1
|
Gao Y, Guan X, Wan A, Cui Y, Kou X, Li R, Wang S. Thermal Inactivation Kinetics and Radio Frequency Control of Aspergillus in Almond Kernels. Foods 2022; 11:foods11111603. [PMID: 35681353 PMCID: PMC9180863 DOI: 10.3390/foods11111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Mold infections in almonds are a safety issue during post-harvest, storage and consumption, leading to health problems for consumers and causing economic losses. The aim of this study was to isolate mold from infected almond kernels and identify it by whole genome sequence (WGS). Then, the more heat resistant mold was selected and the thermal inactivation kinetics of this mold influenced by temperature and water activity (aw) was developed. Hot air-assisted radio frequency (RF) heating was used to validate pasteurization efficacy based on the thermal inactivation kinetics of this target mold. The results showed that the two types of molds were Penicillium and Aspergillus identified by WGS. The selected Aspergillus had higher heat resistance than the Penicillium in the almond kernels. Inactivation data for the target Aspergillus fitted the Weibull model better than the first-order kinetic model. The population changes of the target Aspergillus under the given conditions could be predicted from Mafart’s modified Bigelow model. The RF treatment was effectively used for inactivating Aspergillus in almond kernels based on Mafart’s modified Bigelow model and the cumulative lethal time model.
Collapse
Affiliation(s)
- Yu Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Ailin Wan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Yuan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| |
Collapse
|
2
|
El-Sayed ASA, George NM, Yassin MA, Alaidaroos BA, Bolbol AA, Mohamed MS, Rady AM, Aziz SW, Zayed RA, Sitohy MZ. Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules 2019; 24:molecules24152756. [PMID: 31362455 PMCID: PMC6696095 DOI: 10.3390/molecules24152756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
l-Ornithine decarboxylase (ODC) is the rate-limiting enzyme of de novo polyamine synthesis in humans and fungi. Elevated levels of polyamine by over-induction of ODC activity in response to tumor-promoting factors has been frequently reported. Since ODC from fungi and human have the same molecular properties and regulatory mechanisms, thus, fungal ODC has been used as model enzyme in the preliminary studies. Thus, the aim of this work was to purify ODC from fungi, and assess its kinetics of inhibition towards various compounds. Forty fungal isolates were screened for ODC production, twenty fungal isolates have the higher potency to grow on L-ornithine as sole nitrogen source. Aspergillus terreus was the most potent ODC producer (2.1 µmol/mg/min), followed by Penicillium crustosum and Fusarium fujikuori. These isolates were molecularly identified based on their ITS sequences, which have been deposited in the NCBI database under accession numbers MH156195, MH155304 and MH152411, respectively. ODC was purified and characterized from A. terreus using SDS-PAGE, showing a whole molecule mass of ~110 kDa and a 50 kDa subunit structure revealing its homodimeric identity. The enzyme had a maximum activity at 37 °C, pH 7.4-7.8 and thermal stability for 20 h at 37 °C, and 90 days storage stability at 4 °C. A. terreus ODC had a maximum affinity (Km) for l-ornithine, l-lysine and l-arginine (0.95, 1.34 and 1.4 mM) and catalytic efficiency (kcat/Km) (4.6, 2.83, 2.46 × 10-5 mM-1·s-1). The enzyme activity was strongly inhibited by DFMO (0.02 µg/mL), curcumin (IC50 0.04 µg/mL), propargylglycine (20.9 µg/mL) and hydroxylamine (32.9 µg/mL). These results emphasize the strong inhibitory effect of curcumin on ODC activity and subsequent polyamine synthesis. Further molecular dynamic studies to elucidate the mechanistics of ODC inhibition by curcumin are ongoing.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nelly M George
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Ahmed A Bolbol
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Marwa S Mohamed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Amgad M Rady
- Faculty of Biotechnology, Modern Science and Arts University, Cairo, Egypt
| | - Safa W Aziz
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Rawia A Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
3
|
