1
|
Kumar R, Singh BR. Botulinum Toxin: A Comprehensive Review of Its Molecular Architecture and Mechanistic Action. Int J Mol Sci 2025; 26:777. [PMID: 39859491 PMCID: PMC11766063 DOI: 10.3390/ijms26020777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research. BoNT's potency stems from its unique structural features, which include domains responsible for receptor recognition, membrane binding, internalization, and enzymatic cleavage. This division of labor within the toxin's structure allows it to specifically recognize and interact with synaptic proteins, leading to precise cleavage at targeted sites within neurons. The toxin's mechanism of action involves a multi-step process: recognition, binding, and catalysis, ultimately blocking neurotransmitter release by cleaving proteins like SNAP-25, VAMP, and syntaxin. This disruption in synaptic vesicle fusion causes paralysis, typically in peripheral neurons. However, emerging evidence suggests that BoNT also affects the central nervous system (CNS), influencing presynaptic functions and distant neuronal systems. The evolutionary history of BoNT reveals that its neurotoxic properties likely provided a selective advantage in certain ecological contexts. Interestingly, the very features that make BoNT a potent toxin also enable its therapeutic applications, offering precision in treating neurological disorders like dystonia, spasticity, and chronic pain. In this review, we highlight the toxin's structural, functional, and evolutionary aspects, explore its clinical uses, and identify key research gaps, such as BoNT's central effects and its long-term cellular impact. A clear understanding of these aspects could facilitate the representation of BoNT as a unique scientific paradigm for studying neuronal processes and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA;
| | | |
Collapse
|
2
|
Sagane Y, Mutoh S, Koizumi R, Suzuki T, Miyashita SI, Miyata K, Ohyama T, Niwa K, Watanabe T. Reversible Association of the Hemagglutinin Subcomplex, HA-33/HA-17 Trimer, with the Botulinum Toxin Complex. Protein J 2017; 36:417-424. [PMID: 28707196 DOI: 10.1007/s10930-017-9733-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Botulinum neurotoxin (BoNT) associates with nontoxic proteins, either a nontoxic nonhemagglutinin (NTNHA) or the complex of NTNHA and hemagglutinin (HA), to form M- or L-toxin complexes (TCs). Single BoNT and NTNHA molecules are associated and form M-TC. A trimer of the 70-kDa HA protein (HA-70) attaches to the M-TC to form M-TC/HA-70. Further, 1-3 arm-like 33- and 17-kDa HA molecules (HA-33/HA-17 trimer), consisting of 1 HA-17 protein and 2 HA-33 proteins, can attach to the M-TC/HA-70 complex, yielding 1-, 2-, and 3-arm L-TC. In this study, the purified 1- and 2-arm L-TCs spontaneously converted into another L-TC species after acquiring the HA-33/HA-17 trimer from other TCs during long-term storage and freezing/thawing. Transmission electron microscopy analysis provided evidence of the formation of detached HA-33/HA-17 trimers in the purified TC preparation. These findings provide evidence of reversible association/dissociation of the M-TC/HA-70 complex with the HA-33/HA-17 trimers, as well as dynamic conversion of the quaternary structure of botulinum TC in culture.
Collapse
Affiliation(s)
- Yoshimasa Sagane
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan.
| | - Shingo Mutoh
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1 Kogane-chuo, Eniwa, 061-1449, Japan
| | - Ryosuke Koizumi
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan
| | - Tomonori Suzuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shin-Ichiro Miyashita
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan
| | - Keita Miyata
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Tohru Ohyama
- Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, 5-196-1 Kogane-chuo, Eniwa, 061-1449, Japan
| | - Koichi Niwa
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan
| | - Toshihiro Watanabe
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, 099-2493, Japan
| |
Collapse
|
3
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
4
|
Ihekwaba AEC, Mura I, Malakar PK, Walshaw J, Peck MW, Barker GC. New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food. J Bacteriol 2016; 198:204-11. [PMID: 26350137 PMCID: PMC4751798 DOI: 10.1128/jb.00630-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food. Currently, mathematical models relating to the hazards associated with C. botulinum, which are largely empirical, make major contributions to botulinum risk assessment. Evaluated using statistical techniques, these models simulate the response of the bacterium to environmental conditions. Though empirical models have been successfully incorporated into risk assessments to support food safety decision making, this process includes significant uncertainties so that relevant decision making is frequently conservative and inflexible. Progression involves encoding into the models cellular processes at a molecular level, especially the details of the genetic and molecular machinery. This addition drives the connection between biological mechanisms and botulism risk assessment and hazard management strategies. This review brings together elements currently described in the literature that will be useful in building quantitative models of C. botulinum neurotoxin production. Subsequently, it outlines how the established form of modeling could be extended to include these new elements. Ultimately, this can offer further contributions to risk assessments to support food safety decision making.
