1
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
2
|
Bankapalli LK, Mishra RC, Raychaudhuri S. VopE, a Vibrio cholerae Type III Effector, Attenuates the Activation of CWI-MAPK Pathway in Yeast Model System. Front Cell Infect Microbiol 2017; 7:82. [PMID: 28373966 PMCID: PMC5357651 DOI: 10.3389/fcimb.2017.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
VopE, a mitochondrial targeting T3SS effector protein of Vibrio cholerae, perturbs innate immunity by modulating mitochondrial dynamics. In the current study, ectopic expression of VopE was found to be toxic in a yeast model system and toxicity was further aggravated in the presence of various stressors. Interestingly, a VopE variant lacking predicted mitochondrial targeting sequence (MTS) also exhibited partial lethality in the yeast system. With the aid of yeast genetic tools and different stressors, we have demonstrated that VopE and its derivative VopEΔMTS modulate cell wall integrity (CWI-MAPK) signaling pathway and have identified several critical residues contributing to the lethality of VopE. Furthermore, co-expression of two effectors VopEΔMTS and VopX, interfering with the CWI-MAPK cellular pathway can partially suppress the VopX mediated yeast growth inhibition. Taken together, these results suggest that VopE alters signaling through the CWI-MAPK pathway, and demonstrates the usefulness of yeast model system to gain additional insights on the functionality of VopE.
Collapse
Affiliation(s)
- Leela K Bankapalli
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Rahul C Mishra
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
3
|
Tricellular Tight Junction Protein Tricellulin Is Targeted by the Enteropathogenic Escherichia coli Effector EspG1, Leading to Epithelial Barrier Disruption. Infect Immun 2016; 85:IAI.00700-16. [PMID: 27795363 DOI: 10.1128/iai.00700-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC)-induced diarrhea is often associated with disruption of intestinal epithelial tight junctions. Although studies have shown alterations in the expression and localization of bicellular tight junction proteins during EPEC infections, little is known about whether tricellular tight junction proteins (tTJs) are affected. Using Caco-2 cell monolayers, we investigated if EPEC is capable of targeting the tTJ protein tricellulin. Our results demonstrated that at 4 h postinfection, EPEC induced a significant reduction in tricellulin levels, accompanied by a significant loss of transepithelial resistance (TEER) and a corresponding increase in paracellular permeability. Conversely, cells overexpressing tricellulin were highly resistant to EPEC-induced barrier disruption. Confocal microscopy revealed the distribution of tricellulin into the plasma membrane of infected epithelial cells and confirmed the localization of EPEC aggregates in close proximity to tTJs. Moreover, infections with EPEC strains lacking genes encoding specific type III secreted effector proteins demonstrated a crucial role for the effector EspG1 in modulating tricellulin expression. Complementation studies suggest that the EspG-induced depletion of tricellulin is microtubule dependent. Overall, our results show that EPEC-induced epithelial barrier dysfunction is mediated in part by EspG1-induced microtubule-dependent depletion of tricellulin.
Collapse
|
4
|
Torraca V, Mostowy S. Septins and Bacterial Infection. Front Cell Dev Biol 2016; 4:127. [PMID: 27891501 PMCID: PMC5104955 DOI: 10.3389/fcell.2016.00127] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 12/04/2022] Open
Abstract
Septins, a unique cytoskeletal component associated with cellular membranes, are increasingly recognized as having important roles in host defense against bacterial infection. A role for septins during invasion of Listeria monocytogenes into host cells was first proposed in 2002. Since then, work has shown that septins assemble in response to a wide variety of invasive bacterial pathogens, and septin assemblies can have different roles during the bacterial infection process. Here we review the interplay between septins and bacterial pathogens, highlighting septins as a structural determinant of host defense. We also discuss how investigation of septin assembly in response to bacterial infection can yield insight into basic cellular processes including phagocytosis, autophagy, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Medicine, MRC Centre of Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Serge Mostowy
- Department of Medicine, MRC Centre of Molecular Bacteriology and Infection, Imperial College London London, UK
| |
Collapse
|
5
|
Krokowski S, Mostowy S. Investigation of septins using infection by bacterial pathogens. Methods Cell Biol 2016; 136:117-34. [PMID: 27473906 DOI: 10.1016/bs.mcb.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigation of the host cytoskeleton during infection by bacterial pathogens has significantly contributed to our understanding of cell biology and host defense. Work has shown that septins are recruited to the phagocytic cup as collarlike structures and enable bacterial entry into host cells. In the cytosol, septins can entrap actin-polymerizing bacteria in cage-like structures for targeting to autophagy, a highly conserved intracellular degradation process. In this chapter, we describe methods to investigate septin assembly and function during infection by bacterial pathogens. Use of these methods can lead to in-depth understanding of septin biology and suggest therapeutic approaches to combat infectious disease.
