1
|
Moraïs S, Stern J, Artzi L, Fontes CMGA, Bayer EA, Mizrahi I. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2023; 2657:53-77. [PMID: 37149522 DOI: 10.1007/978-1-0716-3151-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Sarah Moraïs
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Edward A Bayer
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Synergy of Cellulase Systems between Acetivibrio thermocellus and Thermoclostridium stercorarium in Consolidated-Bioprocessing for Cellulosic Ethanol. Microorganisms 2022; 10:microorganisms10030502. [PMID: 35336078 PMCID: PMC8951355 DOI: 10.3390/microorganisms10030502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Anaerobes harbor some of the most efficient biological machinery for cellulose degradation, especially thermophilic bacteria, such as Acetivibrio thermocellus and Thermoclostridium stercorarium, which play a fundamental role in transferring lignocellulose into ethanol through consolidated bioprocessing (CBP). In this study, we compared activities of two cellulase systems under varying kinds of hemicellulose and cellulose. A. thermocellus was identified to contribute specifically to cellulose hydrolysis, whereas T. stercorarium contributes to hemicellulose hydrolysis. The two systems were assayed in various combinations to assess their synergistic effects using cellulose and corn stover as the substrates. Their maximum synergy degrees on cellulose and corn stover were, respectively, 1.26 and 1.87 at the ratio of 3:2. Furthermore, co-culture of these anaerobes on the mixture of cellulose and xylan increased ethanol concentration from 21.0 to 40.4 mM with a high cellulose/xylan-to-ethanol conversion rate of up to 20.7%, while the conversion rates of T. stercorarium and A. thermocellus monocultures were 19.3% and 15.2%. The reason is that A. thermocellus had the ability to rapidly degrade cellulose while T. stercorarium co-utilized both pentose and hexose, the metabolites of cellulose degradation, to produce ethanol. The synergistic effect of cellulase systems and metabolic pathways in A. thermocellus and T. stercorarium provides a novel strategy for the design, selection, and optimization of ethanol production from cellulosic biomass through CBP.
Collapse
|
3
|
Wang Y, Leng L, Islam MK, Liu F, Lin CSK, Leu SY. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization. Int J Mol Sci 2019; 20:ijms20133354. [PMID: 31288425 PMCID: PMC6651384 DOI: 10.3390/ijms20133354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022] Open
Abstract
Cellulosomes are an extracellular supramolecular multienzyme complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls. The structural and unique subunit arrangement of cellulosomes can promote its adhesion to the insoluble substrates, thus providing individual microbial cells with a direct competence in the utilization of cellulosic biomass. Significant progress has been achieved in revealing the structures and functions of cellulosomes, but a knowledge gap still exists in understanding the interaction between cellulosome and lignocellulosic substrate for those derived from biorefinery pretreatment of agricultural crops. The cellulosomic saccharification of lignocellulose is affected by various substrate-related physical and chemical factors, including native (untreated) wood lignin content, the extent of lignin and xylan removal by pretreatment, lignin structure, substrate size, and of course substrate pore surface area or substrate accessibility to cellulose. Herein, we summarize the cellulosome structure, substrate-related factors, and regulatory mechanisms in the host cells. We discuss the latest advances in specific strategies of cellulosome-induced hydrolysis, which can function in the reaction kinetics and the overall progress of biorefineries based on lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ling Leng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Md Khairul Islam
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fanghua Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
4
|
Stern J, Artzi L, Moraïs S, Fontes CMGA, Bayer EA. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2017; 1588:93-116. [PMID: 28417363 DOI: 10.1007/978-1-4939-6899-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Johanna Stern
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Lior Artzi
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Sarah Moraïs
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Edward A Bayer
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel.