Collapse
Affiliation(s)
- Adaoha E C Ihekwaba
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Ivan Mura
- Faculty of Engineering, EAN University, Bogotá, Colombia
| | - Pradeep K Malakar
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - John Walshaw
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - G C Barker
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
5
|
Sakaguchi Y, Suzuki T, Yamamoto Y, Nishikawa A, Oguma K. Genomics of Clostridium botulinum group III strains. Res Microbiol 2015; 166:318-25. [DOI: 10.1016/j.resmic.2014.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
6
|
Suzuki T, Miyashita SI, Hayashi S, Miyata K, Inui K, Kondo Y, Miyazaki S, Ohyama T, Niwa K, Watanabe T, Sagane Y. Identification of the interaction region between hemagglutinin components of the botulinum toxin complex. Int J Biol Macromol 2014; 65:284-8. [DOI: 10.1016/j.ijbiomac.2014.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
|
7
|
Lee K, Gu S, Jin L, Le TTN, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 2013; 9:e1003690. [PMID: 24130488 PMCID: PMC3795040 DOI: 10.1371/journal.ppat.1003690] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/11/2013] [Indexed: 11/24/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry. Food-borne botulinum neurotoxin (BoNT) poisoning results in fatal muscle paralysis. But how can BoNT–a large protein released by the bacteria clostridia–survive the hostile gastrointestinal (GI) tract to gain access to neurons that control muscle contraction? Here, we report the complete structure of a bimodular ∼760 kDa BoNT/A large progenitor toxin complex (L-PTC), which is composed of BoNT and four non-toxic bacterial proteins. The architecture of this bacterial machinery mimics an Apollo lunar module, whereby the “ascent stage” (a ∼290 kDa module) protects BoNT from destruction in the GI tract and the 3-arm “descent stage” (a ∼470 kDa module) mediates absorption of BoNT by binding to host carbohydrate receptors in the small intestine. This new finding has helped us identify the carbohydrate-binding sites and the monosaccharide IPTG as a prototypical oral inhibitor, which extends survival following lethal BoNT/A intoxication of mice. Hence, pre-treatment with small molecule inhibitors based on carbohydrate receptor mimicry can provide temporary protection against BoNT entry into the circulation.
Collapse
Affiliation(s)
- Kwangkook Lee
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Shenyan Gu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Lei Jin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Thi Tuc Nghi Le
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Luisa W. Cheng
- Foodborne Contaminants Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Jasmin Strotmeier
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail: (AR); (RJ)
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
- Neuroscience, Aging and Stem Cell Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AR); (RJ)
| |
Collapse
|
8
|
Gu S, Jin R. Assembly and function of the botulinum neurotoxin progenitor complex. Curr Top Microbiol Immunol 2013; 364:21-44. [PMID: 23239347 DOI: 10.1007/978-3-642-33570-9_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Botulinum neurotoxins (BoNTs) are among the most poisonous substances known to man, but paradoxically, BoNT-containing medicines and cosmetics have been used with great success in the clinic. Accidental BoNT poisoning mainly occurs through oral ingestion of food contaminated with Clostridium botulinum. BoNTs are naturally produced in the form of progenitor toxin complexes (PTCs), which are high molecular weight (up to ~900 kDa) multiprotein complexes composed of BoNT and several non-toxic neurotoxin-associated proteins (NAPs). NAPs protect the inherently fragile BoNTs against the hostile environment of the gastrointestinal (GI) tract and help BoNTs pass through the intestinal epithelial barrier before they are released into the general circulation. These events are essential for ingested BoNTs to gain access to motoneurons, where they inhibit neurotransmitter release and cause muscle paralysis. In this review, we discuss the structural basis for assembly of NAPs and BoNT into the PTC that protects BoNT and facilitate its delivery into the bloodstream.
