1
|
Torres Vera R, Bernabé García AJ, Carmona Álvarez FJ, Martínez Ruiz J, Fernández Martín F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol (Praha) 2024; 69:121-131. [PMID: 37526803 PMCID: PMC10876812 DOI: 10.1007/s12223-023-01078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.
Collapse
|
2
|
Zhu L, Song Y, Ma S, Yang S. Heterologous production of 3-hydroxypropionic acid in Methylorubrum extorquens by introducing the mcr gene via a multi-round chromosomal integration system based on cre-lox71/lox66 and transposon. Microb Cell Fact 2024; 23:5. [PMID: 38172868 PMCID: PMC10763676 DOI: 10.1186/s12934-023-02275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIM Reprogramming microorganisms to enhance the production of metabolites is a part of contemporary synthetic biology, which relies on the availability of genetic tools to successfully manipulate the bacteria. Methylorubrum extorquens AM1 is a platform microorganism used to convert C1 compounds into various value-added products. However, the repertoire of available plasmids to conveniently and quickly fine-tune the expression of multiple genes in this strain is extremely limited compared with other model microorganisms such as Escherichia coli. Thus, this study aimed to integrate existing technologies, such as transposon-mediated chromosomal integration and cre-lox-mediated recombination, to achieve the diversified expression of target genes through multiple chromosomal insertions in M. extorquens AM1. RESULTS A single plasmid toolkit, pSL-TP-cre-km, containing a miniHimar1 transposon and an inducible cre-lox71/lox66 system, was constructed and characterized for its multiple chromosomal integration capacity. A co-transcribed mcr-egfp cassette [for the production of 3-hydroxypropionic acid (3-HP) and a reporting green fluorescent protein] was added to construct pTP-cre-mcr-egfp for evaluating its utility in mediating the expression of heterologous genes, resulting in the production of 3-HP with a titer of 34.7-55.2 mg/L by two chromosomal integration copies. Furthermore, in association with the expression of plasmid-based mcr, 3-HP production increased to 65.5-92.4 mg/L. CONCLUSIONS This study used a multi-round chromosomal integration system based on cre-lox71/lox66 and a transposon to construct a single constructed vector. A heterologous mcr gene was introduced through this vector, and high expression of 3-hydroxypropionic acid was achieved in M. extorquens. This study provided an efficient genetic tool for manipulating M. extorquens, which not only help increase the expression of heterologous genes in M. extorquens but also provide a reference for strains lacking genetic manipulation vectors.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
| | - Yazhen Song
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Shunan Ma
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Improvement of dicarboxylic acid production with Methylorubrum extorquens by reduction of product reuptake. Appl Microbiol Biotechnol 2022; 106:6713-6731. [PMID: 36104545 PMCID: PMC9529712 DOI: 10.1007/s00253-022-12161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Abstract
The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids.
Key points
• 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations.
• Deletion of dctA2 leads to reduction of dicarboxylic acid uptake.
• Transporter-deficient strains show improved production of citramalic acid.
Collapse
|
4
|
Bajpai A, Mahawar H, Dubey G, Atoliya N, Parmar R, Devi MH, Kollah B, Mohanty SR. Prospect of pink pigmented facultative methylotrophs in mitigating abiotic stress and climate change. J Basic Microbiol 2022; 62:889-899. [DOI: 10.1002/jobm.202200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Apekcha Bajpai
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
- Department of Microbiology Barkatullah University Bhopal India
| | - Himanshu Mahawar
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
- ICAR‐Directorate of Weed Research Jabalpur India
| | - Garima Dubey
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
| | - Nagvanti Atoliya
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
| | - Rakesh Parmar
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
| | - Mayanglambam H. Devi
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
| | - Bharati Kollah
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
| | - Santosh R. Mohanty
- Indian Institute of Soil Science Indian Council of Agricultural Research Bhopal India
| |
Collapse
|
5
|
Zhu LP, Song SZ, Yang S. Gene repression using synthetic small regulatory RNA in Methylorubrum extorquens. J Appl Microbiol 2021; 131:2861-2875. [PMID: 34021964 DOI: 10.1111/jam.15159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
AIM Genetic tools are a prerequisite for engineering cell factories for synthetic biology and biotechnology. Methylorubrum extorquens is an important platform for a future one-carbon (C1) bioeconomy, but its application is currently limited by the availability of genetic tools. Small regulatory RNA (sRNA) is an important regulatory factor in bacteria and has been applied for gene repression in several strains. This study aimed to construct a synthetic sRNA system based on the MicC scaffold and the chaperone Hfq to control gene expression in M. extorquens. METHODS AND RESULTS Initially, the exogenous lacZ gene was transposed into the M. extorquens chromosome as a reporter, and corresponding β-galactosidase was measured to assess the knockdown efficiency of lacZ. A synthetic sRNA containing a 24-nt antisense RNA targeting lacZ and an Escherichia coli MicC scaffold were constructed, and different Hfqs from E. coli, M. extorquens AM1 and PA1 were further identified. The results showed that the expression of endogenous hfqs from the chromosome in M. extorquens strains was inadequate, and only when it was overexpressed via the plasmid did the colonies show a colour change and a corresponding decrease in β-galactosidase expression. More specifically, M. extorquens strains with overexpressing their own Hfq showed the best gene repression efficiency. Furthermore, this E. coli MicC scaffold and AM1 Hfq system were combined to knock down crtI gene expression in AM1, leading to an 86% decrease in carotenoid production (0·09 mg g-1 ) compared to that (0·65 mg g-1 ) in the wild-type strain. CONCLUSION A functional synthetic sRNA system combined with E. coli MicC and endogenous Hfq was constructed in M. extorquens strains, which was able to interfere with the target crtI gene and reduce carotenoid production. SIGNIFICANCE AND IMPACT OF THE STUDY The synthetic sRNA system reported in this study provides a genetic tool for the manipulation of M. extorquens. The present findings might be helpful for achieving high-throughput gene knockdown expression.
