1
|
van Belkum MJ, Aleksandrzak-Piekarczyk T, Lamer T, Vederas JC. Lactococcus lactis mutants resistant to lactococcin A and garvicin Q reveal missense mutations in the sugar transport domain of the mannose phosphotransferase system. Microbiol Spectr 2024; 12:e0313023. [PMID: 38047704 PMCID: PMC10783117 DOI: 10.1128/spectrum.03130-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Many bacteriocins target the sugar transporter mannose phosphotransferase system (man-PTS) to exert their antibacterial activity. The elucidation in recent years of the structure of man-PTS has facilitated our understanding of how bacteriocins might interact with the receptor and which domains of the transporter are involved in bacteriocin resistance. Here, we show that missense mutations in the sugar-binding domain of the man-PTS not only impede the uptake of sugars but also prevent the antibacterial activity of the bacteriocins lactococcin A and garvicin Q.
Collapse
Affiliation(s)
| | | | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Xiao M, Ren X, Cheng J, Fu X, Li R, Zhu C, Kong Q, Mou H. Structural characterization of a novel fucosylated trisaccharide prepared from bacterial exopolysaccharides and evaluation of its prebiotic activity. Food Chem 2023; 420:136144. [PMID: 37060669 DOI: 10.1016/j.foodchem.2023.136144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Fucosylated oligosaccharides have promising prospects in various fields. In this study, a fucosylated trisaccharide (GFG) was separated from the acidolysis products of exopolysaccharides from Clavibacter michiganensis M1. Structural characterization demonstrated that GFG consists of glucose, galactose, and fucose, with a molecular weight of 488 Da. Nuclear magnetic resonance analysis showed that it has a different structure than that of 2'-fucosyllactose (2'-FL), even though they have the same monosaccharide composition. In vitro prebiotic experiments were conducted to evaluate the differences in the utilization of three selected carbohydrates by fourteen bacterial strains. In comparison with 2'-FL, GFG could be utilized by more beneficial bacteria, leading to generate more short-chain fatty acids. Moreover, GFG could not promote the proliferation of Escherichia coli. This work describes a novel fucosylated oligosaccharide and its preparation method, and the obtained trisaccharide may serve as a promising candidate for fucosylated human milk oligosaccharides.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
3
|
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Bechtner J, Ludwig C, Kiening M, Jakob F, Vogel RF. Living the Sweet Life: How Liquorilactobacillus hordei TMW 1.1822 Changes Its Behavior in the Presence of Sucrose in Comparison to Glucose. Foods 2020; 9:foods9091150. [PMID: 32825547 PMCID: PMC7555045 DOI: 10.3390/foods9091150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Liquorilactobacillus (L.) hordei (formerly Lactobacillus hordei) is one of the dominating lactic acid bacteria within the water kefir consortium, being highly adapted to survive in this environment, while producing high molecular weight dextrans from sucrose. In this work, we extensively studied the physiological response of L. hordei TMW 1.1822 to sucrose compared to glucose, applying label-free, quantitative proteomics of cell lysates and exoproteomes. This revealed the differential expression of 53 proteins within cellular proteomes, mostly associated with carbohydrate uptake and metabolism. Supported by growth experiments, this suggests that L. hordei TMW 1.1822 favors fructose over other sugars. The dextransucrase was expressed irrespectively of the present carbon source, while it was significantly more released in the presence of sucrose (log2FC = 3.09), being among the most abundant proteins within exoproteomes of sucrose-treated cells. Still, L. hordei TMW 1.1822 expressed other sucrose active enzymes, predictively competing with the dextransucrase reaction. While osmolysis appeared to be unlikely, sucrose led to increased release of a multitude of cytoplasmic proteins, suggesting that biofilm formation in L. hordei is not only composed of a polysaccharide matrix but is also of proteinaceous nature. Therefore, our study highlights the intrinsic adaptation of water kefir-borne L. hordei to sucrose-rich habitats and provides fundamental knowledge for its use as a starter culture in plant-based food fermentations with in situ dextran formation.
Collapse
Affiliation(s)
- Julia Bechtner
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354 Freising, Germany; (J.B.); (F.J.)
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), 85354 Freising, Germany;
| | - Michael Kiening
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität München (TUM), 85354 Freising, Germany;
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354 Freising, Germany; (J.B.); (F.J.)
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), 85354 Freising, Germany; (J.B.); (F.J.)