Collapse
Affiliation(s)
- Shenyan Gu
- Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
9
|
Gu S, Jin R. Assembly and Function of the Botulinum Neurotoxin Progenitor Complex. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
10
|
Modulation of botulinum toxin-induced changes in neuromuscular function with antibodies directed against recombinant polypeptides or fragments. Neuroscience 2011; 179:208-22. [PMID: 21277940 DOI: 10.1016/j.neuroscience.2011.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/21/2022]
Abstract
Botulinum toxin is an agent that is typically encountered in two settings: as an agent that can cause disease (e.g. botulism), and as an agent that can be used to treat disease (i.e., a variety of neurologic disorders). In both cases it would be advantageous to develop a sound understanding of the mechanisms by which antibodies neutralize the toxin. In the present study, recombinant antigens were used to generate antibodies against the carboxyterminal half of the toxin heavy chain (HC50), the entire toxin light chain (LC), and the HA17, HA35 and HA70 components of the progenitor toxin complex. These antibodies were then evaluated for their respective abilities to alter botulinum toxin-induced changes in locomotor behavior in mice. The botulinum toxin type A complex was shown to produce dose-dependent depression of locomotor behavior within the dose range of 0.3-0.7 mouse LD50 units. At a dose of 0.5 LD50, the toxin typically reduced running behavior by 90% or more, and full recovery was not observed for approximately 4 weeks. Mice that were actively or passively vaccinated against the HC50 polypeptide were resistant to toxin action, presumably because the antibodies occluded the toxin binding domain. Interestingly, mice that were actively or passively vaccinated against LC were also resistant to toxin action. This effect may have been due to steric hindrance of the binding process. There was no scenario in which anti-HA antibodies altered the effects of toxin on locomotor behavior. This absence of effect was likely due to the fact that HAs and neurotoxin in the progenitor toxin complex spontaneously dissociate in physiologic media.
Collapse
|
11
|
Interaction of botulinum toxin with the epithelial barrier. J Biomed Biotechnol 2010; 2010:974943. [PMID: 20169001 PMCID: PMC2822237 DOI: 10.1155/2010/974943] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 12/24/2009] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a protein toxin (approximately 150 kDa), which possesses a metalloprotease activity. Food-borne botulism is manifested when BoNT is absorbed from the digestive tract to the blood stream and enters the peripheral nerves, where the toxin cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The initial obstacle to orally ingested BoNT entering the body is the epithelial barrier of the digestive tract. Recent cell biology and molecular biology studies are beginning to elucidate the mechanism by which this large protein toxin crosses the epithelial barrier. In this review, we provide an overview of the structural features of botulinum toxins (BoNT and BoNT complex) and the interaction of these toxins with the epithelial barrier.
Collapse
|
12
|
Culture enrichment assists the diagnosis of cattle botulism by a monoclonal antibody based sandwich ELISA. Vet Microbiol 2010; 144:226-30. [PMID: 20116183 DOI: 10.1016/j.vetmic.2009.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 11/24/2022]
Abstract
Monoclonal antibodies (MAbs) obtained from a mouse immunised with Clostridium botulinum type D toxoid were developed into a sandwich ELISA (sELISA) format that was able to detect type D toxin and types C and D toxin complexes. The sELISA was examined for its potential to replace the mouse bioassay as an alternative in vitro assay for the diagnosis of cattle botulism. Its application directly to intestinal samples collected from suspect cattle botulism cases and prepared for testing for the standard mouse bioassay showed poor correlation and sensitivity with the mouse bioassay results. However, anaerobic pre-enrichment of the samples after heat treatment at 80 degrees C for 10 min to activate any residual C. botulinum spores greatly improved the sELISA detection rate of the toxin by increasing the sample toxin levels. All of the mouse bioassay positive cattle cases tested were detected by the sELISA from the heated and pre-enriched samples tested after 24h incubation. Toxin was detected by sELISA and subsequently confirmed by mouse bioassay in samples from an additional 3 cases that had been originally mouse bioassay negative. The results indicate that the application of this procedure for screening intestinal samples for C. botulinum strains that produce types C and D toxins from suspect cattle botulism cases would improve the diagnostic rate as well as significantly reduce the number of mice involved in diagnosis.