Collapse
Affiliation(s)
- L-P Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - S-Z Song
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - S Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in Methylorubrum extorquens. J Bacteriol 2021; 203:JB.00589-20. [PMID: 33619153 PMCID: PMC8092166 DOI: 10.1128/jb.00589-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For bacteria to thrive they must be well-adapted to their environmental niche, which may involve specialized metabolism, timely adaptation to shifting environments, and/or the ability to mitigate numerous stressors. These attributes are highly dependent on cellular machinery that can sense both the external and intracellular environment. Methylorubrum extorquens is an extensively studied facultative methylotroph, an organism that can use single-carbon compounds as their sole source of carbon and energy. In methylotrophic metabolism, carbon flows through formaldehyde as a central metabolite; thus, formaldehyde is both an obligate metabolite and a metabolic stressor. Via the one-carbon dissimilation pathway, free formaldehyde is rapidly incorporated by formaldehyde activating enzyme (Fae), which is constitutively expressed at high levels. In the presence of elevated formaldehyde levels, a recently identified formaldehyde-sensing protein, EfgA, induces growth arrest. Herein, we describe TtmR, a formaldehyde-responsive transcription factor that, like EfgA, modulates formaldehyde resistance. TtmR is a member of the MarR family of transcription factors and impacts the expression of 75 genes distributed throughout the genome, many of which are transcription factors and/or involved in stress response, including efgA Notably, when M. extorquens is adapting its metabolic network during the transition to methylotrophy, efgA and ttmR mutants experience an imbalance in formaldehyde production and a notable growth delay. Although methylotrophy necessitates that M. extorquens maintain a relatively high level of formaldehyde tolerance, this work reveals a tradeoff between formaldehyde resistance and the efficient transition to methylotrophic growth and suggests that TtmR and EfgA play a pivotal role in maintaining this balance.Importance: All organisms produce formaldehyde as a byproduct of enzymatic reactions and as a degradation product of metabolites. The ubiquity of formaldehyde in cellular biology suggests all organisms have evolved mechanisms of mitigating formaldehyde toxicity. However, formaldehyde-sensing is poorly described and prevention of formaldehyde-induced damage is primarily understood in the context of detoxification. Here we use an organism that is regularly exposed to elevated intracellular formaldehyde concentrations through high-flux one-carbon utilization pathways to gain insight into the role of formaldehyde-responsive proteins that modulate formaldehyde resistance. Using a combination of genetic and transcriptomic analyses, we identify dozens of genes putatively involved in formaldehyde resistance, determined the relationship between two different formaldehyde response systems and identified an inherent tradeoff between formaldehyde resistance and optimal transition to methylotrophic metabolism.
Collapse
|
7
|
Vu HN, Subuyuj GA, Crisostomo RV, Skovran E. Transposon mutagenesis for methylotrophic bacteria using Methylorubrum extorquens AM1 as a model system. Methods Enzymol 2021; 650:159-184. [PMID: 33867020 DOI: 10.1016/bs.mie.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transposon mutagenesis utilizes transposable genetic elements that integrate into a recipient genome to generate random insertion mutations which are easily identified. This forward genetic approach has proven powerful in elucidating complex processes, such as various pathways in methylotrophy. In the past decade, many methylotrophic bacteria have been shown to possess alcohol dehydrogenase enzymes that use lanthanides (Lns) as cofactors. Using Methylorubrum extorquens AM1 as a model organism, we discuss the experimental designs, protocols, and results of three transposon mutagenesis studies to identify genes involved in different aspects of Ln-dependent methanol oxidation. These studies include a selection for transposon insertions that prevent toxic intracellular formaldehyde accumulation, a fluorescence-imaging screen to identify regulatory processes for a primary Ln-dependent methanol dehydrogenase, and a phenotypic screen for genes necessary for function of a Ln-dependent ethanol dehydrogenase. We anticipate that the methods described in this chapter can be applied to understand other metabolic systems in diverse bacteria.
Collapse
Affiliation(s)
- Huong N Vu
- Department of Biological Sciences, San José State University, San José, CA, United States
| | - Gabriel A Subuyuj
- Department of Biological Sciences, San José State University, San José, CA, United States
| | | | - Elizabeth Skovran
- Department of Biological Sciences, San José State University, San José, CA, United States.
| |
Collapse
|
8
|
Pascual JA, Ros M, Martínez J, Carmona F, Bernabé A, Torres R, Lucena T, Aznar R, Arahal DR, Fernández F. Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum. Curr Microbiol 2020; 77:2031-2041. [PMID: 32594222 DOI: 10.1007/s00284-020-02101-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022]
Abstract
Strain SB0023/3 T, isolated from spores of the arbuscular mycorrhizal fungus Glomus iranicum var. tenuihypharum, was analysed to determine whether it represents a new species. It was studied for its applicability in the field of agriculture to reduce the input of nitrogen fertilizers. Comparative analysis of the 16S rRNA gene sequence shows the strain to be affiliated to the genus Methylobacterium, the closest similarities (98.7%) being shared with Methylobacterium dankookense. Further phylogenomic analysis through Up-to-date Bacterial Core Gene (UBCG) confirmed Methylobacterium dankookense as its closest relative. Average Nucleotide Identity (ANI) and in silico DNA-DNA hybridization (DDH) were lower than 92% and 44%, respectively, of the values shown by its phylogenetic relatives. Its genome had an approximate length of 6.05 Mb and the G + C content of the genome was 70.1 mol%. The main cellular fatty acid was Summed Feature 8 (C18:1ω7c and/or C18:1ω6c). It is a Gram-staining-negative, pink-pigmented, strictly aerobic and facultative methylotroph; it grows at 28 ºC and can grow at up to 3% salinity in the presence of sodium chloride. All the data collected support the naming of a novel species to accommodate the strain SB0023/3 T, for which the name Methylobacterium symbioticum sp. nov. is proposed. The type strain is SB0023/3 T (=CECT 9862 T =PYCC 8351 T).
Collapse
Affiliation(s)
- Jose Antonio Pascual
- Departamento de Conservación de Suelos, Agua y Manejo de Residuos Orgánicos, CEBAS-CSIC, Murcia, Spain.