- Correspondence:
| |
Collapse
|
5
|
Increased Viability of Sugar Transport-Deficient Mutant of the Periodontal Pathogen, Aggregatibacter actinomycetemcomitans. Curr Microbiol 2018; 75:1460-1467. [PMID: 30066154 DOI: 10.1007/s00284-018-1545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The periodontal pathogen, Aggregatibacter actinomycetemcomitans is extremely sensitive to even a mildly acidic pH resulting from metabolic acids secreted during growth, losing viability rapidly as the pH goes below 6.0. Cells grown at high glucose concentration grow fast but rapidly lose viability. However, if the cells are grown at low glucose concentration, the pH of the growth medium first decreases slowly for about 24 h and then starts to increase. This increase of pH is indicative of cell death since the spontaneous rise of pH due to the presence of bicarbonate can no longer be opposed by secreted metabolic acids. By monitoring these pH changes on a petri dish, a method was developed to screen for sugar transport-deficient mutants from a library of transposon insertion mutants. Isolation of a mannose phosphotransferase mutant strain is described. The mutant cells were found to be more viable and for a longer period of time than wild-type cells both in high and low glucose concentrations due to slower metabolism and less acid secreted. This observation highlights the concern that spontaneous mutations in the sugar transport genes may be selected for in patients due to increased viability of the mutant cells especially in a biofilm.
Collapse
|
6
|
Phosphotransferase systems in Enterococcus faecalis OG1RF enhance anti-stress capacity in vitro and in vivo. Res Microbiol 2017; 168:558-566. [DOI: 10.1016/j.resmic.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
|
7
|
Homburg C, Bommer M, Wuttge S, Hobe C, Beck S, Dobbek H, Deutscher J, Licht A, Schneider E. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr. Mol Microbiol 2017; 105:25-45. [PMID: 28370477 DOI: 10.1111/mmi.13680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Catabolite repression is a mechanism that enables bacteria to control carbon utilization. As part of this global regulatory network, components of the phosphoenolpyruvate:carbohydrate phosphotransferase system inhibit the uptake of less favorable sugars when a preferred carbon source such as glucose is available. This process is termed inducer exclusion. In bacteria belonging to the phylum Firmicutes, HPr, phosphorylated at serine 46 (P-Ser46-HPr) is the key player but its mode of action is elusive. To address this question at the level of purified protein components, we have chosen a homolog of the Escherichia coli maltose/maltodextrin ATP-binding cassette transporter from Lactobacillus casei (MalE1-MalF1G1K12 ) as a model system. We show that the solute binding protein, MalE1, binds linear and cyclic maltodextrins but not maltose. Crystal structures of MalE1 complexed with these sugars provide a clue why maltose is not a substrate. P-Ser46-HPr inhibited MalE1/maltotetraose-stimulated ATPase activity of the transporter incorporated in proteoliposomes. Furthermore, cross-linking experiments revealed that P-Ser46-HPr contacts the nucleotide-binding subunit, MalK1, in proximity to the Walker A motif. However, P-Ser46-HPr did not block binding of ATP to MalK1. Together, our findings provide first biochemical evidence that P-Ser-HPr arrests the transport cycle by preventing ATP hydrolysis at the MalK1 subunits of the transporter.
Collapse
Affiliation(s)
- Constanze Homburg
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Martin Bommer
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Steven Wuttge
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Carolin Hobe
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Sebastian Beck
- Institut für Chemie/Angewandte Analytik und Umweltchemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Holger Dobbek
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78350, France.,Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UMR8261, Paris, F-75005, France
| | - Anke Licht
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Erwin Schneider
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| |
Collapse
|
8
|
Mitchell WJ. The Phosphotransferase System in Solventogenic Clostridia. J Mol Microbiol Biotechnol 2015; 25:129-42. [DOI: 10.1159/000375125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The acetone-butanol-ethanol fermentation employing solventogenic clostridia was a major industrial process during the 20th century, but declined for economic reasons. In recent times, interest in the process has been revived due to the perceived potential of butanol as a superior biofuel. Redevelopment of an efficient fermentation process will require a detailed understanding of the physiology of carbohydrate utilization by the bacteria. Genome sequences have revealed that, as in other anaerobes, the phosphotransferase system (PTS) and associated regulatory functions are likely to play an important role in sugar uptake and its regulation. The genomes of <i>Clostridium acetobutylicum</i> and <i>C. beijerinckii</i> encode 13 and 43 phosphotransferases, respectively. Characterization of clostridial phosphotransferases has demonstrated that they are involved in the uptake and phosphorylation of hexoses, hexose derivatives and disaccharides, although the functions of many systems remain to be determined. Glucose is a dominant sugar which represses the utilization of other carbon sources, including the non-PTS pentose sugars xylose and arabinose, by the clostridia. Targeting of the CcpA-dependent mechanism of carbon catabolite repression has been shown to be an effective strategy for reducing the repressive effects of glucose, indicating potential for developing strains with improved fermentation performance.