Collapse
|
13
|
Expression and stability of the nontoxic component of the botulinum toxin complex. Biochem Biophys Res Commun 2009; 384:126-30. [PMID: 19394306 DOI: 10.1016/j.bbrc.2009.04.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/19/2009] [Indexed: 11/20/2022]
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT) as a large toxin complex associated with nontoxic-nonhemagglutinin (NTNHA) and/or hemagglutinin components. In the present study, high-level expression of full-length (1197 amino acids) rNTNHA from C. botulinum serotype D strain 4947 (D-4947) was achieved in an Escherichia coli system. Spontaneous nicking of the rNTNHA at a specific site was observed during long-term incubation in the presence of protease inhibitors; this was also observed in natural NTNHA. The rNTNHA assembled with isolated D-4947 BoNT with molar ratio 1:1 to form a toxin complex. The reconstituted toxin complex exhibited dramatic resistance to proteolysis by pepsin or trypsin at high concentrations, despite the fact that the isolated BoNT and rNTNHA proteins were both easily degraded. We provide definitive evidence that NTNHA plays a crucial role in protecting BoNT, which is an oral toxin, from digestion by proteases common in the stomach and intestine.
Collapse
|
14
|
Fujinaga Y. HOW BACTERIAL TOXINS PENETRATE THE INTESTINAL EPITHELIAL BARRIER: STRATEGIES TAKEN BY CHOLERA TOXIN AND BOTULINUM PROGENITOR TOXIN. TOXIN REV 2008. [DOI: 10.1080/15569540500320904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Yoneyama T, Miyata K, Chikai T, Mikami A, Suzuki T, Hasegawa K, Ikeda T, Watanabe T, Ohyama T, Niwa K. Clostridium botulinum serotype D neurotoxin and toxin complex bind to bovine aortic endothelial cells via sialic acid. ACTA ACUST UNITED AC 2008; 54:290-8. [PMID: 18801042 DOI: 10.1111/j.1574-695x.2008.00475.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (L-TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). The binding properties of BoNT to neurons and L-TC to intestinal epithelial cells are well documented, while those to other tissues are largely unknown. Here, to obtain novel insights into the pathogenesis of foodborne botulism, we examine whether botulinum toxins bind to vascular endothelial cells. BoNT and 750 kDa L-TC (a complex of BoNT, NTNHA and HAs) of Clostridium botulinum serotype D were incubated with bovine aortic endothelial cells (BAECs), and binding to the cells was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Both BoNT and L-TC bound to BAECs, with L-TC showing stronger binding. Binding of BoNT and L-TC to BAECs was significantly inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, galactose, lactose or N-acetyl galactosamine did not significantly inhibit toxin binding to the cells. This is the first report demonstrating that BoNT and L-TC bind to BAECs via sialic acid, and this mechanism may be important in the trafficking pathway of BoNT in foodborne botulism.
Collapse
Affiliation(s)
- Tohru Yoneyama
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Niwa K, Koyama K, Inoue SI, Suzuki T, Hasegawa K, Watanabe T, Ikeda T, Ohyama T. Role of nontoxic components of serotype D botulinum toxin complex in permeation through a Caco-2 cell monolayer, a model for intestinal epithelium. ACTA ACUST UNITED AC 2007; 49:346-52. [PMID: 17378898 DOI: 10.1111/j.1574-695x.2006.00205.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). To assess the role of nontoxic components in the oral intoxication of botulinum TCs, we investigated the permeability of serotype D strain 4947 BoNT and its various TC species through cultured Caco-2 cell monolayers. The L-TC species (complexes composed of BoNT, NTNHA, HA-70, HA-33 and HA-17) showed potent permeability through the cell layer, whereas free BoNT, M-TC (BoNT and NTNHA complexes) and M-TC/HA-70 showed little or no permeability. Cell binding tests demonstrated that HA-33/HA-17 complexes bound to cells, whereas other components did not. These findings suggest that BoNT in the 650-kDa L-TC permeates into the cell mainly in an HA-33/HA-17-mediated manner, although free BoNT can permeate into the cell. As free BoNT and M-TC were susceptible to digestion with gastrointestinal juice, it is likely that L-TC species containing HA-33 caused higher oral toxicity in mice than others. We conclude that the HA-33 subcomponent plays a critical role in the permeation of TCs into intestinal epithelium, and that other HA subcomponents protect BoNT against gastrointestinal digestion.