| | - Margarita Ros
- Departamento de Conservación de Suelos, Agua y Manejo de Residuos Orgánicos, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | - Teresa Lucena
- Departamento de Microbiología y Ecología, y Colección Española de Cultivos Tipo (CECT), Universitat de València, València, Spain
| | - Rosa Aznar
- Departamento de Microbiología y Ecología, y Colección Española de Cultivos Tipo (CECT), Universitat de València, València, Spain
| | - David R Arahal
- Departamento de Microbiología y Ecología, y Colección Española de Cultivos Tipo (CECT), Universitat de València, València, Spain
| | | |
Collapse
|
9
|
Methylobacterium segetis sp. nov., a novel member of the family Methylobacteriaceae isolated from soil on Jeju Island. Arch Microbiol 2019; 202:747-754. [DOI: 10.1007/s00203-019-01784-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
10
|
Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb Cell Fact 2017; 16:179. [PMID: 29084554 PMCID: PMC5663086 DOI: 10.1186/s12934-017-0798-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/24/2017] [Indexed: 12/01/2022] Open
Abstract
Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical, serving as a precursor for a wide range of industrial applications such as the production of acrylic acid and 1,3-propanediol. Although Escherichia coli or Saccharomyces cerevisiae are the primary industrial microbes for the production of 3-HP, alternative engineered hosts have the potential to generate 3-HP from other carbon feedstocks. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, is a model system for assessing the possibility of generating 3-HP from one-carbon feedstock methanol. Results Here we constructed a malonyl-CoA pathway by heterologously overexpressing the mcr gene to convert methanol into 3-HP in M. extorquens AM1. The engineered strains demonstrated 3-HP production with initial titer of 6.8 mg/l in shake flask cultivation, which was further improved to 69.8 mg/l by increasing the strength of promoter and mcr gene copy number. In vivo metabolic analysis showed a significant decrease of the acetyl-CoA pool size in the strain with the highest 3-HP titer, suggesting the supply of acetyl-CoA is a potential bottleneck for further improvement. Notably, 3-HP was rapidly degraded after the transition from exponential phase to stationary phase. Metabolomics analysis showed the accumulation of intracellular 3-hydroxypropionyl-CoA at stationary phase with the addition of 3-HP into the cultured medium, indicating 3-HP was first converted to its CoA derivatives. In vitro enzymatic assay and β-alanine pathway dependent 13C-labeling further demonstrated that a reductive route sequentially converted 3-HP-CoA to acrylyl-CoA and propionyl-CoA, with the latter being reassimilated into the ethylmalonyl-CoA pathway. The deletion of the gene META1_4251 encoding a putative acrylyl-CoA reductase led to reduced degradation rate of 3-HP in late stationary phase. Conclusions We demonstrated the feasibility of constructing the malonyl-CoA pathway in M. extorquens AM1 to generate 3-HP. Furthermore, we showed that a reductive route coupled with the ethylmalonyl-CoA pathway was the major channel responsible for degradation of the 3-HP during the growth transition. Engineered M. extorquens AM1 represents a good platform for 3-HP production from methanol. Electronic supplementary material The online version of this article (10.1186/s12934-017-0798-2) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Fu Y, Beck DAC, Lidstrom ME. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. BMC Microbiol 2016; 16:156. [PMID: 27435978 PMCID: PMC4949768 DOI: 10.1186/s12866-016-0778-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. RESULTS The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. CONCLUSIONS In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.
Collapse
Affiliation(s)
- Yanfen Fu
- Department of Chemical Engineering, University of Washington, 616 NE Northlake Place, Benjamin Hall Room 440, Seattle, 98105, WA, USA
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, 616 NE Northlake Place, Benjamin Hall Room 440, Seattle, 98105, WA, USA.,eScience Institute, University of Washington, 616 NE, Northlake Place, Seattle, 98195, WA, USA
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, 616 NE Northlake Place, Benjamin Hall Room 440, Seattle, 98105, WA, USA. .,Department of Microbiology, University of Washington, 616 NE, Northlake Place, Seattle, 98195, WA, USA.
| |
Collapse
|
12
|
Araújo WL, Santos DS, Dini-Andreote F, Salgueiro-Londoño JK, Camargo-Neves AA, Andreote FD, Dourado MN. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction. Antonie Van Leeuwenhoek 2015; 108:951-63. [PMID: 26238382 DOI: 10.1007/s10482-015-0548-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.
Collapse
Affiliation(s)
- Welington Luiz Araújo
- LABMEM/NAP-BIOP, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374 -Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, 05508-900, Brazil,
| | | | | | | | | | | | | |
Collapse
|
13
|
Carroll SM, Chubiz LM, Agashe D, Marx CJ. Parallel and Divergent Evolutionary Solutions for the Optimization of an Engineered Central Metabolism in Methylobacterium extorquens AM1. Microorganisms 2015; 3:152-74. [PMID: 27682084 PMCID: PMC5023240 DOI: 10.3390/microorganisms3020152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022] Open
Abstract
Bioengineering holds great promise to provide fast and efficient biocatalysts for methanol-based biotechnology, but necessitates proven methods to optimize physiology in engineered strains. Here, we highlight experimental evolution as an effective means for optimizing an engineered Methylobacterium extorquens AM1. Replacement of the native formaldehyde oxidation pathway with a functional analog substantially decreased growth in an engineered Methylobacterium, but growth rapidly recovered after six hundred generations of evolution on methanol. We used whole-genome sequencing to identify the basis of adaptation in eight replicate evolved strains, and examined genomic changes in light of other growth and physiological data. We observed great variety in the numbers and types of mutations that occurred, including instances of parallel mutations at targets that may have been "rationalized" by the bioengineer, plus other "illogical" mutations that demonstrate the ability of evolution to expose unforeseen optimization solutions. Notably, we investigated mutations to RNA polymerase, which provided a massive growth benefit but are linked to highly aberrant transcriptional profiles. Overall, we highlight the power of experimental evolution to present genetic and physiological solutions for strain optimization, particularly in systems where the challenges of engineering are too many or too difficult to overcome via traditional engineering methods.
Collapse
Affiliation(s)
- Sean Michael Carroll
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lon M Chubiz
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63103, USA.
| | - Deepa Agashe
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
- National Centre for Biological Sciences, Bangalore 560065, India.
| | - Christopher J Marx
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83843, USA.
