1
|
Grillová L, Romeis E, Lieberman NAP, Tantalo LC, Xu LH, Molini B, Trejos AT, Lacey G, Goulding D, Thomson NR, Greninger AL, Giacani L. Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells. Mol Microbiol 2024; 122:455-464. [PMID: 39115038 PMCID: PMC11479824 DOI: 10.1111/mmi.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 10/17/2024]
Abstract
The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum (T. pallidum) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted green fluorescent protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum, better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes.
Collapse
Affiliation(s)
- Linda Grillová
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Emily Romeis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lauren C Tantalo
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Linda H Xu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Barbara Molini
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aldo T Trejos
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - George Lacey
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - David Goulding
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lorenzo Giacani
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Grillová L, Romeis E, Lieberman NAP, Tantalo LC, Xu LH, Molini B, Trejos AT, Lacey G, Goulding D, Thomson NR, Greninger AL, Giacani L. Bright New Resources for Syphilis Research: Genetically Encoded Fluorescent Tags for Treponema pallidum and Sf1Ep Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596454. [PMID: 38854070 PMCID: PMC11160695 DOI: 10.1101/2024.05.29.596454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum ( T. pallidum ) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted Green Fluorescent Protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum , better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes. Graphical abstract By employing genetic engineering, T. pallidum was modified to express GFP, and Sf1Ep cells to express mCherry on the cytoplasmic membrane and BFP in the nucleus. These new resources for syphilis research will facilitate experimental designs to better define the complex interplay between T. pallidum and the host during infection.
Collapse
|
3
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
4
|
Structural analysis of the outer surface proteins from Borrelia burgdorferi paralogous gene family 54 that are thought to be the key players in the pathogenesis of Lyme disease. J Struct Biol 2020; 210:107490. [PMID: 32135236 DOI: 10.1016/j.jsb.2020.107490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 11/24/2022]
Abstract
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. Through a complex enzootic cycle, the bacteria transfer between two different hosts: Ixodes ticks and mammalian organisms. At the start of the tick blood meal, the spirochetes located in the tick gut upregulate the expression of several genes, mainly coding for outer surface proteins. Outer surface proteins belonging to the paralogous gene family 54 (PFam54) have been shown to be the most upregulated among the other borrelial proteins and the results clearly point to the potential importance of these proteins in the pathogenesis of Lyme disease. The significance of PFam54 proteins is confirmed by the fact that of all ten PFam54 proteins, BBA64 and BBA66 are necessary for the transfer of B. burgdorferi from infected Ixodes ticks to mammalian hosts. To enhance the understanding of the pathogenesis of Lyme disease and to promote the development of novel therapies against Lyme disease, we solved the crystal structure of the PFam54 member BBA65. Additionally, we report the structure of the B. burgdorferi BBA64 orthologous protein from B. spielmanii. Together with the previously determined crystal structures of five PFam54 members and several related proteins, we performed a comprehensive structural analysis for this important group of proteins. In addition to revealing the molecular aspects of the proteins, the structural data analysis suggests that the gene families PFam54 and PFam60, which have long been referred to as separate paralogous families, should be merged into one and designated as PFam54_60.
Collapse
|
5
|
Hillman C, Stewart PE, Strnad M, Stone H, Starr T, Carmody A, Evans TJ, Carracoi V, Wachter J, Rosa PA. Visualization of Spirochetes by Labeling Membrane Proteins With Fluorescent Biarsenical Dyes. Front Cell Infect Microbiol 2019; 9:287. [PMID: 31482073 PMCID: PMC6710359 DOI: 10.3389/fcimb.2019.00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/24/2019] [Indexed: 01/06/2023] Open
Abstract
Numerous methods exist for fluorescently labeling proteins either as direct fusion proteins (GFP, RFP, YFP, etc.—attached to the protein of interest) or utilizing accessory proteins to produce fluorescence (SNAP-tag, CLIP-tag), but the significant increase in size that these accompanying proteins add may hinder or impede proper protein folding, cellular localization, or oligomerization. Fluorescently labeling proteins with biarsenical dyes, like FlAsH, circumvents this issue by using a short 6-amino acid tetracysteine motif that binds the membrane-permeable dye and allows visualization of living cells. Here, we report the successful adaptation of FlAsH dye for live-cell imaging of two genera of spirochetes, Leptospira and Borrelia, by labeling inner or outer membrane proteins tagged with tetracysteine motifs. Visualization of labeled spirochetes was possible by fluorescence microscopy and flow cytometry. A subsequent increase in fluorescent signal intensity, including prolonged detection, was achieved by concatenating two copies of the 6-amino acid motif. Overall, we demonstrate several positive attributes of the biarsenical dye system in that the technique is broadly applicable across spirochete genera, the tetracysteine motif is stably retained and does not interfere with protein function throughout the B. burgdorferi infectious cycle, and the membrane-permeable nature of the dyes permits fluorescent detection of proteins in different cellular locations without the need for fixation or permeabilization. Using this method, new avenues of investigation into spirochete morphology and motility, previously inaccessible with large fluorescent proteins, can now be explored.
