1
|
Morgan WJ, Amemiya HM, Freddolino L. DNA methylation affects gene expression but not global chromatin structure in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631547. [PMID: 39829790 PMCID: PMC11741368 DOI: 10.1101/2025.01.06.631547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the Escherichia coli K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters E. coli global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density. We thus hypothesized that a methylation-deficient version of MG1655 would show large-scale aberrations in chromatin structure. To test our hypothesis, we cloned methyltransferase deletion strains and performed global protein occupancy profiling using high resolution in vivo protein occupancy display (IPOD-HR), chromatin immunoprecipitation for RNA polymerase (RNAP-ChIP), and transcriptome abundance profiling using RNASeq. Our results indicate that loss of DNA methylation does not result in large-scale changes in genomic protein occupancy such as the formation of EPODs, indicating that the previously observed depletion of Dam sites in EPODs is correlative, rather than causal, in nature. However, loci with dense clustering of Dam methylation sites show methylation-dependent changes in local RNA polymerase and total protein occupancy, but local transcription is unaffected. Our transcriptome profiling data indicates that deletion of dam and/or dcm results in significant expression changes within some functional gene categories including SOS response, flagellar synthesis, and translation, but these expression changes appear to result from indirect regulatory consequences of methyltransferase deletion. In agreement with the downregulation of genes involved in flagellar synthesis, dam deletion is characterized by a swimming motility-deficient phenotype. We conclude that DNA methylation does not control the overall protein occupancy landscape of the E. coli genome, and that observable changes in gene regulation are generally not resulting from regulatory consequences of local methylation state.
Collapse
Affiliation(s)
- Willow Jay Morgan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haley M. Amemiya
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current Address: MOMA Therapeutics, Cambridge MA 02140
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Schumacher K, Braun D, Kleigrewe K, Jung K. Motility-activating mutations upstream of flhDC reduce acid shock survival of Escherichia coli. Microbiol Spectr 2024; 12:e0054424. [PMID: 38651876 PMCID: PMC11237407 DOI: 10.1128/spectrum.00544-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Many neutralophilic bacterial species try to evade acid stress with an escape strategy, which is reflected in the increased expression of genes coding for flagellar components. Extremely acid-tolerant bacteria, such as Escherichia coli, survive the strong acid stress, e.g., in the stomach of vertebrates. Recently, we were able to show that the induction of motility genes in E. coli is strictly dependent on the degree of acid stress, i.e., they are induced under mild acid stress but not under severe acid stress. However, it was not known to what extent fine-tuned expression of motility genes is related to fitness and the ability to survive periods of acid shock. In this study, we demonstrate that the expression of FlhDC, the master regulator of flagellation, is inversely correlated with the acid shock survival of E. coli. We encountered this phenomenon when analyzing mutants from the Keio collection, in which the expression of flhDC was altered by an insertion sequence element. These results suggest a fitness trade-off between acid tolerance and motility.IMPORTANCEEscherichia coli is extremely acid-resistant, which is crucial for survival in the gastrointestinal tract of vertebrates. Recently, we systematically studied the response of E. coli to mild and severe acidic conditions using Ribo-Seq and RNA-Seq. We found that motility genes are induced at pH 5.8 but not at pH 4.4, indicating stress-dependent synthesis of flagellar components. In this study, we demonstrate that motility-activating mutations upstream of flhDC, encoding the master regulator of flagella genes, reduce the ability of E. coli to survive periods of acid shock. Furthermore, we show an inverse correlation between motility and acid survival using a chromosomal isopropyl β-D-thio-galactopyranoside (IPTG)-inducible flhDC promoter and by sampling differentially motile subpopulations from swim agar plates. These results reveal a previously undiscovered trade-off between motility and acid tolerance and suggest a differentiation of E. coli into motile and acid-tolerant subpopulations, driven by the integration of insertion sequence elements.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Djanna Braun
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
3
|
Sun G, Yu Z, Li Q, Zhang Y, Wang M, Liu Y, Liu J, Liu L, Yu X. Mechanism of Escherichia coli Lethality Caused by Overexpression of flhDC, the Flagellar Master Regulator Genes, as Revealed by Transcriptome Analysis. Int J Mol Sci 2023; 24:14058. [PMID: 37762361 PMCID: PMC10530849 DOI: 10.3390/ijms241814058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The flhDC operon of Escherichia coli encodes a transcription factor that initiates flagella synthesis, elevates flagella construction and enhances cell motility, which all are energetically costly and highly regulated processes. In this study, we found that overexpression of flhDC genes from a strong regulatable pN15E6 plasmid could inhibit the growth of E. coli host cells and even eventually cause death. We used transcriptome analysis to investigate the mechanism of flhDC overexpression lethal to host bacteria. The results showed that a total of 568 differentially expressed genes (DEGs), including 378 up-regulated genes and 190 down-regulated genes were detected when the flhDC genes were over-expressed. Functional enrichment analysis results showed that the DEGs are related to a series of crucial biomolecular processes, including flagella synthesis, oxidative phosphorylation and pentose phosphate pathways, etc. We then examined, using RT-qPCR, the expression of key genes of the oxidative phosphorylation pathway at different time points after induction. Results showed that their expression increased in the early stage and decreased afterward, which was suggested to be the result of feedback on the overproduction of ROS, a strong side effect product of the elevated oxidative phosphorylation process. To further verify the level of ROS output, flhDC over-expressed bacteria cells were stained with DCHF-DA and a fluorescence signal was detected using flow cytometry. Results showed that the level of ROS output was higher in cells with over-expressed flhDC than in normal controls. Besides, we found upregulation of other genes (recN and zwf) that respond to ROS damage. This leads to the conclusion that the bacterial death led by the overexpression of flhDC genes is caused by damage from ROS overproduction, which leaked from the oxidative phosphorylation pathway.
Collapse
Affiliation(s)
- Guanglu Sun
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Zihao Yu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Qianwen Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Yuanxing Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Mingxiao Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Yunhui Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Jinze Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Lei Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
| | - Xuping Yu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.S.)
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
4
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
5
|
Cho SY, Oh HB, Yoon SI. Hexameric structure of the flagellar master regulator FlhDC from Cupriavidus necator and its interaction with flagellar promoter DNA. Biochem Biophys Res Commun 2023; 672:97-102. [PMID: 37343320 DOI: 10.1016/j.bbrc.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Bacterial flagella are assembled with ∼30 different proteins in a defined order via diverse regulatory systems. In gram-negative bacteria from the Gammaproteobacteria and Betaproteobacteria classes, the transcription of flagellar genes is strictly controlled by the master regulator FlhDC. In Gammaproteobacteria species, the FlhDC complex has been shown to activate flagellar expression by directly interacting with the promoter region in flagellar genes. To obtain the DNA-binding mechanism of FlhDC and determine the conserved and distinct structural features of Betaproteobacteria and Gammaproteobacteria FlhDCs that are necessary for their functions, we determined the crystal structure of Betaproteobacteria Cupriavidus necator FlhDC (cnFlhDC) and biochemically analyzed its DNA-binding capacity. cnFlhDC specifically recognized the promoter DNA of the class II flagellar genes flgB and flhB. cnFlhDC adopts a ring-like heterohexameric structure (cnFlhD4C2) and harbors two Zn-Cys clusters, as observed for Gammaproteobacteria Escherichia coli FlhDC (ecFlhDC). The cnFlhDC structure exhibits positively charged surfaces across two FlhDC subunits as a putative DNA-binding site. Noticeably, the positive patch of cnFlhDC is continuous, in contrast to the separated patches of ecFlhDC. Moreover, the ternary intersection of cnFlhD4C2 behind the Zn-Cys cluster forms a unique protruding neutral structure, which is replaced with a charged cavity in the ecFlhDC structure.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Takada H, Kijima K, Ishiguro A, Ishihama A, Shimada T. Genomic SELEX Reveals Pervasive Role of the Flagella Master Regulator FlhDC in Carbon Metabolism. Int J Mol Sci 2023; 24:3696. [PMID: 36835109 PMCID: PMC9962212 DOI: 10.3390/ijms24043696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Flagella are vital bacterial organs that allow microorganisms to move to favorable environments. However, their construction and operation consume a large amount of energy. The master regulator FlhDC mediates all flagellum-forming genes in E. coli through a transcriptional regulatory cascade, the details of which remain elusive. In this study, we attempted to uncover a direct set of target genes in vitro using gSELEX-chip screening to re-examine the role of FlhDC in the entire E. coli genome regulatory network. We identified novel target genes involved in the sugar utilization phosphotransferase system, sugar catabolic pathway of glycolysis, and other carbon source metabolic pathways in addition to the known flagella formation target genes. Examining FlhDC transcriptional regulation in vitro and in vivo and its effects on sugar consumption and cell growth suggested that FlhDC activates these new targets. Based on these results, we proposed that the flagella master transcriptional regulator FlhDC acts in the activation of a set of flagella-forming genes, sugar utilization, and carbon source catabolic pathways to provide coordinated regulation between flagella formation, operation and energy production.
