1
|
Fang CT, Yi WC, Shun CT, Tsai SF. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 50:471-477. [PMID: 26427879 DOI: 10.1016/j.jmii.2015.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND/PURPOSE Klebsiella pneumoniae genotype K1 is a highly virulent pathogen that causes liver abscess and metastatic endophthalmitis/meningitis. Whether its pathogenicity is controlled by DNA adenine methylase (Dam), an epigenetic regulator of bacterial virulence gene expression, is yet unknown. We aimed to study the role of DNA adenine methylation in the pathogenicity of K. pneumoniae genotype K1. METHODS We identified the dam gene in the prototype tissue-invasive strain (NTUH-K2044) of K. pneumoniae genotype K1, using the strain's complete genome sequence in GenBank. We constructed a dam- mutant and compared it with the wild type, in terms of in vitro serum resistance and in vivo BALB/cByl mice inoculation. RESULTS Loss of Dam activity in the mutant was verified by MboI restriction digestion of the genomic DNA and a 1000-fold increase in spontaneous mutation rate. The dam mutant lost at least 68% of serum resistance when compared with the wild type (survival ratio at 1 hour: 2.6 ± 0.4 vs. 8.2 ± 1.9; at 2 hours: 3.9 ± 1.6 vs. 17.4 ± 3.6; p values < 0.05). Likewise, virulence to mice decreased by 40-fold in an intraperitoneal injection model [lethal dose, 50% (LD50): 2 × 103 colony-forming units (CFUs) vs. 5 × 101 CFUs] and by sixfold in a gastric ingestion model (LD50: 3 × 104 CFUs vs. 5 × 103 CFUs). Attenuation of the dam mutant was not attributable to its growth rate, which was similar to that of the wild type. CONCLUSION Our results support the view that DNA adenine methylation plays an important role in modulating the pathogenicity of K. pneumoniae genotype K1. The incomplete attenuation indicates the existence of other regulatory factors.
Collapse
Affiliation(s)
- Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wen-Ching Yi
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Feng Tsai
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
2
|
DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans. J Proteomics 2015; 126:131-9. [DOI: 10.1016/j.jprot.2015.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/27/2022]
|
3
|
Bansal AK. Role of bioinformatics in the development of new antibacterial therapy. Expert Rev Anti Infect Ther 2014; 6:51-65. [DOI: 10.1586/14787210.6.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Mehling JS, Lavender H, Clegg S. A Dam methylation mutant of Klebsiella pneumoniae is partially attenuated. FEMS Microbiol Lett 2007; 268:187-93. [PMID: 17328745 DOI: 10.1111/j.1574-6968.2006.00581.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In Klebsiella pneumoniae, a chromosomal insertion mutation was constructed in the dam gene, which encodes DNA adenine methylase (Dam), resulting in a mutant unable to methylate specific nucleotides. In some bacteria, the Dam methylase has been shown to play an important role in virulence gene regulation as well as in methyl-directed mismatch repair and the regulation of replication initiation. Disruption of the normal Dam function by either eliminating or greatly increasing expression in several organisms has been shown to cause attenuation of virulence in murine models of infection. In K. pneumoniae, a mutation-eliminating Dam function is shown here to result in only partial attenuation following intranasal and intraperitoneal infection of Balb/C mice.
Collapse
Affiliation(s)
- Joanna S Mehling
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
5
|
Campellone KG, Roe AJ, Løbner-Olesen A, Murphy KC, Magoun L, Brady MJ, Donohue-Rolfe A, Tzipori S, Gally DL, Leong JM, Marinus MG. Increased adherence and actin pedestal formation by dam-deficient enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 2007; 63:1468-81. [PMID: 17302821 DOI: 10.1111/j.1365-2958.2007.05602.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are highly infectious pathogens capable of causing severe diarrhoeal illnesses. As a critical step during their colonization, EHEC adhere intimately to intestinal epithelial cells and generate F-actin 'pedestal' structures that elevate them above surrounding cell surfaces. Intimate adhesion and pedestal formation result from delivery of the EHEC type III secretion system (TTSS) effector proteins Tir and EspF(U) into the host cell and expression of the bacterial outer membrane adhesin, intimin. To investigate a role for DNA methylation during the regulation of adhesion and pedestal formation in EHEC, we deleted the dam (DNA adenine methyltransferase) gene from EHEC O157:H7 and demonstrate that this mutation results in increased interactions with cultured host cells. EHECDeltadam exhibits dramatically elevated levels of adherence and pedestal formation when compared with wild-type EHEC, and expresses significantly higher protein levels of intimin, Tir and EspF(U). Analyses of GFP fusions, Northern blotting, reverse transcription polymerase chain reaction, and microarray experiments indicate that the abundance of Tir in the dam mutant is not due to increased transcription levels, raising the possibility that Dam methylation can indirectly control protein expression by a post-transcriptional mechanism. In contrast to other dam-deficient pathogens, EHECDeltadam is capable of robust intestinal colonization of experimentally infected animals.