Collapse
Affiliation(s)
- Chadwick Hillman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Philip E Stewart
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Martin Strnad
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Hunter Stone
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Aaron Carmody
- Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tyler J Evans
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Valentina Carracoi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
6
|
Abstract
Signature-tagged mutagenesis (STM) is a functional genomics approach to identify bacterial virulence determinants and virulence factors by simultaneously screening multiple mutants in a single host animal, and has been utilized extensively for the study of bacterial pathogenesis, host-pathogen interactions, and spirochete and tick biology. The signature-tagged transposon mutagenesis has been developed to investigate virulence determinants and pathogenesis of Borrelia burgdorferi. Mutants in genes important in virulence are identified by negative selection in which the mutants fail to colonize or disseminate in the animal host and tick vector. STM procedure combined with Luminex Flex®Map™ technology and next-generation sequencing (e.g., Tn-seq) are the powerful high-throughput tools for the determination of Borrelia burgdorferi virulence determinants. The assessment of multiple tissue sites and two DNA resources at two different time points using Luminex Flex®Map™ technology provides a robust data set. B. burgdorferi transposon mutant screening indicates that a high proportion of genes are the novel virulence determinants that are required for mouse and tick infection. In this protocol, an effective signature-tagged Himar1-based transposon suicide vector was developed and used to generate a sequence-defined library of nearly 4800 mutants in the infectious B. burgdorferi B31 clone. In STM, signature-tagged suicide vectors are constructed by inserting unique DNA sequences (tags) into the transposable elements. The signature-tagged transposon mutants are generated when transposon suicide vectors are transformed into an infectious B. burgdorferi clone, and the transposable element is transposed into the 5'-TA-3' sequence in the B. burgdorferi genome with the signature tag. The transposon library is created and consists of many sub-libraries, each sub-library has several hundreds of mutants with same tags. A group of mice or ticks are infected with a mixed population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host-pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.
Collapse
|
7
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
8
|
Chen L, Xu Q, Tu J, Ge Y, Liu J, Liang FT. Increasing RpoS expression causes cell death in Borrelia burgdorferi. PLoS One 2013; 8:e83276. [PMID: 24358270 PMCID: PMC3865164 DOI: 10.1371/journal.pone.0083276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
Collapse
Affiliation(s)
- Linxu Chen
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Yihe Ge
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Xu Q, Shi Y, Dadhwal P, Liang FT. RpoS regulates essential virulence factors remaining to be identified in Borrelia burgdorferi. PLoS One 2012; 7:e53212. [PMID: 23300893 PMCID: PMC3531368 DOI: 10.1371/journal.pone.0053212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/27/2012] [Indexed: 11/24/2022] Open
Abstract
Background Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial virulence factors, including outer surface protein C (OspC) and decorin-binding proteins (Dbps) A and B, are associated with the pathway. Moreover, for more than 10 years no single RpoS-controlled gene has been found to be critical for infection, raising a question about whether additional RpoS-dependent virulence factors remain to be identified. Methodology/Principal Findings The rpoS gene was deleted in B. burgdorferi; resulting mutants were modified to constitutively express all the known virulence factors, OspC, DbpA and DbpB. This genetic modification was unable to restore the rpoS mutant with infectivity. Conclusions/Significance The inability to restore the rpoS mutant with infectivity by simultaneously over-expressing all the three virulence factors allows us to conclude RpoS also regulates essential genes that remain to be identified in B. burgdorferi.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Yanlin Shi
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Poonam Dadhwal
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is maintained in nature via an enzootic cycle that comprises a tick vector and a vertebrate host. Transmission from the tick to the mammal, acquisition from the mammal back to the tick, and adaptation to the two disparate environments require sensing signals and responding by regulating programs of gene expression. The molecular mechanisms utilized to effect these lifestyle changes have begun to be elucidated and feature an alternative sigma factor cascade in which RpoN (σ(54)) and RpoS (σ(S)) globally control the genes required for the different phases of the enzootic cycle. The RpoN-RpoS pathway is surprisingly complex, entailing Rrp2, an unusual enhancer-binding protein and two-component regulatory system response regulator activated by acetyl phosphate; BosR, an unorthodox DNA-binding protein; DsrA(Bb), a small noncoding RNA; and Hfq and CsrA, two RNA-binding proteins. B. burgdorferi also has a c-di-GMP signaling system that regulates the tick side of the enzootic cycle and whose function is only beginning to be appreciated.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences and Biochemistry Program, The University of Montana, Missoula, Montana 59812, USA.