Collapse
Affiliation(s)
- S Krokowski
- Imperial College London, London, United Kingdom
| | - S Mostowy
- Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Popa C, Coll NS, Valls M, Sessa G. Yeast as a Heterologous Model System to Uncover Type III Effector Function. PLoS Pathog 2016; 12:e1005360. [PMID: 26914889 PMCID: PMC4767418 DOI: 10.1371/journal.ppat.1005360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications.
Collapse
Affiliation(s)
- Crina Popa
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Marc Valls
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- * E-mail: (GS); (MV)
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (GS); (MV)
| |
Collapse
|
7
|
Zrieq R, Sana TG, Vergin S, Garvis S, Volfson I, Bleves S, Voulhoux R, Hegemann JH. Genome-wide Screen of Pseudomonas aeruginosa in Saccharomyces cerevisiae Identifies New Virulence Factors. Front Cell Infect Microbiol 2015; 5:81. [PMID: 26636043 PMCID: PMC4644809 DOI: 10.3389/fcimb.2015.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/31/2015] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is a human opportunistic pathogen that causes mortality in cystic fibrosis and immunocompromised patients. While many virulence factors of this pathogen have already been identified, several remain to be discovered. In this respect we set an unprecedented genome-wide screen of a P. aeruginosa expression library based on a yeast growth phenotype. Fifty-one candidates were selected in athree-round screening process. The robustness of the screen was validated by the selection of three well known secreted proteins including one demonstrated virulence factor, the protease LepA. Further in silico sorting of the 51 candidates highlighted three potential new Pseudomonas effector candidates (Pec). By testing the cytotoxicity of wild type P. aeruginosa vs. pec mutants toward macrophages and the virulence in the Caenorhabditis elegans model, we demonstrated that the three selected Pecs are novel virulence factors of P. aeruginosa. Additional cellular localization experiments in the host revealed specific localization for Pec1 and Pec2 that could inform about their respective functions.
Collapse
Affiliation(s)
- Rafat Zrieq
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - Thibault G Sana
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Sandra Vergin
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - Steve Garvis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Irina Volfson
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Johannes H Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| |
Collapse
|
8
|
Fernandez-Piñar P, Alemán A, Sondek J, Dohlman HG, Molina M, Martín H. The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae. Mol Biol Cell 2012; 23:4430-43. [PMID: 23015760 PMCID: PMC3496616 DOI: 10.1091/mbc.e12-03-0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of the Salmonella effector SteC in yeast leads to down-regulation of the mating and HOG pathways by Cdc42 inhibition. This is mediated by the SteC N-terminal domain through binding to the GEF Cdc24. SteC alters Cdc24 localization and also interacts with human GEF Vav1, suggesting that SteC could target Cdc42 function in host cells. Intracellular survival of Salmonella relies on the activity of proteins translocated into the host cell by type III secretion systems (T3SS). The protein kinase activity of the T3SS effector SteC is required for F-actin remodeling in host cells, although no SteC target has been identified so far. Here we show that expression of the N-terminal non-kinase domain of SteC down-regulates the mating and HOG pathways in Saccharomyces cerevisiae. Epistasis analyses using constitutively active components of these pathways indicate that SteC inhibits signaling at the level of the GTPase Cdc42. We demonstrate that SteC interacts through its N-terminal domain with the catalytic domain of Cdc24, the sole S. cerevisiae Cdc42 guanine nucleotide exchange factor (GEF). SteC also binds to the human Cdc24-like GEF protein Vav1. Moreover, expression of human Cdc42 suppresses growth inhibition caused by SteC. Of interest, the N-terminal SteC domain alters Cdc24 cellular localization, preventing its nuclear accumulation. These data reveal a novel functional domain within SteC, raising the possibility that this effector could also target GTPase function in mammalian cells. Our results also highlight the key role of the Cdc42 switch in yeast mating and HOG pathways and provide a new tool to study the functional consequences of Cdc24 localization.