Collapse
Grants
- 22K06184 Ministry of Education, Culture, Sports, Science and Technology
- 18310133 Ministry of Education, Culture, Sports, Science and Technology
- 25430173 Ministry of Education, Culture, Sports, Science and Technology
- 15K18676 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Hiraku Takada
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kaede Kijima
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Ishiguro
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
7
|
Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE, Chevance FFV, Berry RM, Hughes KT, Lea SM. Molecular structure of the intact bacterial flagellar basal body. Nat Microbiol 2021; 6:712-721. [PMID: 33931760 PMCID: PMC7610862 DOI: 10.1038/s41564-021-00895-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023]
Abstract
The bacterial flagellum is a macromolecular protein complex that enables motility in many species. Bacterial flagella self-assemble a strong, multicomponent drive shaft that couples rotation in the inner membrane to the micrometre-long flagellar filament that powers bacterial swimming in viscous fluids1-3. Here, we present structures of the intact Salmonella flagellar basal body4, encompassing the inner membrane rotor, drive shaft and outer-membrane bushing, solved using cryo-electron microscopy to resolutions of 2.2-3.7 Å. The structures reveal molecular details of how 173 protein molecules of 13 different types assemble into a complex spanning two membranes and a cell wall. The helical drive shaft at one end is intricately interwoven with the rotor component with both the export gate complex and the proximal rod forming interactions with the MS-ring. At the other end, the drive shaft distal rod passes through the LP-ring bushing complex, which functions as a molecular bearing anchored in the outer membrane through interactions with the lipopolysaccharide. The in situ structure of a protein complex capping the drive shaft provides molecular insights into the assembly process of this molecular machine.
Collapse
Affiliation(s)
- Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
| | - Emily J Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Ashley L Nord
- Department of Physics, University of Oxford, Oxford, UK
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | | | | | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Huang WC, Hashimoto M, Shih YL, Wu CC, Lee MF, Chen YL, Wu JJ, Wang MC, Lin WH, Hong MY, Teng CH. Peptidoglycan Endopeptidase Spr of Uropathogenic Escherichia coli Contributes to Kidney Infections and Competitive Fitness During Bladder Colonization. Front Microbiol 2021; 11:586214. [PMID: 33391204 PMCID: PMC7774453 DOI: 10.3389/fmicb.2020.586214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common pathogen of urinary tract infections (UTIs). Antibiotic therapy is the conventional measure to manage such infections. However, the rapid emergence of antibiotic resistance has reduced the efficacy of antibiotic treatment. Given that the bacterial factors required for the full virulence of the pathogens are potential therapeutic targets, identifying such factors may facilitate the development of novel therapeutic strategies against UPEC UTIs. The peptidoglycan (PG) endopeptidase Spr (also named MepS) is required for PG biogenesis in E. coli. In the present study, we found that Spr deficiency attenuated the ability of UPEC to infect kidneys and induced a fitness defect during bladder colonization in a mouse model of UTI. Based on the liquid chromatography (LC)/mass spectrometry (MS)/MS analysis of the bacterial envelope, spr deletion changed the levels of some envelope-associated proteins, suggesting that Spr deficiency interfere with the components of the bacterial structure. Among the proteins, FliC was significantly downregulated in the spr mutant, which is resulted in reduced motility. Lack of Spr might hinder the function of the flagellar transcriptional factor FlhDC to decrease FliC expression. The motility downregulation contributed to the reduced fitness in urinary tract colonization. Additionally, spr deletion compromised the ability of UPEC to evade complement-mediated attack and to resist intracellular killing of phagocytes, consequently decreasing UPEC bloodstream survival. Spr deficiency also interfered with the UPEC morphological switch from bacillary to filamentous shapes during UTI. It is known that bacterial filamentation protects UPEC from phagocytosis by phagocytes. In conclusion, Spr deficiency was shown to compromise multiple virulence properties of UPEC, leading to attenuation of the pathogen in urinary tract colonization and bloodstream survival. These findings indicate that Spr is a potential antimicrobial target for further studies attempting to develop novel strategies in managing UPEC UTIs.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Ching Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Feng Lee
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yuan Hong
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Yilmaz C, Rangarajan AA, Schnetz K. The transcription regulator and c-di-GMP phosphodiesterase PdeL represses motility in Escherichia coli. J Bacteriol 2020; 203:JB.00427-20. [PMID: 33318048 PMCID: PMC8095459 DOI: 10.1128/jb.00427-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
PdeL is a transcription regulator and catalytically active c-di-GMP phosphodiesterases (PDE) in Escherichia coli PdeL has been shown to be a transcription autoregulator, while no other target genes have been identified so far. Here, we show that PdeL represses transcription of the flagella class II operon, fliFGHIJK, and activates sslE encoding an extracellular anchored metalloprotease, among additional loci. DNA-binding studies and expression analyses using plasmidic reporters suggest that regulation of the fliF and sslE promoters by PdeL is direct. Transcription repression of the fliFGHIJK operon, encoding protein required for assembly of the flagellar basal body, results in inhibition of motility on soft agar plates and reduction of flagella assembly, as shown by fluorescence staining of the flagella hook protein FlgE. PdeL-mediated repression of motility is independent of its phosphodiesterase activity. Thus, in motility control the transcription regulator function of PdeL reducing the number of assembled flagella is apparently epistatic to its phosphodiesterase function, which can indirectly promote the activity of the flagellar motor by lowering the c-di-GMP concentration.Bacteria adopt different lifestyles depending on their environment and physiological condition. In Escherichia coli and other enteric bacteria the transition between the motile and the sessile state is controlled at multiple levels from the regulation of gene expression to the modulation of various processes by the second messenger c-di-GMP as signaling molecule. The significance of our research is in identifying PdeL, a protein of dual function that hydrolyzes c-di-GMP and that regulates transcription of genes, as a repressor of Flagella gene expression and an inhibitor of motility, which adds an additional regulatory switch to the control of motility.
Collapse
Affiliation(s)
- Cihan Yilmaz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | | | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
10
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
11
|
The LysR-Type Transcriptional Regulator CrgA Negatively Regulates the Flagellar Master Regulator flhDC in Ralstonia solanacearum GMI1000. J Bacteriol 2020; 203:JB.00419-20. [PMID: 33046561 DOI: 10.1128/jb.00419-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 01/07/2023] Open
Abstract
The invasion and colonization of host plants by the destructive pathogen Ralstonia solanacearum rely on its cell motility, which is controlled by multiple factors. Here, we report that the LysR-type transcriptional regulator CrgA (RS_RS16695) represses cell motility in R. solanacearum GMI1000. CrgA possesses common features of a LysR-type transcriptional regulator and contains an N-terminal helix-turn-helix motif as well as a C-terminal LysR substrate-binding domain. Deletion of crgA results in an enhanced swim ring and increased transcription of flhDC In addition, the ΔcrgA mutant possesses more polar flagella than wild-type GMI1000 and exhibits higher expression of the flagellin gene fliC Despite these alterations, the ΔcrgA mutant did not have a detectable growth defect in culture. Yeast one-hybrid and electrophoretic mobility shift assays revealed that CrgA interacts directly with the flhDC promoter. Expressing the β-glucuronidase (GUS) reporter under the control of the crgA promoter showed that crgA transcription is dependent on cell density. Soil-soaking inoculation with the crgA mutant caused wilt symptoms on tomato (Solanum lycopersicum L. cv. Hong yangli) plants earlier than inoculation with the wild-type GMI1000 but resulted in lower disease severity. We conclude that the R. solanacearum regulator CrgA represses flhDC expression and consequently affects the expression of fliC to modulate cell motility, thereby conditioning disease development in host plants.IMPORTANCE Ralstonia solanacearum is a widely distributed soilborne plant pathogen that causes bacterial wilt disease on diverse plant species. Motility is a critical virulence attribute of R. solanacearum because it allows this pathogen to efficiently invade and colonize host plants. In R. solanacearum, motility-defective strains are markedly affected in pathogenicity, which is coregulated with multiple virulence factors. In this study, we identified a new LysR-type transcriptional regulator (LTTR), CrgA, that negatively regulates motility. The mutation of the corresponding gene leads to the precocious appearance of wilt symptoms on tomato plants when the pathogen is introduced using soil-soaking inoculation. This study indicates that the regulation of R. solanacearum motility is more complex than previously thought and enhances our understanding of flagellum regulation in R. solanacearum.