Jahnke M, D'Esposito D, Orrù L, Lamontanara A, Dattolo E, Badalamenti F, Mazzuca S, Procaccini G, Orsini L. Adaptive responses along a depth and a latitudinal gradient in the endemic seagrass Posidonia oceanica. Heredity (Edinb) 2018; 122:233-243. [PMID: 29955171 DOI: 10.1038/s41437-018-0103-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Seagrass meadows provide important ecosystem services and are critical for the survival of the associated invertebrate community. However, they are threatened worldwide by human-driven environmental change. Understanding the seagrasses' potential for adaptation is critical to assess not only their ability to persist under future global change scenarios, but also to assess the persistence of the associated communities. Here we screened a wild population of Posidonia oceanica, an endemic long-lived seagrass in the Mediterranean Sea, for genes that may be target of environmental selection, using an outlier and a genome-wide transcriptome analysis. We identified loci where polymorphism or differential expression was associated with either a latitudinal or a bathymetric gradient, as well as with both gradients in an effort to identify loci associated with temperature and light. We found the candidate genes underlying growth and immunity to be divergent between populations adapted to different latitudes and/or depths, providing evidence for local adaptation. Furthermore, we found evidence of reduced gene flow among populations including adjacent populations. Reduced gene flow, combined with low sexual recombination, small effective population size, and long generation time of P. oceanica raises concerns for the long-term persistence of this species, especially in the face of rapid environmental change driven by human activities.
Collapse
Affiliation(s)
- Marlene Jahnke
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Daniela D'Esposito
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Luigi Orrù
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la genomica vegetale, 29017, Fiorenzuola d'Arda, Italy
| | - Antonella Lamontanara
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la genomica vegetale, 29017, Fiorenzuola d'Arda, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Fabio Badalamenti
- CNR-IAMC, Via G. Da Verrazzano 17, 91014, Castellammare del Golfo, TP, Italy
| | - Silvia Mazzuca
- Department of Chemistry and Technology, University of Calabria, Rende, Italy
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Miteva-Staleva JG, Krumova ET, Vassilev SV, Angelova MB. Cold-stress response during the stationary-growth phase of Antarctic and temperate-climate Penicillium strains. MICROBIOLOGY-SGM 2017; 163:1042-1051. [PMID: 28691665 DOI: 10.1099/mic.0.000486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cold-induced oxidative stress during the aging of three Penicillium strains (two Antarctic and one from a temperate region) in stationary culture was documented and demonstrated a significant increase in the protein carbonyl content, the accumulation of glycogen and trehalose, and an increase in the activities of antioxidant enzymes (superoxide dismutase and catalase). The cell response to a temperature downshift depends on the degree of stress and the temperature characteristics of the strains. Our data give further support for the role of oxidative stress in the aging of fungi in stationary cultures. Comparing the present results for the stationary growth phase with our previous results for the exponential growth phase was informative concerning the relationship between the cold-stress response and age-related changes in the tested strains. Unlike the young cells, stationary-phase cultures demonstrated a more pronounced level of oxidative damage, as well as decreased antioxidant defence.
Collapse
Affiliation(s)
- Jeni G Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Ekaterina T Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Spassen V Vassilev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Maria B Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Hassan YI, Zhou T, Bullerman LB. Sourdough lactic acid bacteria as antifungal and mycotoxin-controlling agents. FOOD SCI TECHNOL INT 2015. [DOI: 10.1177/1082013214565722] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sourdough starter cultures are rich sources of endogenous lactic acid bacteria. The extended shelf lives of sourdough breads are attributed to a large array of organic acids and low-molecular-weight metabolites produced during the fermentation process. Different species belonging to the lactic acid bacteria group of microorganisms, mainly Lactobacillus and Leuconostoc, are increasingly gaining the attention as possible means for inhibiting mold growth in animal feed and human food chains. In addition, certain lactic acid bacteria strains isolated from sourdough starters were also shown to reduce mycotoxins concentrations in contaminated products either by binding or degradation. This short review will summarize the findings in this context that pertain to lactic acid bacteria isolated specifically from sourdough starters and acquaint the reader with the most recent advancements in this bio-preservation trend.
