabasalids; our phylogenetic analyses and available ultrastructural evidence suggest the latter. Our results also suggest that parabasalid gut symbionts may have been vertically transmitted in cockroaches before the common ancestor of Cryptocercus and termites.
Collapse
|
32
|
Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 2011; 333:58-62. [PMID: 21719670 PMCID: PMC3261838 DOI: 10.1126/science.1200758] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses may very well be the most abundant biological entities on the planet. Yet neither metagenomic studies nor classical phage isolation techniques have shed much light on the identity of the hosts of most viruses. We used a microfluidic digital polymerase chain reaction (PCR) approach to physically link single bacterial cells harvested from a natural environment with a viral marker gene. When we implemented this technique on the microbial community residing in the termite hindgut, we found genus-wide infection patterns displaying remarkable intragenus selectivity. Viral marker allelic diversity revealed restricted mixing of alleles between hosts, indicating limited lateral gene transfer of these alleles despite host proximity. Our approach does not require culturing hosts or viruses and provides a method for examining virus-bacterium interactions in many environments.
Collapse
Affiliation(s)
- Arbel D. Tadmor
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth A. Ottesen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jared R. Leadbetter
- Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Departments of Applied Physics and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
33
|
CARPENTER KEVINJ, HORAK ALES, CHOW LAWRENCE, KEELING PATRICKJ. Symbiosis, Morphology, and Phylogeny of Hoplonymphidae (Parabasalia) of the Wood-Feeding Roach Cryptocercus punctulatus. J Eukaryot Microbiol 2011; 58:426-36. [DOI: 10.1111/j.1550-7408.2011.00564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 2011; 68:1311-25. [PMID: 21365277 PMCID: PMC11114660 DOI: 10.1007/s00018-011-0648-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
Abstract
Termites thrive on dead plant matters with the aid of microorganisms resident in their gut. The gut microbiota comprises protists (single-celled eukaryotes), bacteria, and archaea, most of which are unique to the termite gut ecosystem. Although this symbiosis has long been intriguing researchers of both basic and applied sciences, its detailed mechanism remains unclear due to the enormous complexity and the unculturability of the microbiota. In the effort to overcome the difficulty, recent advances in omics, such as metagenomics, metatranscriptomics, and metaproteomics have gradually unveiled the black box of this symbiotic system. Genomics targeting a single species of the unculturable microbial members has also provided a great progress in the understanding of the symbiotic interrelationships among the gut microorganisms. In this review, the symbiotic system organized by wood-feeding termites and their gut microorganisms is outlined, focusing on the recent achievement in omics studies of this multilayered symbiotic system.
Collapse
Affiliation(s)
- Yuichi Hongoh
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
35
|
Mattéotti C, Haubruge E, Thonart P, Francis F, De Pauw E, Portetelle D, Vandenbol M. Characterization of a new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiol Lett 2010; 314:147-57. [PMID: 21114521 DOI: 10.1111/j.1574-6968.2010.02161.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gut of the termite Reticulitermes santonensis contains an interesting diversity of prokaryotic and eukaryotic microorganisms not found elsewhere. These microorganisms produce many enzyme-digesting lignocellulosic compounds, probably in cooperation with endogenous enzymes. Regarding cellulose and hemicellulose digestion in the termite gut, much remains to be learned about the relative contributions of termite enzymes and enzymes produced by different microorganisms. Here we grew bacterial colonies from termite gut suspensions, identifying 11 of them after PCR amplification of their 16S rRNA genes. After constructing in Escherichia coli a genomic DNA library corresponding to all of the colonies obtained, we performed functional screening for α-amylase, xylanase, β-glucosidase, and endoglucanase activities. This screen revealed a clone producing β-glucosidase activity. Sequence analysis showed that the cloned genomic DNA fragment contained three complete ORFs (bglG, bglF, and bglB) organized in a putative bgl operon. The new β-glucosidase (BglB), identified with its regulators BglG and BglF, belongs to glycoside hydrolase family 1. The new β-glucosidase was expressed in E. coli and purified by affinity chromatography. The purified enzyme shows maximal activity at pH 6.0 and 40 °C. It also displays β-xylosidase activity.