Collapse
|
12
|
Filtering input fluctuations in intensity and in time underlies stochastic transcriptional pulses without feedback. Proc Natl Acad Sci U S A 2020; 117:26608-26615. [PMID: 33046652 DOI: 10.1073/pnas.2010849117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stochastic pulsatile dynamics have been observed in an increasing number of biological circuits with known mechanism involving feedback control and bistability. Surprisingly, recent single-cell experiments in Escherichia coli flagellar synthesis showed that flagellar genes are activated in stochastic pulses without the means of feedback. However, the mechanism for pulse generation in these feedbackless circuits has remained unclear. Here, by developing a system-level stochastic model constrained by a large set of single-cell E. coli flagellar synthesis data from different strains and mutants, we identify the general underlying design principles for generating stochastic transcriptional pulses without feedback. Our study shows that an inhibitor (YdiV) of the transcription factor (FlhDC) creates a monotonic ultrasensitive switch that serves as a digital filter to eliminate small-amplitude FlhDC fluctuations. Furthermore, we find that the high-frequency (fast) fluctuations of FlhDC are filtered out by integration over a timescale longer than the timescale of the input fluctuations. Together, our results reveal a filter-and-integrate design for generating stochastic pulses without feedback. This filter-and-integrate mechanism enables a general strategy for cells to avoid premature activation of the expensive downstream gene expression by filtering input fluctuations in both intensity and time so that the system only responds to input signals that are both strong and persistent.
Collapse
|
13
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
14
|
Salgado H, Martínez-Flores I, Bustamante VH, Alquicira-Hernández K, García-Sotelo JS, García-Alonso D, Collado-Vides J. Using RegulonDB, the Escherichia coli K-12 Gene Regulatory Transcriptional Network Database. ACTA ACUST UNITED AC 2019; 61:1.32.1-1.32.30. [PMID: 30040192 DOI: 10.1002/cpbi.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In RegulonDB, for over 25 years, we have been gathering knowledge by manual curation from original scientific literature on the regulation of transcription initiation and genome organization in transcription units of the Escherichia coli K-12 genome. This unit describes six basic protocols that can serve as a guiding introduction to the main content of the current version (v9.4) of this electronic resource. These protocols include general navigation as well as searching for specific objects such as genes, gene products, transcription units, promoters, transcription factors, coexpression, and genetic sensory response units or GENSOR Units. In these protocols, the user will find an initial introduction to the concepts pertinent to the protocol, the content obtained when performing the given navigation, and the necessary resources for carrying out the protocol. This easy-to-follow presentation should help anyone interested in quickly seeing all that is currently offered in RegulonDB, including position weight matrices of transcription factors, coexpression values based on published microarrays, and the GENSOR Units unique to RegulonDB that offer regulatory mechanisms in the context of their signals and metabolic consequences. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Kevin Alquicira-Hernández
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jair S García-Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, México
| | - Delfino García-Alonso
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
15
|
Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences. Sci Rep 2018; 8:16705. [PMID: 30420601 PMCID: PMC6232118 DOI: 10.1038/s41598-018-35005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/28/2018] [Indexed: 11/09/2022] Open
Abstract
The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD4C2. Since the early days of genetic analyses of flagellar systems it has been known that E. coli flhDC can complement a ∆flhDC mutant in S. enterica. The genomic revolution has identified how genetic changes to transcription factors and/or DNA binding sites can impact the phenotypic outcome across related species. We were therefore interested in asking: using modern tools to interrogate flagellar gene expression and assembly, what would the impact be of replacing the flhDC coding sequences in S. enterica for the E. coli genes at the flhDC S. entercia chromosomal locus? We show that even though all strains created are motile, flagellar gene expression is measurably lower when flhDCEC are present. These changes can be attributed to the impact of FlhD4C2 DNA recognition and the protein-protein interactions required to generate a stable FlhD4C2 complex. Furthermore, our data suggests that in E. coli the internal flagellar FliT regulatory feedback loop has a marked difference with respect to output of the flagellar systems. We argue due diligence is required in making assumptions based on heterologous expression of regulators and that even systems showing significant synteny may not behave in exactly the same manner.
Collapse
|
16
|
Fitzgerald DM, Smith C, Lapierre P, Wade JT. The evolutionary impact of intragenic FliA promoters in proteobacteria. Mol Microbiol 2018; 108:361-378. [PMID: 29476659 PMCID: PMC5943157 DOI: 10.1111/mmi.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
In Escherichia coli, one sigma factor recognizes the majority of promoters, and six 'alternative' sigma factors recognize specific subsets of promoters. The alternative sigma factor FliA (σ28 ) recognizes promoters upstream of many flagellar genes. We previously showed that most E. coli FliA binding sites are located inside genes. However, it was unclear whether these intragenic binding sites represent active promoters. Here, we construct and assay transcriptional promoter-lacZ fusions for all 52 putative FliA promoters previously identified by ChIP-seq. These experiments, coupled with integrative analysis of published genome-scale transcriptional datasets, strongly suggest that most intragenic FliA binding sites are active promoters that transcribe highly unstable RNAs. Additionally, we show that widespread intragenic FliA-dependent transcription may be a conserved phenomenon, but that specific promoters are not themselves conserved. We conclude that intragenic FliA-dependent promoters and the resulting RNAs are unlikely to have important regulatory functions. Nonetheless, one intragenic FliA promoter is broadly conserved and constrains evolution of the overlapping protein-coding gene. Thus, our data indicate that intragenic regulatory elements can influence bacterial protein evolution and suggest that the impact of intragenic regulatory sequences on genome evolution should be considered more broadly.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T. Wade
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
17
|
Bhagwat AA, Young L, Smith AD, Bhagwat M. Transcriptomic Analysis of the Swarm Motility Phenotype of Salmonella enterica Serovar Typhimurium Mutant Defective in Periplasmic Glucan Synthesis. Curr Microbiol 2017; 74:1005-1014. [PMID: 28593349 DOI: 10.1007/s00284-017-1267-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/14/2017] [Indexed: 12/19/2022]
Abstract
Movement of food-borne pathogens on moist surfaces enables them to migrate towards more favorable niches and facilitate their survival for extended periods of time. Salmonella enterica serovar Typhimurium mutants defective in Osmoregulated periplasmic glucans (OPG) synthesis are unable to exhibit motility on moist surfaces (swarming); however, their mobility in liquid (swim motility) remains unaffected. In order to understand the role of OPG in swarm motility, transcriptomic analysis was performed using cells growing on a moist agar surface. In opgGH deletion mutant, lack of OPG significantly altered transcription of 1039 genes out of total 4712 genes (22%). Introduction of a plasmid-borne copy of opgGH into opgGH deletion mutant restored normal expression of all but 30 genes, indicating a wide-range influence of OPG on gene expression under swarm motility condition. Major pathways that were differentially expressed in opgGH mutants were motility, virulence and invasion, and genes related to the secondary messenger molecule, cyclic di-GMP. These observations provide insights and help explain the pleiotropic nature of OPG mutants such as sub-optimal virulence and competitive organ colonization in mice, biofilm formation, and sensitivity towards detergent stress.