Collapse
Affiliation(s)
- Koichi Niwa
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hasegawa K, Watanabe T, Suzuki T, Yamano A, Oikawa T, Sato Y, Kouguchi H, Yoneyama T, Niwa K, Ikeda T, Ohyama T. A Novel Subunit Structure of Clostridium botulinum Serotype D Toxin Complex with Three Extended Arms. J Biol Chem 2007; 282:24777-83. [PMID: 17581814 DOI: 10.1074/jbc.m703446200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) are the most potent toxins known in nature, causing the lethal disease known as botulism in humans and animals. The BoNTs act by inhibiting neurotransmitter release from cholinergic synapses. Clostridium botulinum strains produce large BoNTs toxin complexes, which include auxiliary non-toxic proteins that appear not only to protect BoNTs from the hostile environment of the digestive tract but also to assist BoNT translocation across the intestinal mucosal layer. In this study, we visualize for the first time a series of botulinum serotype D toxin complexes using negative stain transmission electron microscopy (TEM). The complexes consist of the 150-kDa BoNT, 130-kDa non-toxic non-hemagglutinin (NTNHA), and three kinds of hemagglutinin (HA) subcomponents: 70-kDa HA-70, 33-kDa HA-33, and 17-kDa HA-17. These components assemble sequentially to form the complex. A novel TEM image of the mature L-TC revealed an ellipsoidal-shaped structure with "three arms" attached. The "body" section was comprised of a single BoNT, a single NTNHA and three HA-70 molecules. The arm section consisted of a complex of HA-33 and HA-17 molecules. We determined the x-ray crystal structure of the complex formed by two HA-33 plus one HA-17. On the basis of the TEM image and biochemical results, we propose a novel 14-mer subunit model for the botulinum toxin complex. This unique model suggests how non-toxic components make up a "delivery vehicle" for BoNT.
Collapse
Affiliation(s)
- Kimiko Hasegawa
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki T, Kouguchi H, Watanabe T, Hasegawa K, Yoneyama T, Niwa K, Nishikawa A, Lee JC, Oguma K, Ohyama T. Effect of Nicking the C-terminal Region of the Clostridium botulinum Serotype D Neurotoxin Heavy Chain on its Toxicity and Molecular Properties. Protein J 2007; 26:173-81. [PMID: 17200883 DOI: 10.1007/s10930-006-9059-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A unique strain of Clostridium botulinum serotype D 4947 produces toxin complexes that are composed of un-nicked components, including a neurotoxin (BoNT) and auxiliary proteins. This BoNT showed aberrant elution upon Superdex gel filtration, indicating a much lower molecular weight, due to hydrophobic interaction with the column. Limited trypsin proteolysis of BoNT produces two nicks; first nick yielded a BoNT 50 kDa light chain disulfide linked to a 100 kDa heavy chain (Hc), and a second nick arose in Hc C-terminal 10 kDa. The second nick occurred in the putative binding domain of the BoNT molecule and induced alterations in its secondary structure, leading to a significant reduction of mouse toxicity in comparison with that of the fully-activated singly nicked BoNT. These results help to clarify the role of the C-terminal half of the Hc in the oral toxicity of single-chain and more complex forms of BoNT.
Collapse
Affiliation(s)
- Tomonori Suzuki
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fujinaga Y. Transport of bacterial toxins into target cells: pathways followed by cholera toxin and botulinum progenitor toxin. J Biochem 2006; 140:155-60. [PMID: 16954533 DOI: 10.1093/jb/mvj161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A number of bacterial toxins have sophisticated mechanisms for reaching their specific targets in mammalian cells, to exert their toxicity. This review focuses on the transport mechanisms of cholera toxin and botulinum neurotoxin complex. Cholera toxin is an ADP-ribosyltransferase toxin, and the covalent modification of heterotrimeric Gs protein in the cytosol leads to the activation of adenylyl cyclase and a sequence of events culminating in massive diarrheal disease. Here, we describe the structural features of this toxin and the transport pathway followed by this toxin from the plasma membrane to the cytosol of intestinal epithelial cells. Botulinum neurotoxin is a metalloprotease toxin that enters neurons, where it cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The food-borne botulism is manifested when the neurotoxin is absorbed from the digestive tract, enters the blood stream, and reaches the cytosol of the peripheral nerves. We overview the structural organization and the long journey followed by this toxin.