| |
Collapse
|
5
|
Yamamoto K, Tamaru Y. Synergistic properties of cellulases from Clostridium cellulovorans in the presence of cellobiose. AMB Express 2016; 6:1. [PMID: 26728466 PMCID: PMC4700033 DOI: 10.1186/s13568-015-0169-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022] Open
Abstract
An anaerobic mesophile, Clostridium cellulovorans, produces a multienzyme complex called the cellulosome and actively degrades polysaccharides in the plant cell wall. C. cellulovorans also changes cellulosomal subunits to form highly active combinations dependent on the carbon substrate. A previous study reported on the synergistic effects of exoglucanase S (ExgS) and endoglucanase H (EngH) that are classified into the glycosyl hydrolase (GH) families 48, and 9, respectively. In this study, we investigated synergistic effects of ExgS and EngK, a GH9 cellulase different from EngH. In addition, since EngK was known to produce cellobiose as its main product, the inhibition on cellulase activity of EngK with cellobiose was examined. As a result, the effect of cellobiose inhibition on EngK coexistent with ExgS was found to be much lower than that with EngH. Thus, although EngH and EngK are in the same GH9 family, enzymatic activity in the presence of cellobiose was significantly different.
Collapse
|
6
|
Abstract
Clostridium clariflavum is an anaerobic, cellulosome-forming thermophile, containing in its genome genes for a large number of cellulosomal enzyme and a complex scaffoldin system. Previously, we described the major cohesin-dockerin interactions of the cellulosome components, and on this basis a model of diverse cellulosome assemblies was derived. In this work, we cultivated C. clariflavum on cellobiose-, microcrystalline cellulose-, and switchgrass-containing media and isolated cell-free cellulosome complexes from each culture. Gel filtration separation of the cellulosome samples revealed two major fractions, which were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to identify the key players of the cellulosome assemblies therein. From the 13 scaffoldins present in the C. clariflavum genome, 11 were identified, and a variety of enzymes from different glycoside hydrolase and carbohydrate esterase families were identified, including the glycoside hydrolase families GH48, GH9, GH5, GH30, GH11, and GH10. The expression level of the cellulosomal proteins varied as a function of the carbon source used for cultivation of the bacterium. In addition, the catalytic activity of each cellulosome was examined on different cellulosic substrates, xylan and switchgrass. The cellulosome isolated from the microcrystalline cellulose-containing medium was the most active of all the cellulosomes that were tested. The results suggest that the expression of the cellulosome proteins is regulated by the type of substrate in the growth medium. Moreover, both cell-free and cell-bound cellulosome complexes were produced which together may degrade the substrate in a synergistic manner. These observations are compatible with our previously published model of cellulosome assemblies in this bacterium. Because the reservoir of unsustainable fossil fuels, such as coal, petroleum, and natural gas, is overutilized and continues to contribute to environmental pollution and CO2 emission, the need for appropriate alternative energy sources becomes more crucial. Bioethanol produced from dedicated crops and cellulosic waste can provide a partial answer, yet a cost-effective production method must be developed. The cellulosome system of the anaerobic thermophile C. clariflavum comprises a large number of cellulolytic and hemicellulolytic enzymes, which self-assemble in a number of different cellulosome architectures for enhanced cellulosic biomass degradation. Identification of the major cellulosomal components expressed during growth of the bacterium and their influence on its catalytic capabilities provide insight into the performance of the remarkable cellulosome of this intriguing bacterium. The findings, together with the thermophilic characteristics of the proteins, render C. clariflavum of great interest for future use in industrial cellulose conversion processes.