Collapse
MESH Headings
- Actins/metabolism
- Adhesins, Bacterial/analysis
- Animals
- Artificial Gene Fusion
- Bacterial Adhesion
- Carrier Proteins/analysis
- Disease Models, Animal
- Escherichia coli Infections
- Escherichia coli O157/enzymology
- Escherichia coli O157/genetics
- Escherichia coli O157/pathogenicity
- Escherichia coli Proteins/analysis
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- HeLa Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Oligonucleotide Array Sequence Analysis
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Receptors, Cell Surface/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
- Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism
- Swine
- Transcription, Genetic
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Seville 41080, Spain
| | | |
Collapse
|
7
|
Abstract
N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.
Collapse
Affiliation(s)
- Didier Wion
- INSERM U318, CHU Michallon, Université Joseph Fourier, 38043 Grenoble, France.
| | | |
Collapse
|
8
|
Erova TE, Pillai L, Fadl AA, Sha J, Wang S, Galindo CL, Chopra AK. DNA adenine methyltransferase influences the virulence of Aeromonas hydrophila. Infect Immun 2006; 74:410-24. [PMID: 16368997 PMCID: PMC1346675 DOI: 10.1128/iai.74.1.410-424.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Among the various virulence factors produced by Aeromonas hydrophila, a type II secretion system (T2SS)-secreted cytotoxic enterotoxin (Act) and the T3SS are crucial in the pathogenesis of Aeromonas-associated infections. Our laboratory molecularly characterized both Act and the T3SS from a diarrheal isolate, SSU of A. hydrophila, and defined the role of some regulatory genes in modulating the biological effects of Act. In this study, we cloned, sequenced, and expressed the DNA adenine methyltransferase gene of A. hydrophila SSU (dam(AhSSU)) in a T7 promoter-based vector system using Escherichia coli ER2566 as a host strain, which could alter the virulence potential of A. hydrophila. Recombinant Dam, designated as M.AhySSUDam, was produced as a histidine-tagged fusion protein and purified from an E. coli cell lysate using nickel affinity chromatography. The purified Dam had methyltransferase activity, based on its ability to transfer a methyl group from S-adenosyl-l-methionine to N(6)-methyladenine-free lambda DNA and to protect methylated lambda DNA from digestion with DpnII but not against the DpnI restriction enzyme. The dam gene was essential for the viability of the bacterium, and overproduction of Dam in A. hydrophila SSU, using an arabinose-inducible, P(BAD) promoter-based system, reduced the virulence of this pathogen. Specifically, overproduction of M.AhySSUDam decreased the motility of the bacterium by 58%. Likewise, the T3SS-associated cytotoxicity, as measured by the release of lactate dehydrogenase enzyme in murine macrophages infected with the Dam-overproducing strain, was diminished by 55% compared to that of a control A. hydrophila SSU strain harboring the pBAD vector alone. On the contrary, cytotoxic and hemolytic activities associated with Act as well as the protease activity in the culture supernatant of a Dam-overproducing strain were increased by 10-, 3-, and 2.4-fold, respectively, compared to those of the control A. hydrophila SSU strain. The Dam-overproducing strain was not lethal to mice (100% survival) when given by the intraperitoneal route at a dose twice that of the 50% lethal dose, which within 2 to 3 days killed 100% of the animals inoculated with the A. hydrophila control strain. Taken together, our data indicated alteration of A. hydrophila virulence by overproduction of Dam.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, 3.142D Medical Research Building, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Alonso A, Pucciarelli MG, Figueroa-Bossi N, García-del Portillo F. Increased excision of the Salmonella prophage ST64B caused by a deficiency in Dam methylase. J Bacteriol 2005; 187:7901-11. [PMID: 16291663 PMCID: PMC1291290 DOI: 10.1128/jb.187.23.7901-7911.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica mutants defective in Dam methylase are strongly attenuated in virulence and release a large amount of proteins to the extracellular medium. The extent to which these two phenotypes are linked is unknown. Using a proteomic approach, we identified Sb6, Sb13, and Sb36 as proteins present in larger amounts in culture supernatants of an S. enterica serovar Typhimurium dam mutant than in those of the wild-type strain. These three proteins are encoded in the Salmonella prophage ST64B. Higher amounts of ST64B phage DNA and tailless viral capsids were also detected in supernatant extracts of the dam mutant, suggesting that Dam methylation negatively regulates the excision of ST64B. Reverse transcription-PCR analysis revealed that the expression of two ST64B genes encoding a putative antirepressor and a phage replication protein increases in the dam mutant. The SOS response also augments the excision of ST64B. Infection assays performed with phage-cured strains demonstrated that ST64B does not carry genes required for virulence in the mouse model. Evidence was also obtained discarding a relationship between the high excision of ST64B and the envelope instability or virulence attenuation phenotype. Taken together, these data indicate that ST64B excises at a high rate in dam mutants due to the loss of repression exerted by Dam on phage genes and induction of the SOS response characteristic of these mutants. The exacerbated excision of ST64B does not however contribute to the incapacity of dam mutants to cause disease.