Collapse
Affiliation(s)
- Yousef I Hassan
- Food Science & Technology Department, University of Nebraska-Lincoln, Nebraska, USA
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada
| | - Lloyd B Bullerman
- Food Science & Technology Department, University of Nebraska-Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Cusick KD, Fitzgerald LA, Pirlo RK, Cockrell AL, Petersen ER, Biffinger JC. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture. PLoS One 2014; 9:e112706. [PMID: 25474155 PMCID: PMC4256298 DOI: 10.1371/journal.pone.0112706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR) is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1) light/dark cycling: btl, asl, and vma1; (2) all-dark growth: btl, tbp, vma1, and vma2; (3) temperature flux: btl, vma1, act, and asl; (4) all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated), expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring gene expression changes during growth in bioreactors.
Collapse
Affiliation(s)
- Kathleen D. Cusick
- National Research Council Associateship, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Lisa A. Fitzgerald
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Russell K. Pirlo
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Allison L. Cockrell
- National Research Council Associateship, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Emily R. Petersen
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Justin C. Biffinger
- Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| |
Collapse
|
7
|
Saroj S, Kumar K, Prasad M, Singh RP. Differential expression of peroxidase and ABC transporter as the key regulatory components for degradation of azo dyes by Penicillium oxalicum SAR-3. Funct Integr Genomics 2014; 14:631-42. [PMID: 25270890 DOI: 10.1007/s10142-014-0405-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/10/2014] [Accepted: 09/21/2014] [Indexed: 11/24/2022]
Abstract
Fungal species are potential dye decomposers since these secrete spectra of extracellular enzymes involved in catabolism. However, cellular mechanisms underlying azo dye catalysis and detoxification are incompletely understood and obscure. A potential strain designated as Penicillium oxalicum SAR-3 demonstrated broad-spectrum catabolic ability of different azo dyes. A forward suppression subtractive hybridization (SSH) cDNA library of P. oxalicum SAR-3 constructed in presence and absence of azo dye Acid Red 183 resulted in identification of 183 unique expressed sequence tags (ESTs) which were functionally classified into 12 functional categories. A number of novel genes that affect specifically organic azo dye degradation were discovered. Although the ABC transporters and peroxidases emerged as prominent hot spot for azo dye detoxification, we also identified a number of proteins that are more proximally related to stress-responsive gene expression. Majority of the ESTs (29.5%) were grouped as hypothetical/unknown indicating the presence of putatively novel genes. Analysis of few ESTs through quantitative real-time reverse transcription polymerase chain reaction revealed their possible role in AR183 degradation. The ESTs identified in the SSH library provide a novel insight on the transcripts that are expressed in P. oxalicum strain SAR-3 in response to AR183.
Collapse
Affiliation(s)
- Samta Saroj
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | | | | |
Collapse
|
8
|
Validation of reference genes in Penicillium echinulatum to enable gene expression study using real-time quantitative RT-PCR. Curr Genet 2014; 60:231-6. [DOI: 10.1007/s00294-014-0421-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 11/26/2022]
|
9
|
Liu S, Wang X, Sun F, Zhang J, Feng J, Liu H, Rajendran KV, Sun L, Zhang Y, Jiang Y, Peatman E, Kaltenboeck L, Kucuktas H, Liu Z. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol Genomics 2013; 45:462-76. [PMID: 23632418 DOI: 10.1152/physiolgenomics.00026.2013] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Temperature is one of the most prominent abiotic factors affecting ectotherms. Most fish species, as ectotherms, have extraordinary ability to deal with a wide range of temperature changes. While the molecular mechanism underlying temperature adaptation has long been of interest, it is still largely unexplored with fish. Understanding of the fundamental mechanisms conferring tolerance to temperature fluctuations is a topic of increasing interest as temperature may continue to rise as a result of global climate change. Catfish have a wide natural habitat and possess great plasticity in dealing with environmental variations in temperature. However, no studies have been conducted at the transcriptomic level to determine heat stress-induced gene expression. In the present study, we conducted an RNA-Seq analysis to identify heat stress-induced genes in catfish at the transcriptome level. Expression analysis identified a total of 2,260 differentially expressed genes with a cutoff of twofold change. qRT-PCR validation suggested the high reliability of the RNA-Seq results. Gene ontology, enrichment, and pathway analyses were conducted to gain insight into physiological and gene pathways. Specifically, genes involved in oxygen transport, protein folding and degradation, and metabolic process were highly induced, while general protein synthesis was dramatically repressed in response to the lethal temperature stress. This is the first RNA-Seq-based expression study in catfish in response to heat stress. The candidate genes identified should be valuable for further targeted studies on heat tolerance, thereby assisting the development of heat-tolerant catfish lines for aquaculture.