Collapse
Affiliation(s)
- Christel Mattéotti
- Unité de Biologie Animale et Microbienne, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ikeda-Ohtsubo W, Faivre N, Brune A. Putatively free-living 'Endomicrobia'- ancestors of the intracellular symbionts of termite gut flagellates? ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:554-9. [PMID: 23766225 DOI: 10.1111/j.1758-2229.2009.00124.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Endomicrobia represent a candidate class in the Elusimicrobia phylum (formerly Termite Group 1) and were originally described as obligate intracellular symbionts of gut flagellates in lower termites. However, 16S rRNA gene sequences of Endomicrobia have been detected also in the gut of insects that do not possess such flagellates, e.g. higher termites and cockroaches. When we eliminated the large gut flagellates of Reticulitermes santonensis by feeding a starch diet, we discovered novel lineages of Endomicrobia that were hitherto undetected in normally faunated specimens. The new phylotypes are clearly separated from the endosymbionts of gut flagellates and fall into the radiation of those from flagellate-free insects. Comprehensive phylogenetic analysis documented that Endomicrobia comprise an apical cluster of endosymbionts that is not necessarily monophyletic and several apparently basal lineages that include bacteria present in the gut of defaunated lower termites, the naturally flagellate-free guts of higher termites and scarab beetle larvae, and in the cow rumen. We propose that these lineages represent hitherto undetected free-living Endomicrobia that share a common ancestor with the intracellular symbionts.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | |
Collapse
|
37
|
Critical Taxonomic Revision of Parabasalids with Description of one New Genus and three New Species. Protist 2010; 161:400-33. [DOI: 10.1016/j.protis.2009.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/21/2009] [Indexed: 11/17/2022]
|
38
|
Strassert JFH, Desai MS, Radek R, Brune A. Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens. MICROBIOLOGY-SGM 2010; 156:2068-2079. [PMID: 20378649 DOI: 10.1099/mic.0.037267-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hindgut of wood-feeding lower termites is densely colonized by a multitude of symbiotic micro-organisms. While it is well established that the eukaryotic flagellates play a major role in the degradation of lignocellulose, much less is known about the identity and function of the prokaryotic symbionts associated with the flagellates. Our ultrastructural investigations of the gut flagellate Joenia annectens (from the termite Kalotermes flavicollis) revealed a dense colonization of this flagellate by diverse ecto- and endosymbiotic bacteria. Phylogenetic analysis of the small-subunit rRNA gene sequences combined with fluorescence in situ hybridization allowed us to identify and localize the different morphotypes. Furthermore, we could show that K. flavicollis harbours two phylotypes of J. annectens that could be distinguished not only by their small-subunit rRNA gene sequences, but also by differences in their assemblages of bacterial symbionts. Each of the flagellate populations hosted phylogenetically distinct ectosymbionts from the phylum Bacteroidetes, one of them closely related to the ectosymbionts of other termite gut flagellates. A single phylotype of 'Endomicrobia' was consistently associated with only one of the host phylotypes, although not all individuals were colonized, corroborating that 'Endomicrobia' symbionts do not always cospeciate with their host lineages. Flagellates from both populations were loosely associated with a single phylotype of Spirochaetales attached to their cell surface in varying abundance. Current evidence for the involvement of Bacteroidales and 'Endomicrobia' symbionts in the nitrogen metabolism of the host flagellate is discussed.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Mahesh S Desai
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Andreas Brune
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| |
Collapse
|
39
|
Husseneder C. Symbiosis in subterranean termites: a review of insights from molecular studies. ENVIRONMENTAL ENTOMOLOGY 2010; 39:378-388. [PMID: 20388266 DOI: 10.1603/en09006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The symbiotic relationship of termites and their eukaryotic and prokaryotic gut microbiota is a focal point of research because of the important roles symbionts play in termite nutrition. The use of molecular methods has recently provided valuable insights into the species diversity and the roles of microorganisms in the guts of termites. This paper provides a review of the current knowledge of symbiont species inventories, genome analysis, and gene expression in the guts of subterranean termites. Particular emphasis is given to the termite genera Reticulitermes and Coptotermes (Isoptera: Rhinotermitidae), because they contain pest species of global impact in their native and invasive range.
Collapse
Affiliation(s)
- Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Bldg, Baton Rouge, LA 70803, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
41
|
Termite Gut Flagellates and Their Methanogenic and Eubacterial Symbionts. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Phylogenetic Position and Morphology of Spirotrichosomidae (Parabasalia): New Evidence from Leptospironympha of Cryptocercus punctulatus. Protist 2010; 161:122-32. [DOI: 10.1016/j.protis.2009.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/14/2009] [Indexed: 11/22/2022]
|
43
|
Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, Brune A. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 2009; 12:2120-32. [PMID: 21966907 DOI: 10.1111/j.1462-2920.2009.02080.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The surface of many termite gut flagellates is colonized with a dense layer of bacteria, yet little is known about the evolutionary relationships of such ectosymbionts and their hosts. Here we investigated the molecular phylogenies of devescovinid flagellates (Devescovina spp.) and their symbionts from a wide range of dry-wood termites (Kalotermitidae). From species-pure flagellate suspensions isolated with micropipettes, we obtained SSU rRNA gene sequences of symbionts and host. Phylogenetic analysis showed that the Devescovina spp. present in many species of Kalotermitidae form a monophyletic group, which includes also the unique devescovinid flagellate Caduceia versatilis. All members of this group were consistently associated with a distinct lineage of Bacteroidales, whose location on the cell surface was confirmed by fluorescence in situ hybridization. The well-supported congruence of the phylogenies of devescovinids and their ectosymbionts documents a strict cospeciation. In contrast, the endosymbionts of the same flagellates ('Endomicrobia') were clearly polyphyletic and must have been acquired independently by horizontal transfer from other flagellate lineages. Also the Bacteroidales ectosymbionts of Oxymonas flagellates present in several Kalotermitidae belonged to several distantly related lines of descent, underscoring the general perception that the evolutionary history of flagellate-bacteria symbioses in the termite gut is complex.