Collapse
|
9
|
Bidart GN, Rodríguez-Díaz J, Monedero V, Yebra MJ. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei. Mol Microbiol 2014; 93:521-38. [PMID: 24942885 DOI: 10.1111/mmi.12678] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 12/20/2022]
Abstract
The probiotic Lactobacillus casei catabolizes galacto-N-biose (GNB) and lacto-N-biose (LNB) by using a transport system and metabolic routes different from those of Bifidobacterium. L. casei contains a gene cluster, gnbREFGBCDA, involved in the metabolism of GNB, LNB and also N-acetylgalactosamine. Inactivation of gnbC (EIIC) or ptsI (Enzyme I) of the phosphoenolpyruvate : sugar phosphotransferase system (PTS) prevented the growth on those three carbohydrates, indicating that they are transported and phosphorylated by the same PTS(Gnb) . Enzyme activities and growth analysis with knockout mutants showed that GnbG (phospho-β-galactosidase) hydrolyses both disaccharides. However, GnbF (N-acetylgalactosamine-6P deacetylase) and GnbE (galactosamine-6P isomerase/deaminase) are involved in GNB but not in LNB fermentation. The utilization of LNB depends on nagA (N-acetylglucosamine-6P deacetylase), showing that the N-acetylhexosamine moieties of GNB and LNB follow different catabolic routes. A lacAB mutant (galactose-6P isomerase) was impaired in GNB and LNB utilization, indicating that their galactose moiety is channelled through the tagatose-6P pathway. Transcriptional analysis showed that the gnb operon is regulated by substrate-specific induction mediated by the transcriptional repressor GnbR, which binds to a 26 bp DNA region containing inverted repeats exhibiting a 2T/2A conserved core. The data represent the first characterization of novel metabolic pathways for human milk oligosaccharides and glycoconjugate structures in Firmicutes.
Collapse
Affiliation(s)
- Gonzalo N Bidart
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain; Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
10
|
Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 2013; 79:3371-9. [PMID: 23524676 DOI: 10.1128/aem.00380-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oenococcus oeni, the lactic acid bacterium primarily responsible for malolactic fermentation in wine, is able to grow on a large variety of carbohydrates, but the pathways by which substrates are transported and phosphorylated in this species have been poorly studied. We show that the genes encoding the general phosphotransferase proteins, enzyme I (EI) and histidine protein (HPr), as well as 21 permease genes (3 isolated ones and 18 clustered into 6 distinct loci), are highly conserved among the strains studied and may form part of the O. oeni core genome. Additional permease genes differentiate the strains and may have been acquired or lost by horizontal gene transfer events. The core pts genes are expressed, and permease gene expression is modulated by the nature of the bacterial growth substrate. Decryptified O. oeni cells are able to phosphorylate glucose, cellobiose, trehalose, and mannose at the expense of phosphoenolpyruvate. These substrates are present at low concentrations in wine at the end of alcoholic fermentation. The phosphotransferase system (PTS) may contribute to the perfect adaptation of O. oeni to its singular ecological niche.
Collapse
|
11
|
Alcántara C, Zúñiga M. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. Microbiology (Reading) 2012; 158:1206-1218. [DOI: 10.1099/mic.0.055657-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Cristina Alcántara
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC) PO Box 73, 46100 Burjassot, Valencia, Spain
| | - Manuel Zúñiga
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC) PO Box 73, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
12
|
Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose. Appl Environ Microbiol 2012; 78:4613-9. [PMID: 22544237 DOI: 10.1128/aem.00474-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously characterized from Lactobacillus casei BL23 three α-L-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the L-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-L-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-L-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria.