| |
Collapse
|
11
|
Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation. Infect Immun 2011; 79:4876-92. [PMID: 21947773 DOI: 10.1128/iai.05451-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1β, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation.
Collapse
|
12
|
Oligopeptide permease A5 modulates vertebrate host-specific adaptation of Borrelia burgdorferi. Infect Immun 2011; 79:3407-20. [PMID: 21628523 DOI: 10.1128/iai.05234-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, undergoes rapid adaptive gene expression in response to signals unique to its arthropod vector or vertebrate hosts. Among the upregulated genes under vertebrate host conditions is one of the five annotated homologs of oligopeptide permease A (OppA5, BBA34). A mutant lacking oppA5 was constructed in an lp25-deficient isolate of B. burgdorferi strain B31, and the minimal regions of infectivity were restored via a shuttle vector pBBE22 with or without an intact copy of bba34. Immunoblot analysis of the bba34 mutant revealed a reduction in the levels of RpoS, BosR, and CsrA(Bb) with a concomitant reduction in the levels of OspC, DbpA, BBK32, and BBA64. There were no changes in the levels of OspA, NapA, P66, and three other OppA orthologs. Quantitative transcriptional analysis correlated with the changes in the protein levels. However, the bba34 mutant displayed comparable infectivities in the C3H/HeN mice and the wild-type strain, despite the reduction in several pathogenesis-related proteins. Supplementation of the growth medium with increased levels of select components, notably sodium acetate and sodium bicarbonate, restored the levels of several proteins in the bba34 mutant to wild-type levels. We speculate that the transport of acetate appears to contribute to the accumulation of key metabolites, like acetyl phosphate, that facilitate the adaptation of B. burgdorferi to the vertebrate host by the activation of the Rrp2-RpoN-RpoS pathway. These studies underscore the importance of solute transport to host-specific adaptation of B. burgdorferi.
Collapse
|
13
|
Patton TG, Dietrich G, Dolan MC, Piesman J, Carroll JA, Gilmore RD. Functional analysis of the Borrelia burgdorferi bba64 gene product in murine infection via tick infestation. PLoS One 2011; 6:e19536. [PMID: 21559293 PMCID: PMC3086921 DOI: 10.1371/journal.pone.0019536] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/31/2011] [Indexed: 11/26/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.
Collapse
Affiliation(s)
- Toni G. Patton
- Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Gabrielle Dietrich
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Marc C. Dolan
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Joseph Piesman
- Tick-Borne Diseases Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert D. Gilmore
- Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
14
|
The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 2010; 107:7515-20. [PMID: 20368453 DOI: 10.1073/pnas.1000268107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B. burgdorferi mutant strain deficient in the synthesis of the bba64 gene product was incapable of infecting mice via tick bite even though the mutant was (i) infectious in mice when introduced by needle inoculation, (ii) acquired by larval ticks feeding on infected mice, and (iii) able to persist through tick molting stages. This finding of a B. burgdorferi gene required for pathogen transfer and/or survival from the tick to the susceptible host represents an important breakthrough toward understanding transmission mechanisms involved for the Lyme disease agent.