Collapse
|
7
|
Hyeon JE, You SK, Kang DH, Ryu SH, Kim M, Lee SS, Han SO. Enzymatic degradation of lignocellulosic biomass by continuous process using laccase and cellulases with the aid of scaffoldin for ethanol production. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
A noncellulosomal mannanase26E contains a CBM59 in Clostridium cellulovorans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:438787. [PMID: 24795881 PMCID: PMC3985142 DOI: 10.1155/2014/438787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/18/2014] [Indexed: 11/17/2022]
Abstract
A multicomponent enzyme-complex prevents efficient degradation of the plant cell wall for biorefinery. In this study, the method of identifying glycoside hydrolases (GHs) to degrade hemicelluloses was demonstrated. The competence of C. cellulovorans, which changes to be suitable for degradation of each carbon source, was used for the method. C. cellulovorans was cultivated into locust bean gum (LBG) that is composed of galactomannan. The proteins produced by C. cellulovorans were separated into either fractions binding to crystalline cellulose or not. Proteins obtained from each fraction were further separated by SDS-PAGE and were stained with Coomassie Brilliant Blue and were detected for mannanase activity. The proteins having the enzymatic activity for LBG were cut out and were identified by mass spectrometry. As a result, four protein bands were classified into glycosyl hydrolase family 26 (GH26) mannanases. One of the identified mannanases, Man26E, contains a carbohydrate-binding module (CBM) family 59, which binds to xylan, mannan, and Avicel. Although mannose and galactose are the same as a hexose, the expression patterns of the proteins from C. cellulovorans were quite different. More interestingly, zymogram for mannanase activity showed that Man26E was detected in only LBG medium.
Collapse
|
9
|
Xu T, Li Y, He Z, Zhou J. Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis inClostridium cellulolyticum. Mol Microbiol 2014; 91:694-705. [DOI: 10.1111/mmi.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Xu
- Institute for Environmental Genomics; University of Oklahoma; Norman OK 73071 USA
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73071 USA
| | - Yongchao Li
- Institute for Environmental Genomics; University of Oklahoma; Norman OK 73071 USA
- Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73071 USA
| | - Zhili He
- Institute for Environmental Genomics; University of Oklahoma; Norman OK 73071 USA
- Virtual Institute for Microbial Stress and Survival; Berkeley USA
| | - Jizhong Zhou
- Institute for Environmental Genomics; University of Oklahoma; Norman OK 73071 USA
- Virtual Institute for Microbial Stress and Survival; Berkeley USA
- Earth Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
- Department of Environmental Science and Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
10
|
Hyeon JE, Jeon SD, Han SO. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv 2013; 31:936-44. [PMID: 23563098 DOI: 10.1016/j.biotechadv.2013.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022]
Abstract
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | | | | |
Collapse
|
11
|
Bae J, Morisaka H, Kuroda K, Ueda M. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes. J Mol Microbiol Biotechnol 2013; 23:370-8. [PMID: 23920499 DOI: 10.1159/000351358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellulose, a primary component of lignocellulosic biomass, is the most abundant carbohydrate polymer in nature. Only a limited number of microorganisms are known to degrade cellulose, which is highly recalcitrant due to its crystal structure. Anaerobic bacteria efficiently degrade cellulose by producing cellulosomes, which are complexes of cellulases bound to scaffoldins. The underlying mechanisms that are responsible for the assembly and efficiency of cellulosomes are not yet fully understood. The cohesin-dockerin specificity has been extensively studied to understand cellulosome assembly. Moreover, the recent progress in proteomics has enabled integral analyses of the growth-substrate-dependent variations in cellulosomal systems. Furthermore, the proximity and targeting effects of cellulosomal synergistic actions have been investigated using designed minicellulosomes. The recent findings about cellulosome assembly, strategies for optimal cellulosome production, and beneficial features of cellulosomes as an arming microcompartment on the microbial cell surface are summarized here.