Collapse
|
13
|
Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine. Biotechnol Bioeng 2012; 109:1704-12. [PMID: 22383248 DOI: 10.1002/bit.24475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/11/2012] [Accepted: 02/09/2012] [Indexed: 11/12/2022]
Abstract
UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain
| | | | | |
Collapse
|
14
|
Aké FMD, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011; 81:274-93. [PMID: 21564334 DOI: 10.1111/j.1365-2958.2011.07692.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.
Collapse
Affiliation(s)
- Francine M D Aké
- Laboratoire de Microbiologie de l'Alimentation au Service de la Santé, AgroParisTech-INRA UMR1319, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
15
|
Sanfélix-Haywood N, Coll-Marqués JM, Yebra MJ. Role of α-phosphoglucomutase and phosphoglucose isomerase activities at the branching point between sugar catabolism and anabolism in Lactobacillus casei. J Appl Microbiol 2011; 111:433-42. [PMID: 21605291 DOI: 10.1111/j.1365-2672.2011.05045.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the role of α-phosphoglucomutase (α-Pgm) and phosphoglucose isomerase (Pgi) activities in growth rate, sugar-phosphates, UDP-sugars and lactate biosynthesis in Lactobacillus casei. METHODS AND RESULTS The pgm and pgi genes coding for α-Pgm and Pgi activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous overexpression. In MRS fermentation medium with glucose, overexpression of pgm gene in L. casei resulted in a growth rate reduced to 75% and glucose-6P levels reduced to 47%. By contrast, with lactose, the growth rate was raised to 119%. An increment of α-Pgm activity had no significant effect on UDP-sugar levels. Remarkably, Pgi overexpression in L. casei grown in lactose or galactose resulted in almost a double growth rate with respect to the control strain. The increased Pgi activity also resulted in glucose-6P levels reduced to 25 and 59% of control strain cultured in glucose and lactose, respectively, and the fructose-6P levels were increased to 128% on glucose. UDP-glucose and UDP-galactose levels were reduced to 66 and 55%, respectively, of control strain levels cultured in galactose. In addition, the lactate yield increased to 115% in the strain overproducing Pgi grown in galactose. CONCLUSIONS The physiological amount of α-Pgm and Pgi activities is limited for L. casei growth on lactose, and lactose and galactose, respectively, and that limitation was overcome by pgm and pgi gene overexpression. The increment of α-Pgm and Pgi activities, respectively, resulted in modified levels of sugar-phosphates, sugar-nucleotides and lactate showing the modulation capacity of the carbon fluxes in L. casei at the level of the glycolytic intermediate glucose-6P. SIGNIFICANCE AND IMPACT OF THE STUDY Knowledge of the role of key enzymes in metabolic fluxes at the branching point between anabolic and catabolic pathways would allow a rational design of engineering strategies in L. casei.
Collapse
Affiliation(s)
- N Sanfélix-Haywood
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Valencia, Spain
| | | | | |
Collapse
|
16
|
Opsata M, Nes IF, Holo H. Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol 2010; 10:224. [PMID: 20738841 PMCID: PMC2941500 DOI: 10.1186/1471-2180-10-224] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class IIa bacteriocin, pediocin PA-1, has clear potential as food preservative and in the medical field to be used against Gram negative pathogen species as Enterococcus faecalis and Listeria monocytogenes. Resistance towards class IIa bacteriocins appear in laboratory and characterization of these phenotypes is important for their application. To gain insight into bacteriocin resistance we studied mutants of E. faecalis V583 resistant to pediocin PA-1 by use of transcriptomic analyses. RESULTS Mutants of E. faecalis V583 resistant to pediocin PA-1 were isolated, and their gene expression profiles were analyzed and compared to the wild type using whole-genome microarray. Significantly altered transcription was detected from about 200 genes; most of them encoding proteins involved in energy metabolism and transport. Glycolytic genes were down-regulated in the mutants, but most of the genes showing differential expression were up-regulated. The data indicate that the mutants were relieved from glucose repression and putative catabolic responsive elements (cre) could be identified in the upstream regions of 70% of the differentially expressed genes. Bacteriocin resistance was caused by reduced expression of the mpt operon encoding the mannose-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), and the same transcriptional changes were seen in a mptD-inactivated mutant. This mutant also had decreased transcription of the whole mpt operon, showing that the PTS is involved in its own transcriptional regulation. CONCLUSION Our data confirm the important role of mannose PTS in class IIa bacteriocin sensitivity and we demonstrate its importance involving global carbon catabolite control.
