1
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
2
|
Huseinovic A, Dekker SJ, Boogaard B, Vermeulen NPE, Kooter JM, Vos JC. Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion. Amino Acids 2018; 50:1377-1390. [PMID: 29978260 PMCID: PMC6153950 DOI: 10.1007/s00726-018-2613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/28/2018] [Indexed: 02/05/2023]
Abstract
In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Bob Boogaard
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - Jan M Kooter
- AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Huseinovic A, van Dijk M, Vermeulen NPE, van Leeuwen F, Kooter JM, Vos JC. Drug toxicity profiling of a Saccharomyces cerevisiae deubiquitinase deletion panel shows that acetaminophen mimics tyrosine. Toxicol In Vitro 2017; 47:259-268. [PMID: 29258884 DOI: 10.1016/j.tiv.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Post-translational protein modification by addition or removal of the small polypeptide ubiquitin is involved in a range of critical cellular processes, like proteasomal protein degradation, DNA repair, gene expression, internalization of membrane proteins, and drug sensitivity. We recently identified genes important for acetaminophen (APAP) toxicity in a comprehensive screen and our findings suggested that a small set of yeast strains carrying deletions of ubiquitin-related genes can be informative for drug toxicity profiling. In yeast, approximately 20 different deubiquitinating enzymes (DUBs) have been identified, of which only one is essential for viability. We investigated whether the toxicity profile of DUB deletion yeast strains would be informative about the toxicological mode of action of APAP. A set of DUB deletion strains was tested for sensitivity and resistance to a diverse series of compounds, including APAP, quinine, ibuprofen, rapamycin, cycloheximide, cadmium, peroxide and amino acids and a cluster analysis was performed. Most DUB deletion strains showed an altered growth pattern when exposed to these compounds by being either more sensitive or more resistant than WT. Toxicity profiling of the DUB strains revealed a remarkable overlap between the amino acid tyrosine and acetaminophen (APAP), but not its stereoisomer AMAP. Furthermore, co-exposure of cells to both APAP and tyrosine showed an enhancement of the cellular growth inhibition, suggesting that APAP and tyrosine have a similar mode of action.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Marc van Dijk
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jan M Kooter
- AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Dalmont K, Biles CL, Konsure H, Dahal S, Rowsey T, Broge M, Poudyal S, Gurung T, Shrestha S, Biles CL, Cluck T, Howard A. Nonsteroidal Anti-inflammatory Drugs (NSAIDS) Inhibit the Growth and Reproduction of Chaetomium globosum and Other Fungi Associated with Water-Damaged Buildings. Mycopathologia 2017; 182:1025-1036. [DOI: 10.1007/s11046-017-0188-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
|
5
|
Huseinovic A, van Leeuwen JS, van Welsem T, Stulemeijer I, van Leeuwen F, Vermeulen NPE, Kooter JM, Vos JC. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae. PLoS One 2017; 12:e0173573. [PMID: 28291796 PMCID: PMC5349473 DOI: 10.1371/journal.pone.0173573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jolanda S. van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris Stulemeijer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan M. Kooter
- AIMMS-Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, Amsterdam, The Netherlands
| | - J. Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Karadas S, Aslan M, Gonullu H, Kati C, Duran L, Olmez S, Kucukoglu ME, Demir H. Acetaminophen intoxication is associated with decreased serum paraoxonase and arylesterase activities and increased lipid hydroperoxide levels. Hum Exp Toxicol 2014; 33:1134-40. [PMID: 24501102 DOI: 10.1177/0960327113511477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acetaminophen is at present one of the most commonly used analgesics and antipyretics. Recent evidence has suggested that oxidative stress is involved in the mechanism of acetaminophen intoxication. Paraoxonase-1 (PON1) plays an important role as an endogenous free-radical scavenging molecule. The aim of this study was to evaluate the influence of serum PON1 activity and oxidative stress in patients with acetaminophen intoxication. METHODS A total of 20 patients with acetaminophen intoxication and 25 healthy controls were enrolled. Serum total antioxidant capacity (TAC), lipid hydroperoxide (LOOH) levels, and paraoxonase and arylesterase activities were measured spectrophotometrically. RESULTS The serum TAC levels and the paraoxonase and arylesterase activities were significantly lower in patients with acetaminophen intoxication compared with controls (all, p < 0.001), while the serum LOOH levels were significantly higher (p < 0.001). CONCLUSIONS Our results suggest that decreased PON1 activity seems to be associated with increased oxidative stress in patients with acetaminophen intoxication. Measuring serum PON1 activity may be useful in assessing the development of toxicity risk in acetaminophen toxicity. It would be useful to recommend vitamins with antioxidant effects such as vitamins C and E along with medical treatments.