Collapse
Affiliation(s)
- Arvind A Bhagwat
- Environmental, Microbial, & Food Safety Laboratory, Beltsville Agriculture Research Center, USDA-ARS (USDA/ARS/EMFSL), 10300 Baltimore Ave., B173, Rm. 204, BARC-E, Beltsville, MD, 20705, USA.
| | - Lynn Young
- National Institutes of Health Library, Division of Library Services, Office of Research Services, National Institute of Health, Building 10, Bethesda, MD, 20892, USA
| | - Allen D Smith
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Medha Bhagwat
- National Institutes of Health Library, Division of Library Services, Office of Research Services, National Institute of Health, Building 10, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Baron F, Bonnassie S, Alabdeh M, Cochet MF, Nau F, Guérin-Dubiard C, Gautier M, Andrews SC, Jan S. Global Gene-expression Analysis of the Response of Salmonella Enteritidis to Egg White Exposure Reveals Multiple Egg White-imposed Stress Responses. Front Microbiol 2017; 8:829. [PMID: 28553268 PMCID: PMC5428311 DOI: 10.3389/fmicb.2017.00829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42°C, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism of egg white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45°C) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilization genes, despite no evidence indicating the presence of these substrates in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- Science de la Vie et de la Terre, Université de Rennes IRennes, France
| | - Mariah Alabdeh
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Marie-Françoise Cochet
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | | | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| |
Collapse
|
19
|
Maddalena LLD, Niederholtmeyer H, Turtola M, Swank ZN, Belogurov GA, Maerkl SJ. GreA and GreB Enhance Expression of Escherichia coli RNA Polymerase Promoters in a Reconstituted Transcription-Translation System. ACS Synth Biol 2016; 5:929-35. [PMID: 27186988 DOI: 10.1021/acssynbio.6b00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free environments are becoming viable alternatives for implementing biological networks in synthetic biology. The reconstituted cell-free expression system (PURE) allows characterization of genetic networks under defined conditions but its applicability to native bacterial promoters and endogenous genetic networks is limited due to the poor transcription rate of Escherichia coli RNA polymerase in this minimal system. We found that addition of transcription elongation factors GreA and GreB to the PURE system increased transcription rates of E. coli RNA polymerase from sigma factor 70 promoters up to 6-fold and enhanced the performance of a genetic network. Furthermore, we reconstituted activation of natural E. coli promoters controlling flagella biosynthesis by the transcriptional activator FlhDC and sigma factor 28. Addition of GreA/GreB to the PURE system allows efficient expression from natural and synthetic E. coli promoters and characterization of their regulation in minimal and defined reaction conditions, making the PURE system more broadly applicable to study genetic networks and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Lea L. de Maddalena
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Henrike Niederholtmeyer
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matti Turtola
- Department
of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Zoe N. Swank
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Sebastian J. Maerkl
- Institute
of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
The fitness effects of a point mutation in Escherichia coli change with founding population density. Genetica 2016; 144:417-24. [PMID: 27344657 DOI: 10.1007/s10709-016-9910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate.
Collapse
|
21
|
Yuan X, Khokhani D, Wu X, Yang F, Biener G, Koestler BJ, Raicu V, He C, Waters CM, Sundin GW, Tian F, Yang CH. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours. Environ Microbiol 2015; 17:4745-63. [PMID: 26462993 DOI: 10.1111/1462-2920.13029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/01/2022]
Abstract
Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Devanshi Khokhani
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Xiaogang Wu
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gabriel Biener
- Department of Physics, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Benjamin J Koestler
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Valerica Raicu
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA.,Department of Physics, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| |
Collapse
|
22
|
Mutations That Stimulate flhDC Expression in Escherichia coli K-12. J Bacteriol 2015; 197:3087-96. [PMID: 26170415 DOI: 10.1128/jb.00455-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/09/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Motility is a beneficial attribute that enables cells to access and explore new environments and to escape detrimental ones. The organelle of motility in Escherichia coli is the flagellum, and its production is initiated by the activating transcription factors FlhD and FlhC. The expression of these factors by the flhDC operon is highly regulated and influenced by environmental conditions. The flhDC promoter is recognized by σ(70) and is dependent on the transcriptional activator cyclic AMP (cAMP)-cAMP receptor protein complex (cAMP-CRP). A number of K-12 strains exhibit limited motility due to low expression levels of flhDC. We report here a large number of mutations that stimulate flhDC expression in such strains. They include single nucleotide changes in the -10 element of the promoter, in the promoter spacer, and in the cAMP-CRP binding region. In addition, we show that insertion sequence (IS) elements or a kanamycin gene located hundreds of base pairs upstream of the promoter can effectively enhance transcription, suggesting that the topology of a large upstream region plays a significant role in the regulation of flhDC expression. None of the mutations eliminated the requirement for cAMP-CRP for activation. However, several mutations allowed expression in the absence of the nucleoid organizing protein, H-NS, which is normally required for flhDC expression. IMPORTANCE The flhDC operon of Escherichia coli encodes transcription factors that initiate flagellar synthesis, an energetically costly process that is highly regulated. Few deregulating mutations have been reported thus far. This paper describes new single nucleotide mutations that stimulate flhDC expression, including a number that map to the promoter spacer region. In addition, this work shows that insertion sequence elements or a kanamycin gene located far upstream from the promoter or repressor binding sites also stimulate transcription, indicating a role of regional topology in the regulation of flhDC expression.
Collapse
|
23
|
Maruyama Y, Kobayashi M, Murata K, Hashimoto W. Formation of a single polar flagellum by two distinct flagellar gene sets in Sphingomonas sp. strain A1. MICROBIOLOGY-SGM 2015; 161:1552-1560. [PMID: 26018545 DOI: 10.1099/mic.0.000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gram-negative Sphingomonas sp. strain A1, originally identified as a non-motile and aflagellate bacterium, possesses two sets of genes required for flagellar formation. In this study, we characterized the flagellar genes and flagellum formation in strain A1. Flagellar gene cluster set I contained 35 flagellar genes, including one flagellin gene (p6), where the gene assembly structure resembled that required for the formation of lateral flagella in gammaproteobacteria. The set II flagellar genes were arranged in eight shorter clusters with 46 flagellar genes, including two flagellin genes (p5 and p5') and flhF, which is required for polar flagella. Our molecular phylogenetic analysis of the bacterial flagellins also demonstrated that, in contrast to p5 and p5', p6 was categorized as a lateral flagellin group. The motile phenotype appeared in strain A1 cells when they were subcultured on semisolid media. The motile strain A1 cells produced a single flagellum at the cell pole. DNA microarray analyses using non-motile and motile strain A1 cells indicated that flagellar formation was accompanied by increased transcription of both flagellar gene sets. The two flagellins p5 and p6 were major components of the flagellar filaments isolated from motile strain A1 cells, indicating that the polar flagellum is formed by lateral and non-lateral flagellins.
Collapse
Affiliation(s)
- Yukie Maruyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
24
|
Poulin-Laprade D, Matteau D, Jacques PÉ, Rodrigue S, Burrus V. Transfer activation of SXT/R391 integrative and conjugative elements: unraveling the SetCD regulon. Nucleic Acids Res 2015; 43:2045-56. [PMID: 25662215 PMCID: PMC4344509 DOI: 10.1093/nar/gkv071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Integrative and conjugative elements (ICEs) of the SXT/R391 family have been recognized as key drivers of antibiotic resistance dissemination in the seventh-pandemic lineage of Vibrio cholerae. SXT/R391 ICEs propagate by conjugation and integrate site-specifically into the chromosome of a wide range of environmental and clinical Gammaproteobacteria. SXT/R391 ICEs bear setC and setD, two conserved genes coding for a transcriptional activator complex that is essential for activation of conjugative transfer. We used chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) to characterize the SetCD regulon of three representative members of the SXT/R391 family. We also identified the DNA sequences bound by SetCD in MGIVflInd1, a mobilizable genomic island phylogenetically unrelated to SXT/R391 ICEs that hijacks the conjugative machinery of these ICEs to drive its own transfer. SetCD was found to bind a 19-bp sequence that is consistently located near the promoter −35 element of SetCD-activated genes, a position typical of class II transcriptional activators. Furthermore, we refined our understanding of the regulation of excision from and integration into the chromosome for SXT/R391 ICEs and demonstrated that de novo expression of SetCD is crucial to allow integration of the incoming ICE DNA into a naive host following conjugative transfer.