Collapse
Affiliation(s)
- Mona Opsata
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway.
| | | | | |
Collapse
|
17
|
Francl AL, Thongaram T, Miller MJ. The PTS transporters of Lactobacillus gasseri ATCC 33323. BMC Microbiol 2010; 10:77. [PMID: 20226062 PMCID: PMC2848229 DOI: 10.1186/1471-2180-10-77] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/12/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lactobacilli can utilize a variety of carbohydrates which reflects the nutrient availability in their respective environments. A common lactobacilli in the human gastrointestinal tract, Lactobacillus gasseri, was selected for further study. The currently available annotation of the L. gasseri ATCC 33323 genome describes numerous putative genes involved in carbohydrate utilization, yet the specific functions of many of these genes remain unknown. RESULTS An enzyme I (EI) knockout strain revealed that a functional phosphotransferase transporter system (PTS) is required to ferment at least 15 carbohydrates. Analysis of the L. gasseri ATCC 33323 genome identified fifteen complete (containing all of the necessary subunits) PTS transporters. Transcript expression profiles in response to various carbohydrates (glucose, mannose, fructose, sucrose and cellobiose) were analyzed for the fifteen complete PTS transporters in L. gasseri. PTS 20 was induced 27 fold in the presence of sucrose and PTS 15 was induced 139 fold in the presence of cellobiose. No PTS transporter was induced by glucose, fructose or mannose. Insertional inactivation of PTS 15 and PTS 20 significantly impaired growth on cellobiose and sucrose, respectively. As predicted by bioinformatics, insertional inactivation of PTS 21 confirmed its role in mannose utilization. CONCLUSIONS The experiments revealed the extensive contribution of PTS transporters to carbohydrate utilization by L. gasseri ATCC 33323 and the general inadequacy of the annotated sugar specificity of lactobacilli PTS transporters.
Collapse
Affiliation(s)
- Alyssa L Francl
- Department of Food Science and Human Nutrition, University of Illinois, 905 S, Goodwin Ave, Urbana, IL, USA
| | | | | |
Collapse
|
18
|
Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol 2009; 76:84-95. [PMID: 19897756 DOI: 10.1128/aem.02145-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus casei can metabolize L-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of L-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on L-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for L-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on L-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of L-malic acid and repressed by glucose, whereas TC system expression was induced by L-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5'-TTATT(A/T)AA-3'] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression.
Collapse
|
19
|
Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA. The growth phase-dependent regulation of the pilus locus genes by two-component system TCS08 in Streptococcus pneumoniae. Microb Pathog 2009; 46:28-35. [DOI: 10.1016/j.micpath.2008.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/02/2008] [Accepted: 10/07/2008] [Indexed: 11/29/2022]
|
20
|
Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM. Appl Environ Microbiol 2008; 74:5731-40. [PMID: 18676710 DOI: 10.1128/aem.00230-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTS(Gut)). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIB(Gat) domain) and a mannitol/fructose-specific EIIA-like domain (EIIA(Mtl) domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBC(Gut) negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM.
Collapse
|
21
|
Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 2008; 32:891-907. [PMID: 18647176 DOI: 10.1111/j.1574-6976.2008.00125.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.
Collapse
Affiliation(s)
- Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
22
|
The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334. J Bacteriol 2008; 190:3362-73. [PMID: 18310337 DOI: 10.1128/jb.02008-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon.
Collapse
|
23
|
Monedero V, Yebra MJ, Poncet S, Deutscher J. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 2007; 159:94-102. [PMID: 18096372 DOI: 10.1016/j.resmic.2007.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Transport of maltose in Lactobacillus casei BL23 is subject to regulation by inducer exclusion. The presence of glucose or other rapidly metabolized carbon sources blocks maltose transport by a control mechanism that depends on the phosphorylation of the HPr protein at serine residue 46. We have identified the L. casei gene cluster for maltose/maltodextrin utilization by sequence analysis and mutagenesis. It is composed of genes coding for a transcriptional regulator, oligosaccharide hydrolytic enzymes, an ABC transporter (MalEFGK2) and the enzymes for the metabolism of maltose or the degradation products of maltodextrins: maltose phosphorylase and beta-phospho-glucomutase. These genes are induced by maltose and repressed by the presence of glucose via the catabolite control protein A (CcpA). A mutant strain was constructed which expressed the hprKV267F allele and therefore formed large amounts of P-Ser-HPr even in the absence of a repressive carbon source. In this mutant, transport of maltose was severely impaired, whereas transport of sugars not subject to inducer exclusion was not changed. These results strengthen the idea that P-Ser-HPr controls inducer exclusion and make the maltose system of L. casei a suitable model for studying this process in Firmicutes.