Collapse
Affiliation(s)
- S Karadas
- Department of Emergency Medicine, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - M Aslan
- Department of Internal Medicine, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - H Gonullu
- Department of Emergency Medicine, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - C Kati
- Department of Emergency Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - L Duran
- Department of Emergency Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - S Olmez
- Department of Gastroenterology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - M E Kucukoglu
- Department of Internal Medicine, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - H Demir
- Department of Chemistry, Faculty of Science and Arts, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
7
|
van Leeuwen JS, Orij R, Luttik MAH, Smits GJ, Vermeulen NPE, Vos JC. Subunits Rip1p and Cox9p of the respiratory chain contribute to diclofenac-induced mitochondrial dysfunction. Microbiology (Reading) 2011; 157:685-694. [DOI: 10.1099/mic.0.044578-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The widely used drug diclofenac can cause serious heart, liver and kidney injury, which may be related to its ability to cause mitochondrial dysfunction. Using Saccharomyces cerevisiae as a model system, we studied the mechanisms of diclofenac toxicity and the role of mitochondria therein. We found that diclofenac reduced cell growth and viability and increased levels of reactive oxygen species (ROS). Strains increasingly relying on respiration for their energy production showed enhanced sensitivity to diclofenac. Furthermore, oxygen consumption was inhibited by diclofenac, suggesting that the drug inhibits respiration. To identify the site of respiratory inhibition, we investigated the effects of deletion of respiratory chain subunits on diclofenac toxicity. Whereas deletion of most subunits had no effect, loss of either Rip1p of complex III or Cox9p of complex IV resulted in enhanced resistance to diclofenac. In these deletion strains, diclofenac did not increase ROS formation as severely as in the wild-type. Our data are consistent with a mechanism of toxicity in which diclofenac inhibits respiration by interfering with Rip1p and Cox9p in the respiratory chain, resulting in ROS production that causes cell death.
Collapse
Affiliation(s)
- Jolanda S. van Leeuwen
- LACDR, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Rick Orij
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marijke A. H. Luttik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Gertien J. Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- LACDR, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - J. Chris Vos
- LACDR, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol 2008; 17:22-31. [PMID: 19062291 DOI: 10.1016/j.tim.2008.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/03/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
The emergence of widespread multidrug resistance (MDR) is a serious challenge for therapeutics, food-preservation and crop protection. Frequently, MDR is a result of the action of drug-efflux pumps, which are able to catalyze the extrusion of unrelated chemical compounds. This review summarizes the current knowledge on the Saccharomyces cerevisiae drug:H+ antiporters of the major facilitator superfamily (MFS), a group of MDR transporters that is still characterized poorly in eukaryotes. Particular focus is given here to the physiological role and expression regulation of these transporters, while we provide a unified view of new data emerging from functional genomics approaches. Although traditionally described as drug pumps, evidence reviewed here corroborates the hypothesis that several MFS-MDR transporters might have a natural substrate and that drug transport might occur only fortuitously or opportunistically. Their role in MDR might even result from the transport of endogenous metabolites that affect the partition of cytotoxic compounds indirectly. Finally, the extrapolation of the gathered knowledge on the MDR phenomenon in yeast to pathogenic fungi and higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
9
|
Stepanov A, Nitiss KC, Neale G, Nitiss JL. Enhancing drug accumulation in Saccharomyces cerevisiae by repression of pleiotropic drug resistance genes with chimeric transcription repressors. Mol Pharmacol 2008; 74:423-31. [PMID: 18469141 DOI: 10.1124/mol.107.044651] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast is a powerful model system for studying the action of small-molecule therapeutics. An important limitation has been low efficacy of many small molecules in yeast due to limited intracellular accumulation. We used the DNA binding domain of the pleiotropic drug resistance regulator pleiotropic drug resistance 1 (Pdr1) fused in-frame to transcription repressors to repress Pdr1-regulated genes. Expression of these chimeric regulators conferred dominant enhancement of sensitivity to a different class of compounds and led to greatly diminished levels of Pdr1p-regulated transcripts, including the yeast p-glycoprotein homolog Pdr5. Enhanced sensitivity was seen for a wide range of small molecules. Biochemical measurements demonstrated enhanced accumulation of rhodamine in yeast cells expressing the chimeric repressors. These repressors of Pdr1p-regulated transcripts can be introduced into large collections of strains such as the Saccharomyces cerevisiae deletion set and enhance the utility of yeast for studying drug action and for mechanism-based drug discovery.
Collapse
Affiliation(s)
- Alexander Stepanov
- St. Jude Children's Research Hospital, Molecular Pharmacology Department, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
10
|
John L, Sharma G, Chaudhuri SP, Pillai B. Cigarette smoke extract induces changes in growth and gene expression of Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 338:1578-86. [PMID: 16289044 DOI: 10.1016/j.bbrc.2005.10.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 10/21/2005] [Indexed: 11/18/2022]
Abstract
The response of Saccharomyces cerevisiae cells to an aqueous extract of cigarette smoke was studied. Exposure to cigarette smoke extract inhibits yeast growth and results in global changes in gene expression spanning many functional classes of genes. Genes involved in response to oxidative stress are upregulated after a brief exposure to cigarette smoke extract. The effects of cigarette smoke extract on yeast growth can be reversed by treatment with anti-oxidants. Mutants lacking superoxide dismutase gene were hypersensitive to cigarette smoke exposure. YAP1 is a central transcriptional regulator of oxidative stress in yeast. YAP1 dependent expression of beta-galactosidase was enhanced following exposure to cigarette smoke. The overall agreement between our observations and the recently reported effects of cigarette smoke on gene expression in rodent and human cells suggests that yeast can be used as a model system in toxicogenomics studies for monitoring toxic agents and studying the cellular and molecular consequences of exposure to potentially toxic agents.
Collapse
Affiliation(s)
- Lijo John
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | | | | | | |
Collapse
|
11
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|