Collapse
Affiliation(s)
- Pablo Fernandez-Piñar
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Maman Y, Nir-Paz R, Louzoun Y. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response. PLoS Comput Biol 2011; 7:e1002220. [PMID: 22022257 PMCID: PMC3192822 DOI: 10.1371/journal.pcbi.1002220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 08/20/2011] [Indexed: 01/09/2023] Open
Abstract
The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.
Collapse
Affiliation(s)
- Yaakov Maman
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Attaching and effacing bacterial effector NleC suppresses epithelial inflammatory responses by inhibiting NF-κB and p38 mitogen-activated protein kinase activation. Infect Immun 2011; 79:3552-62. [PMID: 21746856 DOI: 10.1128/iai.05033-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli are noninvasive attaching and effacing (A/E) bacterial pathogens that cause intestinal inflammation and severe diarrheal disease. These pathogens utilize a type III secretion system to deliver effector proteins into host epithelial cells, modulating diverse cellular functions, including the release of the chemokine interleukin-8 (IL-8). While studies have implicated the effectors NleE (non-locus of enterocyte effacement [LEE]-encoded effector E) and NleH1 in suppressing IL-8 release, by preventing NF-κB nuclear translocation, the impact of these effectors only partially replicates the immunosuppressive actions of wild-type EPEC, suggesting another effector or effectors are involved. Testing an array of EPEC mutants, we identified the non-LEE-encoded effector C (NleC) as also suppressing IL-8 release. Infection by ΔnleC EPEC led to exaggerated IL-8 release from infected Caco-2 and HT-29 epithelial cells. NleC localized to EPEC-induced pedestals, with signaling studies revealing NleC inhibits both NF-κB and p38 mitogen-activated protein kinase (MAPK) activation. Using Citrobacter rodentium, a mouse-adapted A/E bacterium, we found that ΔnleC and wild-type C. rodentium-infected mice carried similar pathogen burdens, yet ΔnleC strain infection led to worsened colitis. Similarly, infection with ΔnleC C. rodentium in a cecal loop model induced significantly greater chemokine responses than infection with wild-type bacteria. These studies thus advance our understanding of how A/E pathogens subvert host inflammatory responses.
Collapse
|
11
|
Rodríguez-Escudero I, Ferrer NL, Rotger R, Cid VJ, Molina M. Interaction of the Salmonella Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol 2011; 80:1220-40. [DOI: 10.1111/j.1365-2958.2011.07639.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Sukumaran B, Mastronunzio JE, Narasimhan S, Fankhauser S, Uchil PD, Levy R, Graham M, Colpitts TM, Lesser CF, Fikrig E. Anaplasma phagocytophilum AptA modulates Erk1/2 signalling. Cell Microbiol 2010; 13:47-61. [PMID: 20716207 DOI: 10.1111/j.1462-5822.2010.01516.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anaplasma phagocytophilum causes human granulocytic anaplasmosis, one of the most common tick-borne diseases in North America. This unusual obligate intracellular pathogen selectively persists within polymorphonuclear leucocytes. In this study, using the yeast surrogate model we identified an A. phagocytophilum virulence protein, AptA (A. phagocytophilum toxin A), that activates mammalian Erk1/2 mitogen-activated protein kinase. This activation is important for A. phagocytophilum survival within human neutrophils. AptA interacts with the intermediate filament protein vimentin, which is essential for A. phagocytophilum-induced Erk1/2 activation and infection. A. phagocytophilum infection reorganizes vimentin around the bacterial inclusion, thereby contributing to intracellular survival. These observations reveal a major role for the bacterial protein, AptA, and the host protein, vimentin, in the activation of Erk1/2 during A. phagocytophilum infection.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tripathi R, Singh Naorem S, Dureja C, Haldar S, Mondal AK, Raychaudhuri S. VopF, a type III effector protein from a non-O1, non-O139 Vibrio cholerae strain, demonstrates toxicity in a Saccharomyces cerevisiae model. J Med Microbiol 2010; 59:17-24. [PMID: 19779031 DOI: 10.1099/jmm.0.012336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
VopF, a type III effector protein, has been identified as a contributory factor to the intestinal colonization of type III secretion system-positive, non-O1, non-O139 Vibrio cholerae strains. To gain more insight into the function of VopF, a yeast model was developed. Using this model, it was found that ectopic expression of VopF conferred toxicity in yeast.