Collapse
|
15
|
Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2009; 78:100-7. [PMID: 19822648 DOI: 10.1128/iai.01008-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dramatic alteration of surface lipoprotein profiles is a key strategy that Borrelia burgdorferi, the Lyme disease pathogen, has evolved for adapting to the diverse environments of arthropod and mammalian hosts. Several of these differentially expressed lipoproteins have been shown to play important roles in the enzootic cycle of B. burgdorferi. The BBA05 protein is a previously identified putative lipoprotein (P55 or S1 antigen) that elicits antibody responses in mammals. Recent microarray analyses indicate that the BBA05 gene is differentially expressed by many environmental factors, including temperature. However, the role of the BBA05 protein in the life cycle of B. burgdorferi has not been elucidated. Here we show that expression of the BBA05 gene was exclusively induced in feeding nymphal ticks during the spirochetal transmission from ticks to mammals. Upon generating a BBA05 mutant in an infectious strain of B. burgdorferi, we showed that the BBA05 mutant remained capable of establishing infection in mice, being acquired by ticks, persisting through tick molting, and reinfecting new mammalian hosts. These results indicate that, despite being a highly conserved and regulated antigen, the BBA05 protein has a nonessential role in the transmission cycle of B. burgdorferi, at least in the animal model.
Collapse
|
16
|
Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect Immun 2009; 77:5149-62. [PMID: 19737901 DOI: 10.1128/iai.00673-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its hosts. Among the relatively few regulators of adaptive gene expression present in the borrelial genome is an open reading frame (ORF), BB0184, annotated as CsrA (carbon storage regulator A). CsrA, in several bacterial species, has been characterized as a small RNA binding protein that functions as a global regulator affecting mRNA stability or levels of translation of multiple ORFs. Consistent with known functions of CsrA, overexpression of CsrA from B. burgdorferi (CsrABb) in Escherichia coli resulted in reduced accumulation of glycogen. We determined that csrABb is part of the flgK motility operon and that the synthesis of CsrABb was increased when B. burgdorferi was propagated under fed-tick conditions. Overexpression of CsrABb in B. burgdorferi strain B31 (ML23, lp25-negative clonal isolate) resulted in a clone, designated ES25, which exhibited alterations in colony morphology and a significant reduction in the levels of FlaB. Several lipoproteins previously characterized as playing a role in infectivity were also altered in ES25. Real-time reverse transcription-PCR analysis of RNA revealed significant differences in the transcriptional levels of ospC in ES25, while there were no such differences in the levels of other transcripts, suggesting posttranscriptional regulation of expression of these latter genes. These observations indicate that CsrABb plays a role in the regulation of expression of pathophysiological determinants of B. burgdorferi, and further characterization of CsrABb will help in better understanding of the regulators of gene expression in B. burgdorferi.
Collapse
|
17
|
Delihas N. Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs. BMC Genomics 2009; 10:101. [PMID: 19267927 PMCID: PMC2674063 DOI: 10.1186/1471-2164-10-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borrelia species are unusual in that they contain a large number of linear and circular plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for evolutionary change and/or maintain stable motifs such as small RNA genes. RESULTS In an in silico study, intergenic regions of Borrelia plasmids were scanned for phylogenetically conserved stem loop structures that may represent functional units at the RNA level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures, three of which are closely linked to protein genes, one of which is a member of the Borrelia lipoprotein_1 super family genes and another is the complement regulator-acquiring surface protein_1 (CRASP-1) family. Modeled secondary structures of repeat sequences display numerous base-pair compensatory changes in stem regions, including C-G-->A-U transversions when orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence for phylogenetic conservation of secondary structure. CONCLUSION Intergenic regions of Borrelia species carry evolutionarily stable RNA secondary structure motifs. Of major interest is that some motifs are associated with protein genes that show large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in amino acid sequence, possibly to create new virulence factors but with associated RNA motifs intact.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Suny, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
18
|
Gautam A, Hathaway M, Ramamoorthy R. The Borrelia burgdorferi flaB promoter has an extended -10 element and includes a T-rich -35/-10 spacer sequence that is essential for optimal activity. FEMS Microbiol Lett 2009; 293:278-84. [PMID: 19260969 DOI: 10.1111/j.1574-6968.2009.01542.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated the functional elements of the flaB promoter of Borrelia burgdorferi. Promoter function was examined in a high-passage variant of strain JD1 using a set of 5' deletions and mutations within the flaB promoter. Expression from the modified flaB promoters was assayed using the gene for green fluorescent protein (gfp) as a reporter. Although the -35 element of the promoter stimulated promoter activity, its disruption did not negate expression. Sequences upstream of the -35 had no effect on expression. The -35/-10 spacer region composed of a T-rich sequence was critical for optimal promoter function. Surprisingly, a cytosine at the -13 site was found to be more favorable for transcription compared with a guanosine at the same site. Based on these results and other characteristics, we propose that the B. burgdorferi flaB promoter is an example of an extended -10 promoter. Further, the T-rich spacer is a key element of the flaB promoter that contributes to the abundance of the flagellar core protein in Borrelia species.