Collapse
Affiliation(s)
- Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain.
| | | | | | | |
Collapse
|
24
|
Beaufils S, Sauvageot N, Mazé A, Laplace JM, Auffray Y, Deutscher J, Hartke A. The Cold Shock Response of Lactobacillus casei: Relation between HPr Phosphorylation and Resistance to Freeze/Thaw Cycles. J Mol Microbiol Biotechnol 2007; 13:65-75. [PMID: 17693714 DOI: 10.1159/000103598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When carrying out a proteome analysis with a ptsH3 mutant of Lactobacillus casei, we found that the cold shock protein CspA was significantly overproduced compared to the wild-type strain. We also noticed that CspA and CspB of L. casei and CSPs from other organisms exhibit significant sequence similarity to the C-terminal part of EIIA(Glc), a glucose-specific component of the phosphoenolpyruvate:sugar phosphotransferase system. This similarity suggested a direct interaction of HPr with CSPs, as histidyl-phosphorylated HPr has been shown to phosphorylate EIIA(Glc) in its C-terminal part. We therefore compared the cold shock response of several carbon catabolite repression mutants to that of the wild-type strain. Following a shift from 37 degrees C to lower temperatures (20, 15 or 10 degrees C), all mutants showed significantly reduced growth rates. Moreover, glucose-grown mutants unable to form P-Ser-HPr (ptsH1, hprK) exhibited drastically increased sensitivity to freeze/thaw cycles. However, when the same mutants were grown on ribose or maltose, they were similarly resistant to freezing and thawing as the wild-type strain. Although subsequent biochemical and genetic studies did not allow to identify the form of HPr implicated in the resistance to cold and freezing conditions, they strongly suggested a direct interaction of HPr or one of its phospho-derivatives with CspA and/or another, hitherto undetected cold shock protein in L. casei.
Collapse
Affiliation(s)
- Sophie Beaufils
- Laboratoire de Microbiologie de l'Environnement (EA956 USC INRA 2017), IBFA, Université de Caen, Caen, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 998] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
26
|
Monedero V, Mazé A, Boël G, Zúñiga M, Beaufils S, Hartke A, Deutscher J. The Phosphotransferase System of Lactobacillus casei: Regulation of Carbon Metabolism and Connection to Cold Shock Response. J Mol Microbiol Biotechnol 2006; 12:20-32. [PMID: 17183208 DOI: 10.1159/000096456] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome sequencing of two different Lactobacillus casei strains (ATCC334 and BL23) is presently going on and preliminary data revealed that this lactic acid bacterium possesses numerous carbohydrate transport systems probably reflecting its capacity to proliferate under varying environmental conditions. Many carbohydrate transporters belong to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but all different kinds of non-PTS transporters are present as well and their substrates are known in a few cases. In L. casei regulation of carbohydrate transport and carbon metabolism is mainly achieved by PTS proteins. Carbon catabolite repression (CCR) is mediated via several mechanisms, including the major P-Ser-HPr/catabolite control protein A (CcpA)-dependent mechanism. Catabolite response elements, the target sites for the P-Ser-HPr/CcpA complex, precede numerous genes and operons. PTS regulation domain-containing antiterminators and transcription activators are also present in both L. casei strains. Their activity is usually controlled by two PTS-mediated phosphorylation reactions exerting antagonistic effects on the transcription regulators: P~EIIB-dependent phosphorylation regulates induction of the corresponding genes and P~His-HPr-mediated phosphorylation plays a role in CCR. Carbohydrate transport of L. casei is also regulated via inducer exclusion and inducer expulsion. The presence of glucose, fructose, etc. leads to inhibition of the transport or metabolism of less favorable carbon sources (inducer exclusion) or to the export of accumulated non-metabolizable carbon sources (inducer expulsion). While P-Ser-HPr is essential for inducer exclusion of maltose, it is not necessary for the expulsion of accumulated thio-methyl-beta-D-galactopyranoside. Surprisingly, recent evidence suggests that the PTS of L. casei also plays a role in cold shock response.
Collapse
Affiliation(s)
- Vicente Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|