| |
Collapse
|
14
|
Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4001-18. [PMID: 25723373 DOI: 10.1021/es504242n] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - S Xie
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1. J Bacteriol 2015; 197:2020-6. [PMID: 25845846 DOI: 10.1128/jb.02595-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During an environmental perturbation, the survival of a cell and its response to the perturbation depend on both the robustness and functionality of the metabolic network. The regulatory mechanisms that allow the facultative methylotrophic bacterium Methylobacterium extorquens AM1 to effect the metabolic transition from succinate to methanol growth are not well understood. Methenyl-dephosphotetrahydromethanopterin (methenyl-dH4MPT), an early intermediate during methanol metabolism, transiently accumulated 7- to 11-fold after addition of methanol to a succinate-limited culture. This accumulation partially inhibited the activity of the methylene-H4MPT dehydrogenase, MtdA, restricting carbon flux to the assimilation cycles. A strain overexpressing the gene (mch) encoding the enzyme that consumes methenyl-dH4MPT did not accumulate methenyl-dH4MPT and had a growth rate that was 2.7-fold lower than that of the wild type. This growth defect demonstrates the physiological relevance of this enzymatic regulatory mechanism during the acclimation period. Changes in metabolites and enzymatic activities were analyzed in the strain overexpressing mch. Under these conditions, the activity of the enzyme coupling formaldehyde with dH4MPT (Fae) remained constant, with concomitant formaldehyde accumulation. Release of methenyl-dH4MPT regulation did not affect the induction of the serine cycle enzyme activities immediately after methanol addition, but after 1 h, the activity of these enzymes decreased, likely due to the toxicity of formaldehyde accumulation. Our results support the hypothesis that in a changing environment, the transient accumulation of methenyl-dH4MPT and inhibition of MtdA activity are strategies that permit flexibility and acclimation of the metabolic network while preventing the accumulation of the toxic compound formaldehyde. IMPORTANCE The identification and characterization of regulatory mechanisms for methylotrophy are in the early stages. We report a nontranscriptional regulatory mechanism that was found to operate as an immediate response for acclimation during changes in substrate availability. Methenyl-dH4MPT, an early intermediate during methanol oxidation, reversibly inhibits the methylene-H4MPT dehydrogenase, MtdA, when Methylobacterium extorquens is challenged to switch from succinate to methanol growth. Bypassing this regulatory mechanism causes formaldehyde to accumulate. Fae, the enzyme catalyzing the conversion of formaldehyde to methylene-dH4MPT, was also identified as another potential regulatory target using this strategy. The results herein further our understanding of the complex regulatory network in methylotrophy and will allow us to improve metabolic engineering strategies of methylotrophs for the production of value-added products.
Collapse
|
16
|
Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BIOMED RESEARCH INTERNATIONAL 2015; 2015:909016. [PMID: 25861650 PMCID: PMC4377440 DOI: 10.1155/2015/909016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/31/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens.
Collapse
Affiliation(s)
| | | | - Daiene Souza Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Welington Luiz Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
17
|
Doronina NV, Torgonskaya ML, Fedorov DN, Trotsenko YA. Aerobic methylobacteria as promising objects of modern biotechnology (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sonntag F, Müller JEN, Kiefer P, Vorholt JA, Schrader J, Buchhaupt M. High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains. Appl Microbiol Biotechnol 2015; 99:3407-19. [PMID: 25661812 DOI: 10.1007/s00253-015-6418-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 11/26/2022]
Abstract
Bio-based production of dicarboxylic acids is an emerging research field with remarkable progress during the last decades. The recently established synthesis of the ethylmalonyl-CoA pathway (EMCP)-derived dicarboxylic acids, mesaconic acid and (2S)-methylsuccinic acid, from the alternative carbon source methanol (Sonntag et al., Appl Microbiol Biotechnol 98:4533-4544, 2014) gave a proof of concept for the sustainable production of hitherto biotechnologically inaccessible monomers. In this study, substantial optimizations of the process by different approaches are presented. Abolishment of mesaconic and (2S)-methylsuccinic acid reuptake from culture supernatant and a productivity increase were achieved by 30-fold decreased sodium ion availability in culture medium. Undesired flux from EMCP into polyhydroxybutyrate (PHB) cycle was hindered by the knockout of polyhydroxyalkanoate synthase phaC which was concomitant with 5-fold increased product concentrations. However, frequently occurring suppressors of strain ΔphaC lost their beneficial properties probably due to redirected channeling of acetyl-CoA. Pool sizes of the product precursors were increased by exploiting the presence of two cobalt-dependent mutases in the EMCP: Fine-tuned growth-limiting cobalt concentrations led to 16-fold accumulation of mesaconyl- and (2S)-methylsuccinyl-CoA which in turn resulted in 6-fold increased concentrations of mesaconic and (2S)-methylsuccinic acids, with a combined titer of 0.65 g/l, representing a yield of 0.17 g/g methanol. This work represents an important step toward an industrially relevant production of ethylmalonyl-CoA pathway-derived dicarboxylic acids and the generation of a stable PHB synthesis negative Methylobacterium extorquens strain.
Collapse
Affiliation(s)
- Frank Sonntag
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Appl Microbiol Biotechnol 2014; 98:4533-44. [PMID: 24419796 DOI: 10.1007/s00253-013-5456-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
The ethylmalonyl-coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens, YciA from E. coli, Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.
Collapse
|
20
|
Carroll SM, Lee MC, Marx CJ. SIGN EPISTASIS LIMITS EVOLUTIONARY TRADE-OFFS AT THE CONFLUENCE OF SINGLE- AND MULTI-CARBON METABOLISM INMETHYLOBACTERIUM EXTORQUENSAM1. Evolution 2013; 68:760-71. [DOI: 10.1111/evo.12301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Sean Michael Carroll
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
| | - Ming-Chun Lee
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
- Department of Biochemistry; University of Hong Kong; Pok Fu Lam Hong Kong
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
- Faculty of Arts and Sciences Center for Systems Biology; Harvard University; Cambridge Massachusetts
| |
Collapse
|
21
|
Peyraud R, Kiefer P, Christen P, Portais JC, Vorholt JA. Co-consumption of methanol and succinate by Methylobacterium extorquens AM1. PLoS One 2012; 7:e48271. [PMID: 23133625 PMCID: PMC3486813 DOI: 10.1371/journal.pone.0048271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022] Open
Abstract
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions.
Collapse
Affiliation(s)
- Rémi Peyraud
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC SYSTEMS BIOLOGY 2011; 5:189. [PMID: 22074569 PMCID: PMC3227643 DOI: 10.1186/1752-0509-5-189] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/10/2011] [Indexed: 01/21/2023]
Abstract
Background Methylotrophic microorganisms are playing a key role in biogeochemical processes - especially the global carbon cycle - and have gained interest for biotechnological purposes. Significant progress was made in the recent years in the biochemistry, genetics, genomics, and physiology of methylotrophic bacteria, showing that methylotrophy is much more widespread and versatile than initially assumed. Despite such progress, system-level description of the methylotrophic metabolism is currently lacking, and much remains to understand regarding the network-scale organization and properties of methylotrophy, and how the methylotrophic capacity emerges from this organization, especially in facultative organisms. Results In this work, we report on the integrated, system-level investigation of the metabolic network of the facultative methylotroph Methylobacterium extorquens AM1, a valuable model of methylotrophic bacteria. The genome-scale metabolic network of the bacterium was reconstructed and contains 1139 reactions and 977 metabolites. The sub-network operating upon methylotrophic growth was identified from both in silico and experimental investigations, and 13C-fluxomics was applied to measure the distribution of metabolic fluxes under such conditions. The core metabolism has a highly unusual topology, in which the unique enzymes that catalyse the key steps of C1 assimilation are tightly connected by several, large metabolic cycles (serine cycle, ethylmalonyl-CoA pathway, TCA cycle, anaplerotic processes). The entire set of reactions must operate as a unique process to achieve C1 assimilation, but was shown to be structurally fragile based on network analysis. This observation suggests that in nature a strong pressure of selection must exist to maintain the methylotrophic capability. Nevertheless, substantial substrate cycling could be measured within C2/C3/C4 inter-conversions, indicating that the metabolic network is highly versatile around a flexible backbone of central reactions that allows rapid switching to multi-carbon sources. Conclusions This work emphasizes that the metabolism of M. extorquens AM1 is adapted to its lifestyle not only in terms of enzymatic equipment, but also in terms of network-level structure and regulation. It suggests that the metabolism of the bacterium has evolved both structurally and functionally to an efficient but transitory utilization of methanol. Besides, this work provides a basis for metabolic engineering to convert methanol into value-added products.