Collapse
Affiliation(s)
- Aarti Gautam
- Tulane National Primate Research Center, Division of Bacteriology and Parasitology, Tulane University Health Sciences Center, Covington, LA 70433, USA
| | | | | |
Collapse
|
19
|
Gilmore RD, Howison RR, Schmit VL, Carroll JA. Borrelia burgdorferi expression of the bba64, bba65, bba66, and bba73 genes in tissues during persistent infection in mice. Microb Pathog 2008; 45:355-60. [PMID: 18848981 DOI: 10.1016/j.micpath.2008.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/11/2008] [Accepted: 08/20/2008] [Indexed: 11/16/2022]
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease in humans, is vectored between mammalian hosts in nature by Ixodes ticks. The organism adapts to diverse environments encountered throughout the enzootic cycle by differentially expressing essential gene products to survive the specialized conditions, whether in ticks or warm-blooded hosts. However, little is known regarding the identity and/or function of B. burgdorferi genes expressed during colonization of tissues during mammalian infection. Experimental evidence has shown that a group of genes (formerly classified as paralogous gene family 54) contiguously localized on the 54-kilobase linear plasmid of B. burgdorferi, are among the most highly regulated by in vitro conditions resembling mammalian infection. In this study, we employed quantitative reverse transcription-PCR to measure temporal gene expression of a subset of this B. burgdorferi gene family (bba64, bba65, bba66, and bba73) in tissues during chronic murine infection. The goal was to gain insight into the role of these genes in infectivity and pathogenesis by identifying when the genes are induced and whether they are expressed in specific target tissues. B. burgdorferi bba64, bba65, bba66, and bba73 expression was measured from infected mouse tissues relative to expression in in vitro culture conditions at specific times post-infection. bba64 expression was highly upregulated in bladder, heart, and spleen tissues throughout the infection period, contrasting with the sharp downregulation previously observed in ear tissues. bba65, bba66, and bba73 demonstrated upregulated differential expression in various tissues over 1 year post-infection. These results suggest an essential role for these genes in borrelial survival, persistence, and/or pathogenesis.
Collapse
Affiliation(s)
- Robert D Gilmore
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA.
| | | | | | | |
Collapse
|
20
|
Deletion of BBA64, BBA65, and BBA66 loci does not alter the infectivity of Borrelia burgdorferi in the murine model of Lyme disease. Infect Immun 2008; 76:5274-84. [PMID: 18765733 DOI: 10.1128/iai.00803-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its tick vector versus vertebrate hosts. Whole-genome transcriptional profile analysis of B. burgdorferi, propagated in vitro under mammalian-host-specific conditions, revealed significant upregulation of several linear plasmid 54 (lp54)-encoded open reading frames (ORFs). Among these ORFs, BBA64, BBA65, and BBA66 have been shown to be upregulated in response to multiple mammalian-host-specific signals. Recently, we determined that there was no significant difference in the ability of BBA64(-) mutant to infect C3H/HeN mice compared to its isogenic control strains, suggesting that B. burgdorferi might utilize multiple, functionally related determinants to establish infection. We further generated BBA65(-) and BBA66(-) single mutants in a noninfectious, lp25(-) clonal isolate of B. burgdorferi strain B31 (ML23) and complemented them with the minimal region of lp25 (BBE22) required for restoring the infectivity. In addition, we generated a BBA64(-) BBA65(-) BBA66(-) triple mutant using an infectious, clonal isolate of B. burgdorferi strain B31 (5A11) that has all of the infection-associated plasmids. There were no significant differences in the ability to isolate viable spirochetes from different tissues of C3H/HeN mice infected via intradermal needle inoculation with either the individual single mutants or the triple mutant compared to their respective isogenic parental strains at days 21 and 62 postinfection. These observations suggest that B. burgdorferi can establish infection in the absence of expression of BBA64, BBA65, and BBA66 in the murine model of Lyme disease.