Collapse
Affiliation(s)
- Dominic Poulin-Laprade
- Laboratory of Bacterial Molecular Genetics, Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Dominick Matteau
- Laboratory of Microbial Systems and Synthetic Biology, Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierre-Étienne Jacques
- Laboratory of Bioinformatics and Genomics, Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Laboratory of Microbial Systems and Synthetic Biology, Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Vincent Burrus
- Laboratory of Bacterial Molecular Genetics, Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
25
|
Fitzgerald DM, Bonocora RP, Wade JT. Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet 2014; 10:e1004649. [PMID: 25275371 PMCID: PMC4183435 DOI: 10.1371/journal.pgen.1004649] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/03/2014] [Indexed: 12/14/2022] Open
Abstract
Flagellar synthesis is a highly regulated process in all motile bacteria. In Escherichia coli and related species, the transcription factor FlhDC is the master regulator of a multi-tiered transcription network. FlhDC activates transcription of a number of genes, including some flagellar genes and the gene encoding the alternative Sigma factor FliA. Genes whose expression is required late in flagellar assembly are primarily transcribed by FliA, imparting temporal regulation of transcription and coupling expression to flagellar assembly. In this study, we use ChIP-seq and RNA-seq to comprehensively map the E. coli FlhDC and FliA regulons. We define a surprisingly restricted FlhDC regulon, including two novel regulated targets and two binding sites not associated with detectable regulation of surrounding genes. In contrast, we greatly expand the known FliA regulon. Surprisingly, 30 of the 52 FliA binding sites are located inside genes. Two of these intragenic promoters are associated with detectable noncoding RNAs, while the others either produce highly unstable RNAs or are inactive under these conditions. Together, our data redefine the E. coli flagellar regulatory network, and provide new insight into the temporal orchestration of gene expression that coordinates the flagellar assembly process. Flagella are surface-associated appendages that propel bacteria and are involved in diverse functions such as chemotaxis, surface attachment, and host cell invasion. Flagella are incredibly complex macromolecular machines that are energetically costly to produce, assemble, and power. Flagellar production is tightly regulated and flagellar components are only synthesized when flagellar motility is advantageous. Regulation also ensures that flagellar components are produced in roughly the same order in which they are needed, increasing efficiency of the assembly process. The transcriptional regulation of flagellar genes has been studied extensively in the model organism Escherichia coli; however, many questions remain. We have used an unbiased, genome-wide approach to comprehensively identify all of the binding sites and regulatory targets for the two key regulators of flagellar synthesis, FlhDC and FliA. Our results redefine the flagellar regulatory network, and suggest that FliA binds many sites that are not associated with productive transcription. This work is important because it suggests possible new functions for FliA outside of the transcription of canonical mRNAs, and it provides new insight into the temporal orchestration of gene expression that coordinates the flagellar assembly process.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
| | - Richard P. Bonocora
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Karaosmanoglu K, Sayar NA, Kurnaz IA, Akbulut BS. Assessment of Berberine as a Multi-target Antimicrobial: A Multi-omics Study for Drug Discovery and Repositioning. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:42-53. [DOI: 10.1089/omi.2013.0100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Isil Aksan Kurnaz
- Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | | |
Collapse
|
27
|
Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of Escherichia coli biofilm formation. J Bacteriol 2013; 196:707-15. [PMID: 24272779 DOI: 10.1128/jb.00938-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli adapts its lifestyle to the variations of environmental growth conditions, swapping between swimming motility or biofilm formation. The stationary-phase sigma factor RpoS is an important regulator of this switch, since it stimulates adhesion and represses flagellar biosynthesis. By measuring the dynamics of gene expression, we show that RpoS inhibits the transcription of the flagellar sigma factor, FliA, in exponential growth phase. RpoS also partially controls the expression of CsgD and CpxR, two transcription factors important for bacterial adhesion. We demonstrate that these two regulators repress the transcription of fliA, flgM, and tar and that this regulation is dependent on the growth medium. CsgD binds to the flgM and fliA promoters around their -10 promoter element, strongly suggesting direct repression. We show that CsgD and CpxR also affect the expression of other known modulators of cell motility. We propose an updated structure of the regulatory network controlling the choice between adhesion and motility.
Collapse
|
28
|
The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 2013; 195:2755-67. [PMID: 23564175 DOI: 10.1128/jb.00105-13] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.
Collapse
|
29
|
Shimada T, Katayama Y, Kawakita S, Ogasawara H, Nakano M, Yamamoto K, Ishihama A. A novel regulator RcdA of the csgD gene encoding the master regulator of biofilm formation in Escherichia coli. Microbiologyopen 2012; 1:381-94. [PMID: 23233451 PMCID: PMC3535384 DOI: 10.1002/mbo3.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 11/09/2022] Open
Abstract
The FixJ/LuxR family transcription factor CsgD is a master regulator of biofilm formation in Escherichia coli. Previously, we identified more than 10 transcription factors that participate in regulation of the csgD promoter. After genomic SELEX screening of regulation targets, an uncharacterized TetR-type transcription factor YbjK was found to be involved in regulation of the csgD promoter. In addition, a number of stress-response genes were found to be under the direct control of YbjK. Taken together, we propose to rename it to RcdA (regulator of csgD). One unique feature of RcdA is its mode of DNA binding. Gel shift, DNase-I footprinting, and atomic force microscopic (AFM) analyses indicated that RcdA is a DNA-binding protein with a high level of cooperativity, with which it covers the entire surface of probe DNA through protein–protein interaction and moreover it induces the formation of aggregates of DNA–RcdA complexes.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Novel repressor of Escherichia coli O157:H7 motility encoded in the putative fimbrial cluster OI-1. J Bacteriol 2012; 194:5343-52. [PMID: 22843849 DOI: 10.1128/jb.01025-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 is a gastrointestinal pathogen that has become a serious public health concern, as it is associated with outbreaks and severe diseases such as hemolytic-uremic syndrome. The molecular basis of its greater virulence than that of other serotypes is not completely known. OI-1 is a putative fimbria-encoding genomic island that is found almost exclusively in O157:H7 Shiga toxin-producing E. coli strains and may be associated with the enhanced pathogenesis of these strains. In this study, we identified and characterized a novel repressor of flagellar synthesis encoded by OI-1. We showed that deletion of Z0021 increased the motility of E. coli O157:H7, which correlated with an increase in flagellin production and enhanced assembly of flagella on the cell surface. In contrast, overexpression of Z0021 inhibited motility. We demonstrated that Z0021 exerted its regulatory effects downstream of the transcription and translation of flhDC but prior to the activation of class II/III promoters. Furthermore, the master regulator of flagellar synthesis, FlhD(4)C(2), was shown to be a high-copy suppressor of the nonmotile phenotype associated with elevated levels of Z0021--a finding consistent with Z0021-FlhD(4)C(2) being a potential regulatory complex. This work provides insight into the mechanism by which Z0021, which we have named fmrA, represses flagellar synthesis and is the first report of a fimbrial-operon-encoded inhibitor of motility in E. coli O157:H7.
Collapse
|
31
|
Refining the binding of the Escherichia coli flagellar master regulator, FlhD4C2, on a base-specific level. J Bacteriol 2011; 193:4057-68. [PMID: 21685294 DOI: 10.1128/jb.00442-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli flagellar master regulator, FlhD(4)C(2), binds to the promoter regions of flagellar class II genes, yet, despite extensive analysis of the FlhD(4)C(2)-regulated promoter region, a detailed consensus sequence has not emerged. We used in vitro and in vivo experimental approaches to determine the nucleotides in the class II promoter, fliAp, required for the binding and function of FlhD(4)C(2). FlhD(4)C(2) protects 48 bp (positions -76 to -29 relative to the σ(70)-dependent transcriptional start site) in the fliA promoter. We divided the 48-bp footprint region into 5 sections to determine the requirement of each DNA segment for the binding and function of FlhD(4)C(2). Results from an in vitro binding competition assay between the wild-type FlhD(4)C(2)-protected fragment and DNA fragments possessing mutations in one section of the 48-bp protected region showed that only one-third of the 48 bp protected by FlhD(4)C(2) is required for FlhD(4)C(2) binding and fliA promoter activity. This in vitro binding result was also seen in vivo with fliA promoter-lacZ fusions carrying the same mutations. Only seven bases (A(12), A(15), T(34), A(36), T(37), A(44), and T(45)) are absolutely required for the promoter activity. Moreover, A(12), A(15), T(34), T(37), and T(45) within the 7 bases are highly specific to fliA promoter activity, and those bases form an asymmetric recognition site for FlhD(4)C(2). The implications of the asymmetry of the FlhD(4)C(2) binding site and its potential impact on FlhD(4)C(2) are discussed.