Collapse
Affiliation(s)
- Ranjana Tripathi
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Santa Singh Naorem
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Chetna Dureja
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Swati Haldar
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Alok K Mondal
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Saumya Raychaudhuri
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| |
Collapse
|
14
|
Alemán A, Fernández-Piñar P, Pérez-Núñez D, Rotger R, MartÃn H, Molina M. A yeast-based genetic screen for identification of pathogenicSalmonellaâproteins. FEMS Microbiol Lett 2009; 296:167-77. [DOI: 10.1111/j.1574-6968.2009.01630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Siggers KA, Lesser CF. The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe 2008; 4:8-15. [PMID: 18621006 DOI: 10.1016/j.chom.2008.06.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Collapse
Affiliation(s)
- Keri A Siggers
- Department of Medicine (Microbiology and Molecular Genetics), Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
16
|
Slagowski NL, Kramer RW, Morrison MF, LaBaer J, Lesser CF. A functional genomic yeast screen to identify pathogenic bacterial proteins. PLoS Pathog 2008; 4:e9. [PMID: 18208325 PMCID: PMC2211553 DOI: 10.1371/journal.ppat.0040009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to culture. Many bacterial pathogens promote infection and ultimately cause disease, in part, through the actions of proteins that the bacteria directly inject into host cells. These proteins subvert host cell processes to favor survival of the pathogen. The identification of such proteins can be limited since many of the injected proteins lack homology with other virulence proteins and pathogens that no longer express the proteins are often unimpaired in conventional assays of pathogenesis. Many of these proteins target cellular processes conserved from mammals to yeast, and overexpression of these proteins in yeast results in growth inhibition. We have established a high throughput growth assay amenable to systematically screening open reading frames from bacterial pathogens for those that inhibit yeast growth. We observe that yeast growth inhibition is a sensitive and specific indicator of proteins that are injected into host cells. Expression of about half of the injected bacterial proteins but almost none of the bacteria-confined proteins results in yeast growth inhibition. Since this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to grow in the laboratory.
Collapse
Affiliation(s)
- Naomi L Slagowski
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Roger W Kramer
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Monica F Morrison
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Joshua LaBaer
- Harvard Institute of Proteomics, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Cammie F Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Rodríguez-Escudero I, Rotger R, Cid VJ, Molina M. Inhibition of Cdc42-dependent signalling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium. MICROBIOLOGY-SGM 2007; 152:3437-3452. [PMID: 17074912 DOI: 10.1099/mic.0.29186-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Heterologous expression of bacterial virulence factors in Saccharomyces cerevisiae is a feasible approach to study their molecular function. The authors have previously reported that the Salmonella typhimurium SigD protein, a phosphatidylinositol phosphatase involved in invasion of the host cell, inhibits yeast growth, presumably by depleting an essential pool of phosphatidylinositol 4,5-bisphosphate, and also that a catalytically inactive version, SigD(R468A), was able to arrest growth by a different mechanism that involved disruption of the actin cytoskeleton. This paper describes marked differences between the phenotypes elicited by expression of SigD and SigD(R468A) in yeast. First, expression of SigD(R468A) caused accumulation of large unbudded cells and loss of septin organization, while SigD expression caused none of these effects. Second, growth inhibition by SigD(R468A) was mediated by a cell cycle arrest in G2 dependent on the Swe1 morphogenetic checkpoint, but SigD-induced growth inhibition was cell cycle independent. And third, SigD caused strong activation of the yeast MAP kinase Slt2, whereas SigD(R468A) rather inactivated another MAP kinase, Kss1. In a screen for suppressors of SigD(R468A)-induced growth arrest by overexpression of a yeast cDNA library, the Cdc42 GTPase was isolated. Furthermore, SigD(R468A) was co-purified with Cdc42 from yeast lysates. It is concluded that the Salmonella SigD protein deprived of its phosphatase activity is able to disrupt yeast morphogenesis by interfering with Cdc42 function, opening the possibility that the SigD N-terminal region might directly modulate small GTPases from the host during infection.