Collapse
Affiliation(s)
- Jungu Bae
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
12
|
Jeon SD, Lee JE, Kim SJ, Kim SW, Han SO. Analysis of selective, high protein-protein binding interaction of cohesin-dockerin complex using biosensing methods. Biosens Bioelectron 2012; 35:382-389. [PMID: 22480778 DOI: 10.1016/j.bios.2012.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
Optical biosensors that use fluorescence are promising tools for the analysis of target materials such as protein, DNA and other biomaterial. To analyze the binding properties of a protein-protein interaction, we constructed fluorescent biomarkers based on the cohesin-dockerin interaction, which coordinates the assembly of cellulolytic enzymes and scaffolding proteins to produce a cell surface multiprotein complex known as the "cellulosome" in some anaerobic bacteria. Our 2D-PAGE results displayed diverse binding profiles to the dockerin containing cellulosomal proteins produced by Clostridium cellulovorans grown on different carbon sources, such as Avicel, xylan and AXP (Avicel:xylan:pectin (3:1:1)). Fluorescence intensity analysis indicated that EngE and EngH bound more efficiently to Coh6 than to Coh2 or Coh9 (2-fold to 6-fold and 1.5-fold to 5-fold, respectively), while others cellulosomal proteins displayed similar results. In addition, both an enzyme-linked interaction assay (ELIA) and surface plasmon resonance (SPR) analyses demonstrated that both EngE and EngH preferentially bound cohesin6 versus the other two cohesin molecules. This work demonstrated the analysis of the binding patterns between interacting proteins using fluorescent biomarkers. We also illustrated the potential of this sensitive approach to quantify specific target analytical materials via the example of the cohesin-dockerin interaction.
Collapse
Affiliation(s)
- Sang Duck Jeon
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Ji Eun Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Su Jung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Sung Ok Han
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
13
|
A screening method for β-glucan hydrolase employing Trypan Blue-coupled β-glucan agar plate and β-glucan zymography. Biotechnol Lett 2012; 34:1073-7. [PMID: 22350291 DOI: 10.1007/s10529-012-0873-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
A new screening method for β-(1,3-1,6) glucan hydrolase was developed using a pure β-glucan from Aureobaisidum pullulans by zymography and an LB-agar plate. Paenibacillus sp. was screened as a producer a β-glucan hydrolase on the Trypan Blue-coupled β-glucan LB-agar plate and the activity of the enzyme was analyzed by SDS-β-glucan zymography. The β-glucan was not hydrolyzed by Bacillus spp. strains, which exhibit cellulolytic activity on CMC zymography. The gene, obtaining by shotgun cloning and encoding the β-glucan hydrolase of Paenibacillus sp. was sequenced.
Collapse
|
14
|
Jeon SD, Yu KO, Kim SW, Han SO. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Appl Microbiol Biotechnol 2011; 90:565-72. [DOI: 10.1007/s00253-011-3108-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/30/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
15
|
Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2011; 48:371-7. [PMID: 22112952 DOI: 10.1016/j.enzmictec.2010.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/08/2010] [Accepted: 12/27/2010] [Indexed: 11/24/2022]
Abstract
Although cellulosic materials of plant origin are the most abundant utilizable biomass resource, the amino acid-producing organism Corynebacterium glutamicum can not utilize these materials. Here we report the engineering of a C. glutamicum strain expressing functional minicellulosomes containing chimeric endoglucanase E bound to miniCbpA from Clostridium cellulovorans that can hydrolyze cellulosic materials. The chimeric endoglucanase E consists of the endoglucanase E catalytic backbone of Clostridium thermocellum fused with the endoglucanase B dockerin domain of C. cellulovorans. The resulting strain degraded cellulose efficiently by substrate targeting via the carbohydrate binding module. The assembly of minicellulosomes increased the activity against carboxymethyl cellulose approximately 2.8-fold compared with that for the corresponding enzymes alone. This is the first report of the formation of Clostridium minicellulosomes by C. glutamicum. The development of C. glutamicum strain that is capable of more effective cellulose hydrolysis brings about a realization of consolidated bioprocessing for the utilization of cellulosic biomass.