Collapse
Affiliation(s)
- Mahesh S Desai
- Max Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Karl-von-Frisch-Straße, 35043 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Carpenter KJ, Chow L, Keeling PJ. Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus. J Eukaryot Microbiol 2009; 56:305-13. [PMID: 19602076 DOI: 10.1111/j.1550-7408.2009.00406.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichonympha is one of the most complex and visually striking of the hypermastigote parabasalids-a group of anaerobic flagellates found exclusively in hindguts of lower termites and the wood-feeding cockroach Cryptocercus-but it is one of only two genera common to both groups of insects. We investigated Trichonympha of Cryptocercus using light and electron microscopy (scanning and transmission), as well as molecular phylogeny, to gain a better understanding of its morphology, diversity, and evolution. Microscopy reveals numerous new features, such as previously undetected bacterial surface symbionts, adhesion of post-rostral flagella, and a distinctive frilled operculum. We also sequenced small subunit rRNA gene from manually isolated species, and carried out an environmental polymerase chain reaction (PCR) survey of Trichonympha diversity, all of which strongly supports monophyly of Trichonympha from Cryptocercus to the exclusion of those sampled from termites. Bayesian and distance methods support a relationship between Trichonympha species from termites and Cryptocercus, although likelihood analysis allies the latter with Eucomonymphidae. A monophyletic Trichonympha is of great interest because recent evidence supports a sister relationship between Cryptocercus and termites, suggesting Trichonympha predates the Cryptocercus-termite divergence. The monophyly of symbiotic bacteria of Trichonympha raises the intriguing possibility of three-way co-speciation among bacteria, Trichonympha, and insect hosts.
Collapse
Affiliation(s)
- Kevin J Carpenter
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Noda S, Hongoh Y, Sato T, Ohkuma M. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 2009; 9:158. [PMID: 19586555 PMCID: PMC2717939 DOI: 10.1186/1471-2148-9-158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 07/09/2009] [Indexed: 12/03/2022] Open
Abstract
Background The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community. Results Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far. Conclusion The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a reservoir of diverse bacteria for associations with the protist cells. The similar morphologies are considered a result of evolutionary convergence. Despite the complicated evolutionary history, the host-symbiont relationships are mutually specific, suggesting their cospeciations at the protist genus level with only occasional replacements.
Collapse
Affiliation(s)
- Satoko Noda
- Ecomolecular Biorecycling Science Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
46
|
The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 2009; 75:2831-40. [PMID: 19270135 DOI: 10.1128/aem.02697-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insect intestinal tracts harbor several novel, deep-rooting clades of as-yet-uncultivated bacteria whose biology is typically completely unknown. Here, we report the isolation of the first representative of the termite group 1 (TG1) phylum from sterile-filtered gut homogenates of a humivorous scarab beetle larva. Strain Pei191(T) is a mesophilic, obligately anaerobic ultramicrobacterium with a gram-negative cell envelope. Cells are typically rod shaped, but cultures are pleomorphic in all growth phases (0.3 to 2.5 microm long and 0.17 to 0.3 microm wide). The isolate grows heterotrophically on sugars and ferments D-galactose, D-glucose, D-fructose, D-glucosamine, and N-acetyl-D-glucosamine to acetate, ethanol, hydrogen, and alanine as major products but only if amino acids are present in the medium. PCR-based screening and comparative 16S rRNA gene sequence analysis revealed that strain Pei191(T) belongs to the "intestinal cluster," a lineage of hitherto uncultivated bacteria present in arthropod and mammalian gut systems. It is only distantly related to the previously described so-called "endomicrobia" lineage, which comprises mainly uncultivated endosymbionts of termite gut flagellates. We propose the name "Elusimicrobium minutum" gen. nov., sp. nov. (type strain, Pei191(T) = ATCC BAA-1559(T) = JCM 14958(T)) for the first isolate of this deep-branching lineage and the name "Elusimicrobia" phyl. nov. for the former TG1 phylum.