Collapse
Affiliation(s)
- Rémi Peyraud
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One 2010; 5:e14091. [PMID: 21124828 PMCID: PMC2991311 DOI: 10.1371/journal.pone.0014091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
24
|
Smejkalová H, Erb TJ, Fuchs G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One 2010; 5. [PMID: 20957036 PMCID: PMC2948502 DOI: 10.1371/journal.pone.0013001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Methylobacterium extorquens AM1 is an aerobic facultative methylotrophic α-proteobacterium that can use reduced one-carbon compounds such as methanol, but also multi-carbon substrates like acetate (C2) or succinate (C4) as sole carbon and energy source. The organism has gained interest as future biotechnological production platform based on methanol as feedstock. Methodology/Principal Findings We present a comprehensive study of all postulated enzymes for the assimilation of methanol and their regulation in response to the carbon source. Formaldehyde, which is derived from methanol oxidation, is assimilated via the serine cycle, which starts with glyoxylate and forms acetyl-CoA. Acetyl-CoA is assimilated via the proposed ethylmalonyl-CoA pathway, which thereby regenerates glyoxylate. To further the understanding of the central carbon metabolism we identified and quantified all enzymes of the pathways involved in methanol assimilation. We observed a strict differential regulation of their activity level depending on whether C1, C2 or C4 compounds are used. The enzymes, which are specifically required for the utilization of the individual substrates, were several-fold up-regulated and those not required were down-regulated. The enzymes of the ethylmalonyl-CoA pathway showed specific activities, which were higher than the calculated minimal values that can account for the observed growth rate. Yet, some enzymes of the serine cycle, notably its first and last enzymes serine hydroxymethyl transferase and malate thiokinase, exhibit much lower values and probably are rate limiting during methylotrophic growth. We identified the natural C1 carrying coenzyme as tetrahydropteroyl-tetraglutamate rather than tetrahydrofolate. Conclusion/Significance This study provides the first complete picture of the enzymes required for methanol assimilation, the regulation of their activity levels in response to the growth substrate, and the identification of potential growth limiting steps.
Collapse
Affiliation(s)
- Hana Smejkalová
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
25
|
Hölscher T, Breuer U, Adrian L, Harms H, Maskow T. Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium. Appl Environ Microbiol 2010; 76:5585-91. [PMID: 20581197 PMCID: PMC2918973 DOI: 10.1128/aem.01065-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/11/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, a methylotrophic bacterium, Methylobacterium rhodesianum MB 126, was used for the production of the chiral compound (R)-3-hydroxybutyrate (R-3HB) from methanol. R-3HB is formed during intracellular degradation of the storage polymer (R)-3-polyhydroxybutyrate (PHB). Since the monomer R-3HB does not accumulate under natural conditions, M. rhodesianum was genetically modified. The gene (hbd) encoding the R-3HB-degrading enzyme, R-3HB dehydrogenase, was inactivated in M. rhodesianum. The resulting hbd mutant still exhibited low growth rates on R-3HB as the sole source of carbon and energy, indicating the presence of alternative pathways for R-3HB utilization. Therefore, transposon mutagenesis was carried out with the hbd mutant, and a double mutant unable to grow on R-3HB was obtained. This mutant was shown to be defective in lipoic acid synthase (LipA), resulting in an incomplete citric acid cycle. Using the hbd lipA mutant, we produced 3.2 to 3.5 mM R-3HB in batch and 27 mM (2,800 mg liter(-1)) in fed-batch cultures. This was achieved by sequences of cultivation conditions initially favoring growth, then PHB accumulation, and finally PHB degradation.
Collapse
Affiliation(s)
- Tina Hölscher
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Uta Breuer
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Lorenz Adrian
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Hauke Harms
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Thomas Maskow
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
26
|
Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 2010; 192:4859-67. [PMID: 20639322 DOI: 10.1128/jb.00512-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, techniques have been developed and perfected for high-throughput identification of proteins and their accurate partial sequencing by shotgun nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS), making it feasible to assess global protein expression profiles in organisms with sequenced genomes. We implemented comprehensive proteomics to assess the expressed portion of the genome of Methylobacillus flagellatus during methylotrophic growth. We detected a total of 1,671 proteins (64% of the inferred proteome), including all the predicted essential proteins. Nonrandom patterns observed with the nondetectable proteins appeared to correspond to silent genomic islands, as inferred through functional profiling and genome localization. The protein contents in methylamine- and methanol-grown cells showed a significant overlap, confirming the commonality of methylotrophic metabolism downstream of the primary oxidation reactions. The new insights into methylotrophy include detection of proteins for the N-methylglutamate methylamine oxidation pathway that appears to be auxiliary and detection of two alternative enzymes for both the 6-phosphogluconate dehydrogenase reaction (GndA and GndB) and the formate dehydrogenase reaction (FDH1 and FDH4). Mutant analysis revealed that GndA and FDH4 are crucial for the organism's fitness, while GndB and FDH1 are auxiliary.