Collapse
|
32
|
Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 2011; 193:2587-97. [PMID: 21421764 DOI: 10.1128/jb.01468-10] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CsgD, the master regulator of biofilm formation, activates the synthesis of curli fimbriae and extracellular polysaccharides in Escherichia coli. To obtain insights into its regulatory role, we have identified a total of 20 novel regulation target genes on the E. coli genome by using chromatin immunoprecipitation (ChIP)-on-chip analysis with a high-density DNA microarray. By DNase I footprinting, the consensus CsgD-binding sequence predicted from a total of 18 target sites was found to include AAAAGNG(N(2))AAAWW. After a promoter-lacZ fusion assay, the CsgD targets were classified into two groups: group I genes, such as fliE and yhbT, are repressed by CsgD, while group II genes, including yccT and adrA, are activated by CsgD. The fliE and fliEFGH operons for flagellum formation are directly repressed by CsgD, while CsgD activates the adrA gene, which encodes an enzyme for synthesis of cyclic di-GMP, a bacterial second messenger, which in turn inhibits flagellum production and rotation. Taking these findings together, we propose that the cell motility for planktonic growth is repressed by CsgD, thereby promoting the switch to biofilm formation.
Collapse
|
33
|
EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica Serovar Typhimurium. J Bacteriol 2011; 193:1600-11. [PMID: 21278297 DOI: 10.1128/jb.01494-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Flagellar operons are divided into three classes with respect to their transcriptional hierarchy in Salmonella enterica serovar Typhimurium. The class 1 gene products FlhD and FlhC act together in an FlhD(4)C(2) heterohexamer, which binds upstream of the class 2 promoters to facilitate binding of RNA polymerase. In this study, we showed that flagellar expression was much reduced in the cells grown in poor medium compared to those grown in rich medium. This nutritional control was shown to be executed at a step after class 1 transcription. We isolated five Tn5 insertion mutants in which the class 2 expression was derepressed in poor medium. These insertions were located in the ydiV (cdgR) gene or a gene just upstream of ydiV. The ydiV gene is known to encode an EAL domain protein and to act as a negative regulator of flagellar expression. Gene disruption and complementation analyses revealed that the ydiV gene is responsible for nutritional control. Expression analysis of the ydiV gene showed that its translation, but not transcription, was enhanced by growth in poor medium. The ydiV mutation did not have a significant effect on either the steady-state level of flhDC mRNA or that of FlhC protein. Purified YdiV protein was shown in vitro to bind to FlhD(4)C(2) through interaction with FlhD subunit and to inhibit its binding to the class 2 promoter, resulting in inhibition of FlhD(4)C(2)-dependent transcription. Taking these data together, we conclude that YdiV is a novel anti-FlhD(4)C(2) factor responsible for nutritional control of the flagellar regulon.
Collapse
|
34
|
Aldridge C, Poonchareon K, Saini S, Ewen T, Soloyva A, Rao CV, Imada K, Minamino T, Aldridge PD. The interaction dynamics of a negative feedback loop regulates flagellar number in Salmonella enterica serovar Typhimurium. Mol Microbiol 2010; 78:1416-30. [PMID: 21143315 DOI: 10.1111/j.1365-2958.2010.07415.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Each Salmonella enterica serovar Typhimurium cell produces a discrete number of complete flagella. Flagellar assembly responds to changes in growth rates through FlhD(4) C(2) activity. FlhD(4) C(2) activity is negatively regulated by the type 3 secretion chaperone FliT. FliT is known to interact with the flagellar filament cap protein FliD as well as components of the flagellar type 3 secretion apparatus. FliD is proposed to act as an anti-regulator, in a manner similar to FlgM inhibition of σ(28) activity. We have found that efficient growth-dependent regulation of FlhD(4) C(2) requires FliT regulation. In turn, FliD regulation of FliT modulates the response. We also show that, unlike other flagellar-specific regulatory circuits, deletion of fliT or fliD did not lead to an all-or-nothing response in FlhD(4) C(2) activity. To investigate why, we characterized the biochemical interactions in the FliT : FliD : FlhD(4) C(2) circuit. When FlhD(4) C(2) was not bound to DNA, FliT disrupted the FlhD(4) C(2) complex. Interestingly, when FlhD(4) C(2) was bound to DNA it was insensitive to FliT regulation. This suggests that the FliT circuit regulates FlhD(4) C(2) activity by preventing the formation of the FlhD(4) C(2) :DNA complex. Our data would suggest that this level of endogenous regulation of FlhD(4) C(2) activity allows the flagellar system to efficiently respond to external signals.
Collapse
Affiliation(s)
- Christine Aldridge
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maynard ND, Birch EW, Sanghvi JC, Chen L, Gutschow MV, Covert MW. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS Genet 2010; 6:e1001017. [PMID: 20628568 PMCID: PMC2900299 DOI: 10.1371/journal.pgen.1001017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 06/04/2010] [Indexed: 11/24/2022] Open
Abstract
Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli) genes—over half of which have not been previously associated with infection—that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation—one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles. In this study, we took advantage of a new genetic resource for E. coli mutants to screen for previously undiscovered lambda phage host-dependencies. We then assessed the dynamics of infection in these different E. coli mutants and applied a mathematical model of infection in an attempt to further classify the role of these novel interactions. This model-driven approach to biological discovery led us to identify the previously uncharacterized gene yneJ as a regulator of lamB gene expression. In addition, we identified two highly conserved pathways involved in post-transcriptional modification of tRNA—one pathway was required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. This finding is important as it illustrates a new potential anti-viral strategy that could be applied broadly to other viruses.
Collapse
Affiliation(s)
- Nathaniel D. Maynard
- Department of Bioengineering, Stanford University, Palo Alto, California, United States of America
| | - Elsa W. Birch
- Department of Chemical Engineering, Stanford University, Palo Alto, California, United States of America
| | - Jayodita C. Sanghvi
- Department of Bioengineering, Stanford University, Palo Alto, California, United States of America
| | - Lu Chen
- Department of Bioengineering, Stanford University, Palo Alto, California, United States of America
| | - Miriam V. Gutschow
- Department of Bioengineering, Stanford University, Palo Alto, California, United States of America
| | - Markus W. Covert
- Department of Bioengineering, Stanford University, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Escherichia coli is not considered naturally competent, yet it has homologues of the genes that most competent bacteria use for DNA uptake and processing. In Haemophilus influenzae and Vibrio cholerae, these genes are regulated by the Sxy and cyclic AMP receptor (CRP) proteins. We used microarrays to find out whether similar regulation occurs in E. coli. Expression of sxy strongly induced 63 transcriptional units, 34 of which required CRP for transcriptional activation and had promoter sites resembling the Sxy- and CRP-dependent CRP-S motif previously characterized in H. influenzae. As previously reported, sxy expression also induced the sigma-H regulon. Flagellar operons were downregulated by sxy expression, although motility remained unaffected. The CRP-S regulon included all of E. coli's known competence gene homologues, so we investigated Sxy's effect on competence-associated phenotypes. A sxy knockout reduced both "natural" plasmid transformation and competitive fitness in long-term culture. In addition, expression of plasmid-borne sxy led to production of type IV pilin, the main subunit of the DNA uptake machinery of most bacteria. Although H. influenzae Sxy only weakly activated the E. coli Sxy regulon, induction was dramatically improved when it was coexpressed with its cognate CRP, suggesting that intimate interactions between Sxy and CRP are required for transcriptional activation at CRP-S sites.
Collapse
|
37
|
Girgis HS, Hottes AK, Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS One 2009; 4:e5629. [PMID: 19462005 PMCID: PMC2680486 DOI: 10.1371/journal.pone.0005629] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 04/23/2009] [Indexed: 11/26/2022] Open
Abstract
Background Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired. Methodology/Principal Findings To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance. Conclusions/Significance Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.