Collapse
Affiliation(s)
- Isabel Rodríguez-Escudero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rafael Rotger
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Sisko JL, Spaeth K, Kumar Y, Valdivia RH. Multifunctional analysis of Chlamydia-specific genes in a yeast expression system. Mol Microbiol 2006; 60:51-66. [PMID: 16556220 DOI: 10.1111/j.1365-2958.2006.05074.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our understanding of how obligate intracellular pathogens co-opt eukaryotic cellular functions has been limited by their intractability to genetic manipulation and by the abundance of pathogen-specific genes with no known functional homologues. In this report we describe a gene expression system to characterize proteins of unknown function from the obligate intracellular bacterial pathogen Chlamydia trachomatis. We have devised a homologous recombination-based cloning strategy to construct an ordered array of Saccharomyces cerevisiae strains expressing all Chlamydia-specific genes. These strains were screened to identify chlamydial proteins that impaired various yeast cellular functions or that displayed tropism towards eukaryotic organelles. In addition, to identify bacterial factors that are secreted into the host cell, recombinant chlamydial proteins were screened for reactivity towards antisera raised against vacuolar membranes purified from infected mammalian cells. We report the identification of 34 C. trachomatis proteins that impact yeast cellular functions or are tropic for a range of eukaryotic organelles including mitochondria, nucleus and cytoplasmic lipid droplets, and a new family of Chlamydia-specific proteins that are exported from the parasitopherous vacuole. The versatility of molecular manipulations and protein expression in yeast allows for the rapid construction of comprehensive protein expression arrays to explore the function of pathogen-specific gene products from microorganisms that are difficult to genetically manipulate, grow in culture or too dangerous for routine analysis in the laboratory.
Collapse
Affiliation(s)
- Jennifer L Sisko
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
19
|
Hardwidge PR, Donohoe S, Aebersold R, Finlay BB. Proteomic analysis of the binding partners to enteropathogenic Escherichia coli virulence proteins expressed in Saccharomyces cerevisiae. Proteomics 2006; 6:2174-9. [PMID: 16552782 DOI: 10.1002/pmic.200500523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an enteric human pathogen responsible for much worldwide morbidity and mortality. EPEC uses a type III secretion system to inject bacterial proteins into the cytosol of intestinal epithelial cells to cause diarrheal disease. We are interested in determining the host proteins to which EPEC translocator and effector proteins bind during infection. To facilitate protein enrichment, we created fusions between GST and EPEC virulence proteins, and expressed these fusions individually in Saccharomyces cerevisiae. The biology of S. cerevisiae is well understood and often employed as a model eukaryote to study the function of bacterial virulence factors. We isolated the yeast proteins that interact with individual EPEC proteins by affinity purifying against the GST tag. These complexes were subjected to ICAT combined with ESI-MS/MS. Database searching of sequenced peptides provided a list of proteins that bound specifically to each EPEC virulence protein. The dataset suggests several potential mammalian targets of these proteins that may guide future experimentation.
Collapse
Affiliation(s)
- Philip R Hardwidge
- Veterinary Science Department, South Dakota State University, Brookings, SD, USA.
| | | | | | | |
Collapse
|
20
|
Papatheodorou P, Domańska G, Oxle M, Mathieu J, Selchow O, Kenny B, Rassow J. The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology. Cell Microbiol 2006; 8:677-89. [PMID: 16548893 DOI: 10.1111/j.1462-5822.2005.00660.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a human intestinal pathogen and a major cause of diarrhoea, particularly among infants in developing countries. EPEC target the Map and EspF multifunctional effector proteins to host mitochondria - organelles that play crucial roles in regulating cellular processes such as programmed cell death (apoptosis). While both molecules interfere with the organelles ability to maintain a membrane potential, EspF plays the predominant role and is responsible for triggering cell death. To learn more about the Map-mitochondria interaction, we studied Map localization to mitochondria with purified mitochondria (from mammalian and yeast cells) and within intact yeast. This revealed that (i) Map targeting is dependent on the predicted N-terminal mitochondrial targeting sequence, (ii) the N-terminal 44 residues are sufficient to target proteins to mitochondria and (iii) Map import involves the mitochondrial outer membrane translocase (Tom22 and Tom40), the mitochondrial membrane potential, and the matrix chaperone, mtHsp70. These results are consistent with Map import into the mitochondria matrix via the classical import mechanism. As all known, Map-associated phenotypes in mammalian cells are independent of mitochondrial targeting, this may indicate that import serves as a mechanism to remove Map from the cytoplasm thereby regulating cytoplasmic function. Intriguingly, Map, but not EspF, alters mitochondrial morphology with deletion analysis revealing important roles for residues 101-152. Changes in mitochondrial morphology have been linked to alterations in the ability of these organelles to regulate cellular processes providing a possible additional role for Map import into mitochondria.
Collapse
|
21
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Molloy S. Model behaviour. Nat Rev Microbiol 2005. [DOI: 10.1038/nrmicro1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|