Collapse
|
27
|
Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 2010; 192:1813-23. [PMID: 20118267 DOI: 10.1128/jb.01166-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multicarbon compounds. Mutants defective in a pathway involved in converting acetyl-coenzyme A (CoA) to glyoxylate (the ethylmalonyl-CoA pathway) are unable to grow on both C(1) and C(2) compounds, showing that both modes of growth have this pathway in common. However, growth on C(2) compounds via the ethylmalonyl-CoA pathway should require glyoxylate consumption via malate synthase, but a mutant lacking malyl-CoA/beta-methylmalyl-CoA lyase activity (MclA1) that is assumed to be responsible for malate synthase activity still grows on C(2) compounds. Since glyoxylate is toxic to this bacterium, it seemed likely that a system is in place to keep it from accumulating. In this study, we have addressed this question and have shown by microarray analysis, mutant analysis, metabolite measurements, and (13)C-labeling experiments that M. extorquens AM1 contains an additional malyl-CoA/beta-methylmalyl-CoA lyase (MclA2) that appears to take part in glyoxylate metabolism during growth on C(2) compounds. In addition, an alternative pathway appears to be responsible for consuming part of the glyoxylate, converting it to glycine, methylene-H(4)F, and serine. Mutants lacking either pathway have a partial defect for growth on ethylamine, while mutants lacking both pathways are unable to grow appreciably on ethylamine. Our results suggest that the malate synthase reaction is a bottleneck for growth on C(2) compounds by this bacterium, which is partially alleviated by this alternative route for glyoxylate consumption. This strategy of multiple enzymes/pathways for the consumption of a toxic intermediate reflects the metabolic versatility of this facultative methylotroph and is a model for other metabolic networks involving high flux through toxic intermediates.
Collapse
|
28
|
Lee MC, Chou HH, Marx CJ. Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Evolution 2009; 63:2816-30. [PMID: 19545267 DOI: 10.1111/j.1558-5646.2009.00757.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Trade-offs between selected and nonselected environments are often assumed to exist during adaptation. This phenomenon is prevalent in microbial metabolism, where many organisms have come to specialize on a narrow breadth of substrates. One well-studied example is methylotrophic bacteria that can use single-carbon (C(1)) compounds as their sole source of carbon and energy, but generally use few, if any, multi-C compounds. Here, we use adaptation of experimental populations of the model methylotroph, Methylobacterium extorquens AM1, to C(1) (methanol) or multi-C (succinate) compounds to investigate specialization and trade-offs between these two metabolic lifestyles. We found a general trend toward trade-offs during adaptation to succinate, but this was neither universal nor showed a quantitative relationship with the extent of adaptation. After 1500 generations, succinate-evolved strains had a remarkably bimodal distribution of fitness values on methanol: either an improvement comparable to the strains adapted on methanol or the complete loss of the ability to grow on C(1) compounds. In contrast, adaptation to methanol resulted in no such trade-offs. Based on the substantial, asymmetric loss of C(1) growth during growth on succinate, we suggest that the long-term maintenance of C(1) metabolism across the genus Methylobacterium requires relatively frequent use of C(1) compounds to prevent rapid loss.
Collapse
Affiliation(s)
- Ming-Chun Lee
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
29
|
Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 2009; 4:e5584. [PMID: 19440302 PMCID: PMC2680597 DOI: 10.1371/journal.pone.0005584] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 03/30/2009] [Indexed: 11/22/2022] Open
Abstract
Background Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid). Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.
Collapse
|
30
|
Strovas TJ, Lidstrom ME. Population heterogeneity in Methylobacterium extorquens AM1. MICROBIOLOGY-SGM 2009; 155:2040-2048. [PMID: 19383691 DOI: 10.1099/mic.0.025890-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heterogeneity of cells within exponentially growing populations was addressed in a bacterium, the facultative methylotroph Methylobacterium extorquens AM1. A transcriptional fusion between a well-characterized methanol-inducible promoter (P(mxaF)) and gfp(uv) was used with flow cytometry to analyse the distribution of gene expression in populations grown on either succinate or methanol, correlated with forward scatter as a measure of cell size. These cell populations were found to consist of three major subpopulations defined by cells that were actively growing and dividing, newly divided, and non-dividing. Through the use of flow cytometry, it was demonstrated that a significant percentage of the total population did not respond to carbon shift. In addition, these experiments demonstrated that a small subset of the total population was significantly brighter than the rest of the population and dominated fluorimetry data. These results were corroborated with a continuous flow-through system and laser scanning microscopy, confirming that subpopulations, not discernible in the population average, dominate population response. These results demonstrate that the combination of flow cytometry and microscopic single-cell analysis can be effectively used to determine the dynamics of subpopulations in population response. In addition, they support the concept that physiological diversity in isogenic populations can poise some proportion of the population to respond appropriately to changing conditions.
Collapse
Affiliation(s)
- Tim J Strovas
- Department of Electrical Engineering, Microscale Life Sciences Center, University of Washington, Seattle, WA, USA.,Department of Bioengineering, Microscale Life Sciences Center, University of Washington, Seattle, WA, USA
| | - Mary E Lidstrom
- Department of Microbiology, Microscale Life Sciences Center, University of Washington, Seattle, WA, USA.,Department of Chemical Engineering, Microscale Life Sciences Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Bosch G, Skovran E, Xia Q, Wang T, Taub F, Miller JA, Lidstrom ME, Hackett M. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 2008; 8:3494-505. [PMID: 18686303 DOI: 10.1002/pmic.200800152] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to validate a gel free quantitative proteomics assay for the model methylotrophic bacterium Methylobacterium extorquens AM1, we examined the M. extorquens AM1 proteome under single carbon (methanol) and multicarbon (succinate) growth, conditions that have been studied for decades and for which extensive corroborative data have been compiled. In total, 4447 proteins from a database containing 7556 putative ORFs from M. extorquens AM1 could be identified with two or more peptide sequences, corresponding to a qualitative proteome coverage of 58%. Statistically significant nonzero (log(2) scale) differential abundance ratios of methanol/succinate could be detected for 317 proteins using summed ion intensity measurements and 585 proteins using spectral counting, at a q-value cut-off of 0.01, a measure of false discovery rate. The results were compared to recent microarray studies performed under equivalent chemostat conditions. The M. extorquens AM1 studies demonstrated the feasibility of scaling up the multidimensional capillary HPLC MS/MS approach to a prokaryotic organism with a proteome more than three times the size of microbes we have investigated previously, while maintaining a high degree of proteome coverage and reliable quantitative abundance ratios.