Collapse
Affiliation(s)
- Ana Alonso
- Departamento Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Fälker S, Schmidt MA, Heusipp G. DNA methylation in Yersinia enterocolitica: role of the DNA adenine methyltransferase in mismatch repair and regulation of virulence factors. MICROBIOLOGY-SGM 2005; 151:2291-2299. [PMID: 16000719 DOI: 10.1099/mic.0.27946-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA adenine methyltransferase (Dam) plays an important role in physiological processes of Gram-negative bacteria such as mismatch repair and replication. In addition, Dam regulates the expression of virulence genes in various species. The authors cloned the dam gene of Yersinia enterocolitica and showed that Dam is essential for viability. Dam overproduction in Y. enterocolitica resulted in an increased frequency of spontaneous mutation and decreased resistance to 2-aminopurine; however, these effects were only marginal compared to the effect of overproduction of Escherichia coli-derived Dam in Y. enterocolitica, implying different roles or activities of Dam in mismatch repair of the two species. These differences in Dam function are not the cause for the essentiality of Dam in Y. enterocolitica, as Dam of E. coli can complement a dam defect in Y. enterocolitica. Instead, Dam seems to interfere with expression of essential genes. Furthermore, Dam mediates virulence of Y. enterocolitica. Dam overproduction results in increased tissue culture invasion of Y. enterocolitica, while the expression of specifically in vivo-expressed genes is not altered.
Collapse
Affiliation(s)
- Stefan Fälker
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Universitätsklinikum Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
| | - M Alexander Schmidt
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Universitätsklinikum Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Gerhard Heusipp
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Universitätsklinikum Münster, von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
11
|
Robinson VL, Oyston PCF, Titball RW. A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett 2005; 252:251-6. [PMID: 16188402 DOI: 10.1016/j.femsle.2005.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 08/26/2005] [Accepted: 09/01/2005] [Indexed: 11/24/2022] Open
Abstract
We have constructed a dam mutant of Yersinia pestis GB. In BALB/c mice inoculated subcutaneously, the median lethal dose of the mutant was at least 2000-fold higher than the wild type. Mice inoculated with sub-lethal doses of the mutant were protected against a subsequent challenge with virulent Y. pestis. The effect of dam inactivation on gene expression was examined using a DNA microarray, which revealed increased expression of a number of genes associated with the SOS response. These results confirm the key role of Dam in the regulation of virulence, and its potential role as a target for the generation of attenuated strains of pathogenic bacteria.
Collapse
Affiliation(s)
- Victoria L Robinson
- Defence Science and Technology Laboratory, Biomedical Sciences, Salisbury, Wilts, UK.
| | | | | |
Collapse
|
12
|
Abstract
GATC sequences in Escherichia coli DNA are methylated at the adenine residue by DNA adenine methyltransferase (DamMT). These methylated residues and/or the level of DamMT can influence cellular functions such as gene transcription, DNA mismatch repair, initiation of chromosome replication and nucleoid structure. In certain bacteria, unlike E. coli, DamMT is essential for viability perhaps owing to its role in chromosome replication. DamMT has also been implicated as a virulence factor in bacterial pathogenesis. The origin and phylogeny of DamMT, based on sequenced genomes, has been deduced.
Collapse
Affiliation(s)
- Anders Løbner-Olesen
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|