Collapse
Affiliation(s)
- Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2013; 2013:920759. [PMID: 23424684 PMCID: PMC3568913 DOI: 10.1155/2013/920759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at −20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.
Collapse
|
11
|
Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol 2012; 116:932-40. [PMID: 22862921 PMCID: PMC3429300 DOI: 10.1016/j.funbio.2012.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022]
Abstract
Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi -Coniosporium perforans, Exophiala jeanselmei - and of the extremophilic fungus -Friedmanniomyces endolithicus - were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, Austrian Centre of Biological Resources and Applied Mycology (ACBR), University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Gorji Marzban
- Department of Biotechnology, Plant Biotechnology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Kristina Zakharova
- Department of Biotechnology, Austrian Centre of Biological Resources and Applied Mycology (ACBR), University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Daniela Isola
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - Katja Sterflinger
- Department of Biotechnology, Austrian Centre of Biological Resources and Applied Mycology (ACBR), University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
12
|
Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V, Tian S, Farrell R. Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol Ecol 2012; 80:578-90. [PMID: 22313238 DOI: 10.1111/j.1574-6941.2012.01324.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023] Open
Abstract
A pretreatment of the yeast, Candida oleophila, with 5 mM H(2)O(2) for 30 min (sublethal) increased yeast tolerance to subsequent lethal levels of oxidative stress (50 mM H(2)O(2)), high temperature (40 °C), and low pH (pH 4). Compared with non-stress-adapted yeast cells, stress-adapted cells exhibited better control of apple fruit infections by Penicillium expansum and Botrytis cinerea and had initially higher growth rates in apple wounds. Suppression subtractive hybridization analysis was used to identify genes expressed in yeast in response to sublethal oxidative stress. Transcript levels were confirmed using semiquantitative reverse transcription-PCR. Seven antioxidant genes were upregulated. The elevated expression of these genes was associated with less accumulation of reactive oxygen species and a lower level of protein and lipid oxidation under subsequent stresses. These data support the premise that induction of abiotic stress tolerance in biocontrol yeast can improve biocontrol efficacy by upregulation of genes involved in the amelioration of oxidative stress.
Collapse
Affiliation(s)
- Jia Liu
- US Department of Agriculture - Agricultural Research Service, Kearneysville, WV, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hu J, Xu J. Density based pruning for identification of differentially expressed genes from microarray data. BMC Genomics 2010; 11 Suppl 2:S3. [PMID: 21047384 PMCID: PMC2975422 DOI: 10.1186/1471-2164-11-s2-s3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning) is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO) with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
14
|
Nevarez L, Vasseur V, Debaets S, Barbier G. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould. Fungal Biol 2010; 114:490-7. [PMID: 20943160 DOI: 10.1016/j.funbio.2010.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/29/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022]
Abstract
Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.
Collapse
|
15
|
Zou CG, Xu YF, Liu WJ, Zhou W, Tao N, Tu HH, Huang XW, Yang JK, Zhang KQ. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival. PLoS One 2010; 5:e13386. [PMID: 20976223 PMCID: PMC2954792 DOI: 10.1371/journal.pone.0013386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/20/2010] [Indexed: 01/07/2023] Open
Abstract
Background Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. Methodology/Principal Findings Our results demonstrated that the expression of prC was up-regulated by oxidants (H2O2 or menadione) and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS) induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD) degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. Conclusions/Significance These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel strategy for fungi to adapt to environmental stress.
Collapse
Affiliation(s)
- Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Yong-Fang Xu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
- Center for Human Reproduction, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Wen-Jing Liu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Wei Zhou
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Nan Tao
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Hui-Hui Tu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Xiao-Wei Huang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Jin-Kui Yang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|