Collapse
|
21
|
Differential expression of a putative CarD-like transcriptional regulator, LtpA, in Borrelia burgdorferi. Infect Immun 2008; 76:4439-44. [PMID: 18663002 DOI: 10.1128/iai.00740-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of microbial genome information has provided a fruitful opportunity for studying regulatory networks in a variety of pathogenic bacteria. In an initial effort to elucidate regulatory networks potentially involved in differential gene expression by the Lyme disease pathogen Borrelia burgdorferi, we have been investigating the functions and regulation of putative transcriptional regulatory factors predicted to be encoded within the B. burgdorferi genome. Herein we report the regulation of one of the predicted transcriptional regulators, LtpA (BB0355), which is homologous to the transcriptional regulator CarD from Myxococcus xanthus. LtpA expression was assessed in response to various environmental stimuli. Immunoblot and quantitative reverse transcription-PCR analyses revealed that unlike many well-characterized differentially regulated Borrelia genes whose expression is induced by elevated temperature, the expression of LtpA was significantly downregulated when spirochetes were grown at an elevated temperature (37 degrees C), as well as when the bacteria were cultivated in a mammalian host-adapted environment. In contrast, LtpA was induced at a lower culture temperature (23 degrees C). Further analyses indicated that the downregulation of LtpA was not dependent on the Rrp2-RpoN-RpoS regulatory pathway, which is involved in the downregulation of OspA when B. burgdorferi is grown in a mammalian host-adapted environment. LtpA protein levels in B. burgdorferi were unaltered in response to changes in the pH in the borrelial cultures. Multiple attempts to generate an LtpA-deficient mutant were unsuccessful, which has hampered the elucidation of its role in pathogenesis. Given that LtpA is exclusively expressed during borrelial cultivation at a lower temperature, a parameter that has been widely used as a surrogate condition to mimic B. burgdorferi in unfed (flat) ticks, and because LtpA is homologous to a known transcriptional regulator, we postulate that LtpA functions as a regulator modulating the expression of genes important to B. burgdorferi's survival within its arthropod vector.
Collapse
|
22
|
Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 2008; 76:3844-53. [PMID: 18573895 DOI: 10.1128/iai.00467-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alteration of surface lipoprotein profiles is a key strategy that the Lyme disease pathogen, Borrelia burgdorferi, has evolved to be maintained within its enzootic cycle between arthropods and mammals. Accumulated evidence indicates that the central regulatory pathway controlling differential gene expression by B. burgdorferi is the RpoN-RpoS pathway (the sigma(54)-sigma(S) sigma factor cascade). It was previously shown that activation of the RpoN-RpoS pathway is controlled by Rrp2, a two-component response regulator and sigma(54)-dependent transcriptional activator. The role of Rrp2 in the infectious cycle of B. burgdorferi has not been determined heretofore. In this report, we demonstrate that an rrp2 mutant defective in activating sigma(54)-dependent transcription was unable to establish infection in mice, but the rrp2 mutant was capable of surviving within ticks during and after tick feeding. Because the rrp2 mutant was defective in the production of OspC, an outer surface lipoprotein essential for mammalian host infection, we further examined whether the loss of infectivity of the rrp2 mutant was solely due to the inability to produce OspC. While transformation with a shuttle vector carrying ospC under the control of a constitutive flaB promoter restored infection to an ospC mutant in immunodeficient SCID mice, it could not rescue the avirulent phenotype of the rrp2 mutant. These data indicate that, in addition to controlling OspC, Rrp2 controls another factor(s) essential for B. burgdorferi to establish infection in mammals. Furthermore, microarray analyses revealed that 125 and 19 genes were positively and negatively regulated, respectively, by Rrp2, which provides a foundation for future identification of additional Rrp2-dependent virulence determinants in B. burgdorferi.
Collapse
|