Collapse
Affiliation(s)
- Yukako Fujinaga
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871.
| |
Collapse
|
20
|
Nakamura T, Takada N, Tonozuka T, Sakano Y, Oguma K, Nishikawa A. Binding properties of Clostridium botulinum type C progenitor toxin to mucins. Biochim Biophys Acta Gen Subj 2006; 1770:551-5. [PMID: 17196748 DOI: 10.1016/j.bbagen.2006.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/30/2006] [Accepted: 11/13/2006] [Indexed: 11/21/2022]
Abstract
It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327-333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl alpha2-3 lactose and sialyl alpha2-6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.
Collapse
Affiliation(s)
- Toshio Nakamura
- Department of Applied Biological Science and Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Oguma K, Lee JC. Authors' reply. Microbiology (Reading) 2006. [DOI: 10.1099/mic.0.29045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Keiji Oguma
- Department of Bacteriology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Jae-Chul Lee
- Department of Bacteriology, Okayama University Medical School, Okayama 700-8558, Japan
| |
Collapse
|
22
|
Mutoh S, Suzuki T, Hasegawa K, Nakazawa Y, Kouguchi H, Sagane Y, Niwa K, Watanabe T, Ohyama T. Four molecules of the 33 kDa haemagglutinin component of the Clostridium botulinum serotype C and D toxin complexes are required to aggregate erythrocytes. Microbiology (Reading) 2005; 151:3847-3858. [PMID: 16339931 DOI: 10.1099/mic.0.28323-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Normally, large-sized botulinum toxin complexes (L-TC) of serotype C and D are composed of a single neurotoxin, a single non-toxic non-haemagglutinin, two HA-70 molecules, four HA-33 molecules and four HA-17 molecules that assemble to form a 650 kDa L-TC. The 540 and 610 kDa TC species (designated here as L-TC2and L-TC3, respectively) were purified in addition to the 650 kDa L-TC from the culture supernatants of serotype D strains (D-4947 and D-CB16) and serotype C strains (C-6814 and C-Yoichi). The 650 kDa L-TC from D-4947, D-CB16 and C-6814 showed haemagglutination and erythrocyte-binding activity, but their L-TC2and L-TC3species had only binding activity. In contrast, every TC species from C-Yoichi having the C-terminally truncated variant of HA-33 exhibited neither haemagglutination activity nor erythrocyte-binding activity. Four strain-specific HA-33/HA-17 complexes were isolated from the 650 kDa L-TC of each strain. The 650 kDa HA-hybrid L-TCs were reconstituted by various combinations of isolated HA-33/HA-17 complexes and haemagglutination-negative L-TC2or L-TC3from each strain. HA-hybrid 650 kDa L-TC, including at least one HA-33/HA-17 complex derived from C-Yoichi, lost haemagglutination activity, leading to the conclusion that the binding of four HA-33 molecules is required for haemagglutination activity of botulinum L-TC. The results of the modelling approach indicated that the structure of a variant C-Yoichi HA-33 molecule reveals clear deformation of theβ-trefoil domain responsible for the carbohydrate recognition site.
Collapse
Affiliation(s)
- Shingo Mutoh
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Tomonori Suzuki
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Kimiko Hasegawa
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Yozo Nakazawa
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku 156-8502, Japan
| | - Hirokazu Kouguchi
- Hokkaido Institute of Public Health, N19, W12, Kita-Ku, Sapporo 060-0819, Japan
| | - Yoshimasa Sagane
- The Sars International Centre for Marine Molecular Biology, Thormøhlensgt 55, N-5008 Bergen, Norway
| | - Koichi Niwa
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Toshihiro Watanabe
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Tohru Ohyama
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| |
Collapse
|