Collapse
Affiliation(s)
- Hany S. Girgis
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alison K. Hottes
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Saeed Tavazoie
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
38
|
Freyre-González JA, Alonso-Pavón JA, Treviño-Quintanilla LG, Collado-Vides J. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach. Genome Biol 2008; 9:R154. [PMID: 18954463 PMCID: PMC2760881 DOI: 10.1186/gb-2008-9-10-r154] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 10/27/2008] [Indexed: 11/16/2022] Open
Abstract
The E. coli transcriptional regulatory network is shown to have a nonpyramidal architecture of independent modules governed by transcription factors, whose responses are integrated by intermodular genes. Background Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. Results We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. Conclusions This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
39
|
Bravo D, Silva C, Carter JA, Hoare A, Álvarez SA, Blondel CJ, Zaldívar M, Valvano MA, Contreras I. Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol 2008; 57:938-946. [PMID: 18628492 DOI: 10.1099/jmm.0.47848-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amount of lipopolysaccharide (LPS) O antigen (OAg) and its chain length distribution are important factors that protect bacteria from serum complement. Salmonella enterica serovar Typhi produces LPS with long chain length distribution (L-OAg) controlled by the wzz gene, whereas serovar Typhimurium produces LPS with two OAg chain lengths: an L-OAg controlled by Wzz(ST) and a very long (VL) OAg determined by Wzz(fepE). This study shows that serovar Enteritidis also has a bimodal OAg distribution with two preferred OAg chain lengths similar to serovar Typhimurium. It was reported previously that OAg production by S. Typhi increases at the late exponential and stationary phases of growth. The results of this study demonstrate that increased amounts of L-OAg produced by S. Typhi grown to stationary phase confer higher levels of bacterial resistance to human serum. Production of OAg by serovars Typhimurium and Enteritidis was also under growth-phase-dependent regulation; however, while the total amount of OAg increased during growth, the VL-OAg distribution remained constant. The VL-OAg distribution was primarily responsible for complement resistance, protecting the non-typhoidal serovars from the lytic action of serum irrespective of the growth phase. As a result, the non-typhoidal species were significantly more resistant than S. Typhi to human serum. When S. Typhi was transformed with a multicopy plasmid containing the S. Typhimurium wzz(fepE) gene, resistance to serum increased to levels comparable to the non-typhoidal serovars. In contrast to the relevant role for high-molecular-mass OAg molecules, the presence of Vi antigen did not contribute to serum resistance of clinical isolates of serovar Typhi.
Collapse
Affiliation(s)
- Denisse Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Cecilia Silva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Javier A Carter
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Anilei Hoare
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Mercedes Zaldívar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Miguel A Valvano
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| |
Collapse
|
40
|
A potential acyltransferase regulates swarming in Serratia marcescens. Biochem Biophys Res Commun 2008; 371:462-7. [DOI: 10.1016/j.bbrc.2008.04.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/17/2008] [Indexed: 11/21/2022]
|
41
|
Lanois A, Jubelin G, Givaudan A. FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Mol Microbiol 2008; 68:516-33. [PMID: 18383616 DOI: 10.1111/j.1365-2958.2008.06168.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. We investigated the role of FliZ in the regulation of flagellar and virulence genes in Xenorhabdus nematophila, an insect pathogen. The fliZ gene is the second gene in the fliAZ operon in X. nematophila. In vivo transcription analysis revealed a positive feedback loop of fliAZ transcription in which FliZ activates flhDC, the master operon of flagellar regulon in X. nematophila, leading to an increased transcription of the FlhDC-dependent promoter of fliAZ. We also showed that fliAZ and flhDC mutants lacked motility, had no haemolysin or Tween lipase activity and displayed an attenuated virulence phenotype in insects. Lipase activity is controlled by FliA, whereas haemolysin production and full virulence phenotype have been reported to be FliZ-dependent. Transcriptional analysis revealed that FliZ directly controlled expression of the xhlBA and xaxAB operons, which encode haemolysins from the two-partner secretion system and the binary XaxAB toxin family respectively. We suggest that this regulatory pathway may also occur in other pathogenic enterobacteria with genes encoding members of these two growing families of haemolysins.
Collapse
Affiliation(s)
- Anne Lanois
- INRA, UMR 1133 Laboratoire EMIP, F-34000 Montpellier, France
| | | | | |
Collapse
|
42
|
Wozniak CE, Hughes KT. Genetic dissection of the consensus sequence for the class 2 and class 3 flagellar promoters. J Mol Biol 2008; 379:936-52. [PMID: 18486950 DOI: 10.1016/j.jmb.2008.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 11/16/2022]
Abstract
Computational searches for DNA binding sites often utilize consensus sequences. These search models make assumptions that the frequency of a base pair in an alignment relates to the base pair's importance in binding and presume that base pairs contribute independently to the overall interaction with the DNA-binding protein. These two assumptions have generally been found to be accurate for DNA binding sites. However, these assumptions are often not satisfied for promoters, which are involved in additional steps in transcription initiation after RNA polymerase has bound to the DNA. To test these assumptions for the flagellar regulatory hierarchy, class 2 and class 3 flagellar promoters were randomly mutagenized in Salmonella. Important positions were then saturated for mutagenesis and compared to scores calculated from the consensus sequence. Double mutants were constructed to determine how mutations combined for each promoter type. Mutations in the binding site for FlhD4C2, the activator of class 2 promoters, better satisfied the assumptions for the binding model than did mutations in the class 3 promoter, which is recognized by the sigma(28) transcription factor. These in vivo results indicate that the activator sites within flagellar promoters can be modeled using simple assumptions, but that the DNA sequences recognized by the flagellar sigma factor require more complex models.
Collapse
|
43
|
Carter JA, Blondel CJ, Zaldívar M, Álvarez SA, Marolda CL, Valvano MA, Contreras I. O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene. MICROBIOLOGY-SGM 2007; 153:3499-3507. [PMID: 17906147 DOI: 10.1099/mic.0.2007/010066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shigella flexneri 2a 2457T produces lipopolysaccharide (LPS) with two O-antigen (OAg) chain lengths: a short (S-OAg) controlled by WzzB and a very long (VL-OAg) determined by Wzz(pHS-2). This study demonstrates that the synthesis and length distribution of the S. flexneri OAg are under growth-phase-dependent regulation. Quantitative electrophoretic analysis showed that the VL-OAg increased during growth while the S-OAg distribution remained constant. Increased production of VL-OAg correlated with the growth-phase-regulated expression of the transcription elongation factor RfaH, and was severely impaired in a DeltarfaH mutant, which synthesized only low-molecular-mass OAg molecules and a small amount of S-OAg. Real-time RT-PCR revealed a drastic reduction of wzy polymerase gene expression in the DeltarfaH mutant. Complementation of this mutant with the wzy gene cloned into a high-copy-number plasmid restored the bimodal OAg distribution, suggesting that cellular levels of Wzy influence not only OAg polymerization but also chain-length distribution. Accordingly, overexpression of wzy in the wild-type strain resulted in production of a large amount of high-molecular-mass OAg molecules. An increased dosage of either wzzB or wzz(pHS-2) also altered OAg chain-length distribution. Transcription of wzzB and wzz(pHS-2) genes was regulated during bacterial growth but in an RfaH-independent manner. Overall, these findings indicate that expression of the wzy, wzzB and wzz(pHS-2) genes is finely regulated to determine an appropriate balance between the proteins responsible for polymerization and chain-length distribution of S. flexneri OAg.