Collapse
Affiliation(s)
- Gundula Bosch
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Strovas TJ, Sauter LM, Guo X, Lidstrom ME. Cell-to-cell heterogeneity in growth rate and gene expression in Methylobacterium extorquens AM1. J Bacteriol 2007; 189:7127-33. [PMID: 17644598 PMCID: PMC2045205 DOI: 10.1128/jb.00746-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell heterogeneity in gene expression and growth parameters was assessed in the facultative methylotroph Methylobacterium extorquens AM1. A transcriptional fusion between a well-characterized methylotrophy promoter (P(mxaF)) and gfp(uv) (encoding a variant of green fluorescent protein [GFPuv]) was used to assess single-cell gene expression. Using a flowthrough culture system and laser scanning microscopy, data on fluorescence and cell size were obtained over time through several growth cycles for cells grown on succinate or methanol. Cells were grown continuously with no discernible lag between divisions, and high cell-to-cell variability was observed for cell size at division (2.5-fold range), division time, and growth rate. When individual cells were followed over multiple division cycles, no direct correlation was observed between the growth rate before a division and the subsequent growth rate or between the cell size at division and the subsequent growth rate. The cell-to-cell variability for GFPuv fluorescence from the P(mxaF) promoter was less, with a range on the order of 1.5-fold. Fluorescence and growth rate were also followed during a carbon shift experiment, in which cells growing on succinate were shifted to methanol. Variability of the response was observed, and the growth rate at the time of the shift from succinate to methanol was a predictor of the response. Higher growth rates at the time of the substrate shift resulted in greater decreases in growth rates immediately after the shift, but full induction of P(mxaF)-gfp(uv) was achieved faster. These results demonstrate that in M. extorquens, physiological heterogeneity at the single-cell level plays an important role in determining the population response to the metabolic shift examined.
Collapse
Affiliation(s)
- Tim J Strovas
- Department of Chemical Engineering, University of Washington, Box 352125, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
33
|
Guo X, Lidstrom ME. Physiological analysis of Methylobacterium extorquens AM1 grown in continuous and batch cultures. Arch Microbiol 2006; 186:139-49. [PMID: 16821027 DOI: 10.1007/s00203-006-0131-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/15/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
Chemostat cultures of Methylobacterium extorquens AM1 grown on methanol or succinate at a range of dilution rates were compared to batch cultures in terms of enzyme levels, poly-beta-hydroxybutyrate content, and intracellular concentrations of adenine and pyridine nucleotides. In both chemostat and batch cultures, enzymes specific to C1 metabolism were up-regulated during growth on methanol and down-regulated during growth on succinate, polyhydroxybutyrate levels were higher on succinate, intracellular ATP levels and the energy charge were higher during growth on methanol, while the pools of reducing equivalents were higher during growth on succinate. For most of the tested parameters, little alteration occurred in response to growth rate. Overall, we conclude that the chemostat cultivation conditions developed in this study roughly mimic the growth in batch cultures, but provide a better control over the culturing conditions and a better data reproducibility, which are important for integrative functional studies. This study provides baseline data for future work using chemostat cultures, defining key similarities and differences in the physiology compared to existing batch culture data.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Chemical Engineering, University of Washington, Box 352180, Seattle, WA 98195, USA
| | | |
Collapse
|
34
|
Strovas TJ, Dragavon JM, Hankins TJ, Callis JB, Burgess LW, Lidstrom ME. Measurement of respiration rates of Methylobacterium extorquens AM1 cultures by use of a phosphorescence-based sensor. Appl Environ Microbiol 2006; 72:1692-5. [PMID: 16461730 PMCID: PMC1392911 DOI: 10.1128/aem.72.2.1692-1695.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiration rates of bacterial cultures can be a powerful tool in gauging the effects of genetic manipulation and environmental changes affecting overall metabolism. We present an optical method for measuring respiration rates using a robust phosphorescence lifetime-based sensor and off-the-shelf technology. This method was tested with the facultative methylotroph Methylobacterium extorquens AM1 to demonstrate subtle mutant phenotypes.
Collapse
Affiliation(s)
- Tim J Strovas
- Department of Bioengineering, Microscale Life Sciences Center, University of Washington, Seattle, Washington 98195-2180, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hommes NG, Kurth EG, Sayavedra-Soto LA, Arp DJ. Disruption of sucA, which encodes the E1 subunit of alpha-ketoglutarate dehydrogenase, affects the survival of Nitrosomonas europaea in stationary phase. J Bacteriol 2006; 188:343-7. [PMID: 16352852 PMCID: PMC1317585 DOI: 10.1128/jb.188.1.343-347.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Nitrosomonas europaea lacks measurable alpha-ketoglutarate dehydrogenase activity, the recent completion of the genome sequence revealed the presence of the genes encoding the enzyme. A knockout mutation was created in the sucA gene encoding the E1 subunit. Compared to wild-type cells, the mutant strain showed an accelerated loss of ammonia monooxygenase and hydroxylamine oxidoreductase activities upon entering stationary phase. In addition, unlike wild-type cells, the mutant strain showed a marked lag in the ability to resume growth in response to pH adjustments in late stationary phase.
Collapse
Affiliation(s)
- Norman G Hommes
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley, Corvallis, OR 97331-2902, USA
| | | | | | | |
Collapse
|
36
|
Yamazaki Y, Danelishvili L, Wu M, Macnab M, Bermudez LE. Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol 2006; 72:819-25. [PMID: 16391123 PMCID: PMC1352297 DOI: 10.1128/aem.72.1.819-825.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium is widely distributed in the environment, and it is chiefly found in water and soil. M. avium, as well as Mycobacterium smegmatis, has been recognized to produce a biofilm or biofilm-like structure. We screened an M. avium green fluorescent protein (GFP) promoter library in M. smegmatis for genes involved in biofilm formation on polyvinyl chloride (PVC) plates. Clones associated with increased GFP expression > or =2.0-fold over the baseline were sequenced. Seventeen genes, most encoding proteins of the tricarboxylic acid (TCA) cycle and GDP-mannose and fatty acid biosynthesis, were identified. Their regulation in M. avium was confirmed by examining the expression of a set of genes by real-time PCR after incubation on PVC plates. In addition, screening of 2,000 clones of a transposon mutant bank constructed using M. avium strain A5, a mycobacterial strain with the ability to produce large amounts of biofilm, revealed four mutants with an impaired ability to form biofilm. Genes interrupted by transposons were homologues of M. tuberculosis 6-oxodehydrogenase (sucA), enzymes of the TCA cycle, protein synthetase (pstB), enzymes of glycopeptidolipid (GPL) synthesis, and Rv1565c (a hypothetical membrane protein). In conclusion, it appears that GPL biosynthesis, including the GDP-mannose biosynthesis pathway, is the most important pathway involved in the production of M. avium biofilm.