Collapse
|
16
|
Choi NS, Choi JH, Kim BH, Han YJ, Kim JS, Lee SG, Song JJ. Mixed-substrate (glycerol tributyrate and fibrin) zymography for simultaneous detection of lipolytic and proteolytic enzymes on a single gel. Electrophoresis 2009; 30:2234-7. [PMID: 19544489 DOI: 10.1002/elps.200800727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new zymography method for simultaneous detection of two different enzymatic activities (lipolytic and proteolytic) using a single SDS-containing or native-conformation gel and a mixed-substrate (glycerol tributyrate and fibrin) (MS)(1) gel was developed. After routine electrophoresis, SDS in the gel was removed by treatment with Triton X-100. Gel proteins were electrotransferred to the MS gel. To visualize lipolytic activity, the MS gel was incubated at 37 degrees C (for 6 or 24 h) until clear bands against an opaque background were observed. To detect proteolytic activity, the same MS gel was stained with Coomassie brilliant blue. Using this method, we show that six lipolytic enzymes from Staphylococcus pasteuri NJ-1 and four proteolytic enzymes from two Bacillus strains, B. licheniformis DJ-2 and B. licheniformis NJ-5, isolated from soil, can be simultaneously detected.
Collapse
Affiliation(s)
- Nack-Shick Choi
- Enzyme Based Fusion Technology Research Team, Jeonbuk Branch Institute, Jeonbuk, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Parachin NS, Siqueira S, de Faria FP, Torres FAG, de Moraes LMP. Xylanases from Cryptococcus flavus isolate I-11: Enzymatic profile, isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pagès S, Perret S. The cellulosomes fromClostridium cellulolyticum. FEBS J 2009; 276:3076-86. [DOI: 10.1111/j.1742-4658.2009.07025.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Choi NS, Kim BH, Park CS, Han YJ, Lee HW, Choi JH, Lee SG, Song JJ. Multiple-layer substrate zymography for detection of several enzymes in a single sodium dodecyl sulfate gel. Anal Biochem 2009; 386:121-2. [DOI: 10.1016/j.ab.2008.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/08/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
20
|
Doi RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 2007; 1125:267-79. [PMID: 18096849 DOI: 10.1196/annals.1419.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cellulolytic activity of mesophilic bacteria and fungi is described, with special emphasis on the large extracellular enzyme complex called the cellulosome. The cellulosome is composed of a scaffolding protein, which is attached to various cellulolytic and hemicellulolytic enzymes, and this complex allows the organisms to degrade plant cell walls very efficently. The enzymes include a variety of cellulases, hemicellulases, and pectinases that work synergistically to degrade complex cell-wall molecules.
Collapse
Affiliation(s)
- Roy H Doi
- Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K. Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 2007; 71:230-53. [PMID: 17347523 PMCID: PMC1847379 DOI: 10.1128/mmbr.00035-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of organization that exist in bacteria extend from macromolecules to populations. Evidence that there is also a level of organization intermediate between the macromolecule and the bacterial cell is accumulating. This is the level of hyperstructures. Here, we review a variety of spatially extended structures, complexes, and assemblies that might be termed hyperstructures. These include ribosomal or "nucleolar" hyperstructures; transertion hyperstructures; putative phosphotransferase system and glycolytic hyperstructures; chemosignaling and flagellar hyperstructures; DNA repair hyperstructures; cytoskeletal hyperstructures based on EF-Tu, FtsZ, and MreB; and cell cycle hyperstructures responsible for DNA replication, sequestration of newly replicated origins, segregation, compaction, and division. We propose principles for classifying these hyperstructures and finally illustrate how thinking in terms of hyperstructures may lead to a different vision of the bacterial cell.
Collapse
Affiliation(s)
- Vic Norris
- Department of Science, University of Rouen, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blouzard JC, Bourgeois C, de Philip P, Valette O, Bélaïch A, Tardif C, Bélaïch JP, Pagès S. Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: identification of seven genes encoding new dockerin-containing proteins. J Bacteriol 2007; 189:2300-9. [PMID: 17209020 PMCID: PMC1899368 DOI: 10.1128/jb.00917-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.
Collapse
Affiliation(s)
- Jean-Charles Blouzard
- Laboratoire de Bioénergétique et Ingénierie des Protéines, IBSM, Centre National de la Recherche Scientifique and Université de Provence, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|