Collapse
Affiliation(s)
- Javier A Carter
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Mercedes Zaldívar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Cristina L Marolda
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| |
Collapse
|
44
|
O'Halloran JA, McGrath BM, Pembroke JT. Theorf4 gene of the enterobacterial ICE, R391, encodes a novel UV-inducible recombination directionality factor, Jef, involved in excision and transfer of the ICE. FEMS Microbiol Lett 2007; 272:99-105. [PMID: 17504243 DOI: 10.1111/j.1574-6968.2007.00747.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The enterobacterial mobile genetic element R391, the prototype ICE (integrating-conjugative element) of the SXT/R391 family, shows increased conjugative transfer following UV irradiation. This is dependent on a functioning R391 orf4 gene, which is adjacent to the element encoded integrase gene, int. orf4 mutants fail to form a detectable circular transfer intermediate, do not show UV induced transfer and show a much reduced general transfer ability. The orf4 gene product, termed Jef (IncJ excision factor), shows little homology to anything currently in the nucleotide or protein databases. It is predicted to encode a 66 amino acid, 8.03 kDa, basic, DNA-binding protein with an iso-electric point of pH 8.1: these characteristics being similar to those of recombinational directionality factors involved in excision. Jef expression is up-regulated upon UV irradiation as demonstrated by real-time reverse transcriptase PCR and is controlled by two element encoded genes orf90 and orf91, which show similarity to the transcriptional activator complex FlhC and FlhD. orf4, orf90 and orf91 are conserved in all the SXT/R391-like elements sequenced to date including SXT, ICESpuPO1 and ICEVchMex1. orf4 is also conserved in other SXT/R391 family members such as R997, R392, R705 and pMERPH as shown by sequencing amplicons from these ICEs generated using orf4 specific primers.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Conjugation, Genetic/genetics
- Conserved Sequence/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Enterobacteriaceae/genetics
- Enterobacteriaceae/physiology
- Enterobacteriaceae/radiation effects
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Gene Transfer, Horizontal/genetics
- Interspersed Repetitive Sequences
- Isoelectric Point
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Insertional
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology
- Ultraviolet Rays
Collapse
Affiliation(s)
- John A O'Halloran
- Molecular and Structural Biochemistry Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
45
|
Abstract
The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two-component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control" protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory.
Collapse
Affiliation(s)
- Richard C Waters
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
46
|
Zhao K, Liu M, Burgess RR. Adaptation in bacterial flagellar and motility systems: from regulon members to 'foraging'-like behavior in E. coli. Nucleic Acids Res 2007; 35:4441-52. [PMID: 17576668 PMCID: PMC1935009 DOI: 10.1093/nar/gkm456] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial flagellar motility and chemotaxis help cells to reach the most favorable environments and to successfully compete with other micro-organisms in response to external stimuli. Escherichia coli is a motile gram-negative bacterium, and the flagellar regulon in E. coli is controlled by a master regulator FlhDC as well as a second regulator, flagellum-specific sigma factor, σF. To define the physiological role of these two regulators, we carried out transcription profiling experiments to identify, on a genome-wide basis, genes under the control of these two regulators. In addition, the synchronized pattern of increasing CRP activity causing increasing FlhDC expression with decreasing carbon source quality, together with the apparent coupling of motility activity with the activation of motility and chemotaxis genes in poor quality carbon sources, highlights the importance of CRP activation in allowing E. coli to devote progressively more of its limited reserves to search out better conditions. In adaptation to a variety of carbon sources, the motile bacteria carry out tactical responses by increasing flagellar operation but restricting costly flagellar synthesis, indicating its capability of strategically using the precious energy in nutrient-poor environments for maximizing survival.
Collapse
Affiliation(s)
- Kai Zhao
- McArdle Laboratory for Cancer Research, Department of Genetics and Department of Computer Science, University of Wisconsin, Madison, WI 53706, USA
| | - Mingzhu Liu
- McArdle Laboratory for Cancer Research, Department of Genetics and Department of Computer Science, University of Wisconsin, Madison, WI 53706, USA
| | - Richard R. Burgess
- McArdle Laboratory for Cancer Research, Department of Genetics and Department of Computer Science, University of Wisconsin, Madison, WI 53706, USA
- *To whom correspondence should be addressed. +1-608-263-2635+1-608-262-2824
| |
Collapse
|
47
|
Stafford GP, Hughes C. Salmonella typhimurium flhE, a conserved flagellar regulon gene required for swarming. MICROBIOLOGY-SGM 2007; 153:541-547. [PMID: 17259626 PMCID: PMC2528295 DOI: 10.1099/mic.0.2006/002576-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Salmonella typhimurium gene flhE is located at the end of a large flagellar locus in at least 10 peritrichously flagellated Gram-negative bacterial genera, but it shares no significant similarity with other genes. This study shows that flhE is transcribed as part of an flhBAE flagellar operon, under the control of the flagellar master regulator FlhD(2)C(2). Deletion of the chromosomal flhE gene did not affect swimming motility, but it abolished swarming motility across solid agar. Swarming was restored to the DeltaflhE mutant by the 130 aa putative envelope protein FlhE, but not by a truncated version lacking the N-terminal signal peptidase I recognition sequence. The DeltaflhE mutant was indistinguishable from the wild-type parent in number and distribution of flagella, secretion of flagellin subunits, and flagellar gene expression, and there were no obvious differences in cell-surface LPS and extracellular polysaccharide. The DeltaflhE mutant was able to swarm when non-ionic surfactant was included in agar medium, and it showed differences to the wild-type in binding calcofluor and Congo red dyes, and in biofilm production. The data show that the flhE gene is part of the flagella regulon but that it has no role in flagella biogenesis. It appears, nevertheless, to act at the cell envelope to influence flagella-dependent swarming.
Collapse
Affiliation(s)
- Graham P Stafford
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin Hughes
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
48
|
Yamamoto S, Kutsukake K. FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium. J Bacteriol 2006; 188:6703-8. [PMID: 16952964 PMCID: PMC1595477 DOI: 10.1128/jb.00799-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellar operons are divided into three classes with respect to their transcriptional hierarchy in Salmonella enterica serovar Typhimurium. The class 1 gene products FlhD and FlhC act together in an FlhD(2)C(2) heterotetramer, which binds upstream of the class 2 promoters to facilitate binding of RNA polymerase. Class 2 expression is known to be enhanced by a disruption mutation in a flagellar gene, fliT. In this study, we purified FliT protein in a His-tagged form and showed that the protein prevented binding of FlhD(2)C(2) to the class 2 promoter and inhibited FlhD(2)C(2)-dependent transcription. Pull-down and far-Western blotting analyses revealed that the FliT protein was capable of binding to FlhD(2)C(2) and FlhC and not to FlhD alone. We conclude that FliT acts as an anti-FlhD(2)C(2) factor, which binds to FlhD(2)C(2) through interaction with the FlhC subunit and inhibits its binding to the class 2 promoter.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Biology, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan
| | | |
Collapse
|
49
|
Stevenson LG, Rather PN. A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J Bacteriol 2006; 188:7830-9. [PMID: 16980463 PMCID: PMC1636314 DOI: 10.1128/jb.00979-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we identified a transposon insertion in a novel gene, designated disA, that restored swarming motility to a putrescine-deficient speA mutant of Proteus mirabilis. A null allele in disA also increased swarming in a wild-type background. The DisA gene product was homologous to amino acid decarboxylases, and its role in regulating swarming was investigated by examining the expression of genes in the flagellar cascade. In a disA mutant background, we observed a 1.4-fold increase in the expression of flhDC, which encodes FlhD(2)C(2), the master regulator of the flagellar gene cascade. However, the expressions of class 2 (fliA, flgM) and class 3 (flaA) genes were at least 16-fold higher in the disA background during swarmer cell differentiation. Overexpression of DisA on a high-copy-number plasmid did not significantly decrease flhDC mRNA accumulation but resulted in a complete block in mRNA accumulation for both fliA and flaA. DisA overexpression also blocked swarmer cell differentiation. The disA gene was regulated during the swarming cycle, and a single-copy disA::lacZ fusion exhibited a threefold increase in expression in swarmer cells. Given that DisA was similar to amino acid decarboxylases, a panel of decarboxylated amino acids was tested for effects similar to DisA overexpression, and phenethylamine, the product of phenylalanine decarboxylation, was capable of inhibiting both swarming and the expression of class 2 and class 3 genes in the flagellar regulon. A DisA-dependent decarboxylated amino acid may inhibit the formation of active FlhD(2)C(2) heterotetramers or inhibit FlhD(2)C(2) binding to DNA.
Collapse
Affiliation(s)
- Lindsay G Stevenson
- Department of Microbiology and Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, GA, USA
| | | |
Collapse
|
50
|
Prüss BM, Besemann C, Denton A, Wolfe AJ. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 2006; 188:3731-9. [PMID: 16707665 PMCID: PMC1482888 DOI: 10.1128/jb.01780-05] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Birgit M Prüss
- Department of Veterinary and Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd., Fargo, ND 58105, USA.
| | | | | | | |
Collapse
|