Collapse
Affiliation(s)
- Yoshitaka Yamazaki
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
37
|
Korotkova N, Lidstrom ME, Chistoserdova L. Identification of genes involved in the glyoxylate regeneration cycle in Methylobacterium extorquens AM1, including two new genes, meaC and meaD. J Bacteriol 2005; 187:1523-6. [PMID: 15687219 PMCID: PMC545636 DOI: 10.1128/jb.187.4.1523-1526.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glyoxylate regeneration cycle (GRC) operates in serine cycle methylotrophs to effect the net conversion of acetyl coenzyme A to glyoxylate. Mutants have been generated in several genes involved in the GRC, and phenotypic analysis has been carried out to clarify their role in this cycle.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
38
|
Abstract
Cellular functions are based on thousands of chemical reactions and transport processes, most of them being catalysed and regulated by specific proteins. Systematic gene knockouts have provided evidence that this complex reaction network possesses considerable redundancy, that is, alternative routes exist along which signals and metabolic fluxes may be directed to accomplish an identical output behaviour. This property is of particular importance in cases where parts of the reaction network are transiently or permanently impaired, for example, due to an infection or genetic alterations. Here we present a computational concept to determine enzyme-reduced metabolic networks that are still sufficient to accomplish a given set of cellular functions. Our approach consists of defining an objective function that expresses the compromise that has to be made between successive reduction of the network by omission of enzymes and its decreasing thermodynamic and kinetic feasibility. Optimisation of this objective function results in a linear mixed-integer program. With increasing weight given to the reduction of the number of enzymes, the total flux in the network increases and some of the reactions have to proceed in thermodynamically unfavourable directions. The approach was applied to two metabolic schemes: the energy and redox metabolism of red blood cells and the carbon metabolism of Methylobacterium extorquens. For these two example networks, we determined various variants of reduced networks differing in the number and types of disabled enzymes and disconnected reactions. Using a comprehensive kinetic model of the erythrocyte metabolism, we assess the kinetic feasibility of enzyme-reduced subnetworks. The number of enzymes predicted to be indispensable amounts to 14 (out of 28) for the erythrocyte scheme and 13 (out of 77) for the bacterium scheme, the largest group of enzymes predicted to be simultaneously dispensable amounts to 3 and 37 for these two systems. Our approach might contribute to identifying potential target enzymes for rational drug design, to rationalising gene-expression profiles of metabolic enzymes and to designing synthetic networks with highly specialised metabolic functions.
Collapse
Affiliation(s)
- Scott Holzhütter
- Technical University Berlin, Institute of Mathematics, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | | |
Collapse
|
39
|
Wood AP, Aurikko JP, Kelly DP. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 2004; 28:335-52. [PMID: 15449607 DOI: 10.1016/j.femsre.2003.12.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We assess the use to which bioinformatics in the form of bacterial genome sequences, functional gene probes and the protein sequence databases can be applied to hypotheses about obligate autotrophy in eubacteria. Obligate methanotrophy and obligate autotrophy among the chemo- and photo-lithotrophic bacteria lack satisfactory explanation a century or more after their discovery. Various causes of these phenomena have been suggested, which we review in the light of the information currently available. Among these suggestions is the absence in vivo of a functional alpha-ketoglutarate dehydrogenase. The advent of complete and partial genome sequences of diverse autotrophs, methylotrophs and methanotrophs makes it possible to probe the reasons for the absence of activity of this enzyme. We review the role and evolutionary origins of the Krebs cycle in relation to autotrophic metabolism and describe the use of in silico methods to probe the partial and complete genome sequences of a variety of obligate genera for genes encoding the subunits of the alpha-ketoglutarate dehydrogenase complex. Nitrosomonas europaea and Methylococcus capsulatus, which lack the functional enzyme, were found to contain the coding sequences for the E1 and E2 subunits of alpha-ketoglutarate dehydrogenase. Comparing the predicted physicochemical properties of the polypeptides coded by the genes confirmed the putative gene products were similar to the active alpha-ketoglutarate dehydrogenase subunits of heterotrophs. These obligate species are thus genomically competent with respect to this enzyme but are apparently incapable of producing a functional enzyme. Probing of the full and incomplete genomes of some cyanobacterial and methanogenic genera and Aquifex confirms or suggests the absence of the genes for at least one of the three components of the alpha-ketoglutarate dehydrogenase complex in these obligate organisms. It is recognized that absence of a single functional enzyme may not explain obligate autotrophy in all cases and may indeed be only be one of a number of controls that impose obligate metabolism. Availability of more genome sequences from obligate genera will enable assessment of whether obligate autotrophy is due to the absence of genes for a few or many steps in organic compound metabolism. This problem needs the technologies and mindsets of the present generation of molecular microbiologists to resolve it.
Collapse
Affiliation(s)
- Ann P Wood
- Department of Life Sciences, King's College London, Franklin Wills Building, 150 Stamford Street, London SE1 9NN, UK
| | | | | |
Collapse
|
40
|
De Marco P. Methylotrophy versus heterotrophy: a misconception. Microbiology (Reading) 2004; 150:1606-1607. [PMID: 15184547 DOI: 10.1099/mic.0.27165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Van Dien SJ, Strovas T, Lidstrom ME. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Biotechnol Bioeng 2003; 84:45-55. [PMID: 12910542 DOI: 10.1002/bit.10745] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The metabolic fluxes of central carbon metabolism were measured in chemostat-grown cultures of Methylobacterium extorquens AM1 with methanol as the sole organic carbon and energy source and growth-limiting substrate. Label tracing experiments were carried out using 70% (13)C-methanol in the feed, and the steady-state mass isotopomer distributions of amino acids derived from total cell protein were measured by gas chromatography coupled to mass spectrometry. Fluxes were calculated from the isotopomer distribution data using an isotopomer balance model and evolutionary error minimization algorithm. The combination of labeled methanol with unlabeled CO(2), which enters central metabolism in two different reactions, provided the discriminatory power necessary to allow quantification of the unknown fluxes within a reasonably small confidence interval. In wild-type M. extorquens AM1, no measurable flux was detected through pyruvate dehydrogenase or malic enzyme, and very little flux through alpha-ketoglutarate dehydrogenase (1.4% of total carbon). In contrast, the alpha-ketoglutarate dehydrogenase flux was 25.5% of total carbon in the regulatory mutant strain phaR, while the pyruvate dehydrogenase and malic enzyme fluxes remained insignificant. The success of this technique with growth on C(1) compounds suggests that it can be applied to help characterize the effects of other regulatory mutations, and serve as a diagnostic tool in the metabolic engineering of methylotrophic bacteria.
Collapse
Affiliation(s)
- Stephen J Van Dien
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
42
|
Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 2003; 185:2980-7. [PMID: 12730156 PMCID: PMC154073 DOI: 10.1128/jb.185.10.2980-2987.2003] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-2125, USA
| | | | | | | |
Collapse
|