Collapse
|
47
|
Genomic analysis of "Elusimicrobium minutum," the first cultivated representative of the phylum "Elusimicrobia" (formerly termite group 1). Appl Environ Microbiol 2009; 75:2841-9. [PMID: 19270133 DOI: 10.1128/aem.02698-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organisms of the candidate phylum termite group 1 (TG1) are regularly encountered in termite hindguts but are present also in many other habitats. Here, we report the complete genome sequence (1.64 Mbp) of "Elusimicrobium minutum" strain Pei191(T), the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut, and we discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, nonribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of "Elusimicrobia" (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.
Collapse
|
48
|
Ikeda-Ohtsubo W, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'. Mol Ecol 2009; 18:332-42. [PMID: 19192183 DOI: 10.1111/j.1365-294x.2008.04029.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Symbiotic flagellates play a major role in the digestion of lignocellulose in the hindgut of lower termites. Many termite gut flagellates harbour a distinct lineage of bacterial endosymbionts, so-called Endomicrobia, which belong to the candidate phylum Termite Group 1. Using an rRNA-based approach, we investigated the phylogeny of Trichonympha, the predominant flagellates in a wide range of termite species, and of their Endomicrobia symbionts. We found that Trichonympha species constitute three well-supported clusters in the Parabasalia tree. Endomicrobia were detected only in the apical lineage (Cluster I), which comprises flagellates present in the termite families Termopsidae and Rhinotermitidae, but apparently absent in the basal lineages (Clusters II and III) consisting of flagellates from other termite families and from the wood-feeding cockroach, Cryptocercus punctulatus. The endosymbionts of Cluster I form a monophyletic group distinct from many other lineages of Endomicrobia and seem to have cospeciated with their flagellate host. The distribution pattern of the symbiotic pairs among different termite species indicates that cospeciation of flagellates and endosymbionts is not simply the result of a spatial separation of the flagellate lineages in different termite species, but that Endomicrobia are inherited among Trichonympha species by vertical transmission. We suggest extending the previously proposed candidatus name 'Endomicrobium trichonymphae' to all Endomicrobia symbionts of Trichonympha species, and estimate that the acquisition by an ancestor of Trichonympha Cluster I must have occurred about 40-70 million years ago, long after the flagellates entered the termites.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
49
|
Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc Biol Sci 2009; 276:239-45. [PMID: 18812290 DOI: 10.1098/rspb.2008.1094] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cryptocercus cockroaches and lower termites harbour obligate, diverse and unique symbiotic cellulolytic flagellates in their hindgut that are considered critical in the development of social behaviour in their hosts. However, there has been controversy concerning the origin of these symbiotic flagellates. Here, molecular sequences encoding small subunit rRNA and glyceraldehyde-3-phosphate dehydrogenase were identified in the symbiotic flagellates of the order Trichonymphida (phylum Parabasalia) in the gut of Cryptocercus punctulatus and compared phylogenetically to the corresponding species in termites. In each of the monophyletic lineages that represent family-level groups in Trichonymphida, the symbionts of Cryptocercus were robustly sister to those of termites. Together with the recent evidence for the sister-group relationship of the host insects, this first comprehensive study comparing symbiont molecular phylogeny strongly suggests that a set of symbiotic flagellates representative of extant diversity was already established in an ancestor common to Cryptocercus and termites, was vertically transmitted to their offspring, and subsequently became diversified to distinct levels, depending on both the host and the symbiont lineages.
Collapse
Affiliation(s)
- Moriya Ohkuma
- Ecomolecular Biorecycling Science Research Team, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
50
|
Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT. Introduction. Ecological immunology. Philos Trans R Soc Lond B Biol Sci 2009; 364:3-14. [PMID: 18926970 DOI: 10.1098/rstb.2008.0249] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An organism's fitness is critically reliant on its immune system to provide protection against parasites and pathogens. The structure of even simple immune systems is surprisingly complex and clearly will have been moulded by the organism's ecology. The aim of this review and the theme issue is to examine the role of different ecological factors on the evolution of immunity. Here, we will provide a general framework of the field by contextualizing the main ecological factors, including interactions with parasites, other types of biotic as well as abiotic interactions, intraspecific selective constraints (life-history trade-offs, sexual selection) and population genetic processes. We then elaborate the resulting immunological consequences such as the diversity of defence mechanisms (e.g. avoidance behaviour, resistance, tolerance), redundancy and protection against immunopathology, life-history integration of the immune response and shared immunity within a community (e.g. social immunity and microbiota-mediated protection). Our review summarizes the concepts of current importance and directs the reader to promising future research avenues that will deepen our understanding of the defence against parasites and pathogens.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, University of Kiel, Am Botanischen Garten, 24098 Kiel, Germany.
| | | | | | | |
Collapse
|