1
|
Shaposhnikov LA, Savin SS, Tishkov VI, Pometun AA. Ribonucleoside Hydrolases-Structure, Functions, Physiological Role and Practical Uses. Biomolecules 2023; 13:1375. [PMID: 37759775 PMCID: PMC10526354 DOI: 10.3390/biom13091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ribonucleoside hydrolases are enzymes that catalyze the cleavage of ribonucleosides to nitrogenous bases and ribose. These enzymes are found in many organisms: bacteria, archaea, protozoa, metazoans, yeasts, fungi and plants. Despite the simple reaction catalyzed by these enzymes, their physiological role in most organisms remains unclear. In this review, we compare the structure, kinetic parameters, physiological role, and potential applications of different types of ribonucleoside hydrolases discovered and isolated from different organisms.
Collapse
Affiliation(s)
- Leonid A. Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Svyatoslav S. Savin
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anastasia A. Pometun
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Glowacki RWP, Pudlo NA, Tuncil Y, Luis AS, Sajjakulnukit P, Terekhov AI, Lyssiotis CA, Hamaker BR, Martens EC. A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host Microbe 2019; 27:79-92.e9. [PMID: 31901520 DOI: 10.1016/j.chom.2019.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Efficient nutrient acquisition in the human gut is essential for microbial persistence. Although polysaccharides have been well-studied nutrients for the gut microbiome, other resources such as nucleic acids and nucleosides are less studied. We describe several ribose-utilization systems (RUSs) that are broadly represented in Bacteroidetes and appear to have diversified to access ribose from a variety of substrates. One Bacteroides thetaiotaomicron RUS variant is critical for competitive gut colonization in a diet-specific fashion. We used molecular genetics to probe the required functions of the system and the nature of the nutrient source(s) underlying this phenotype. Two RUS-encoded ribokinases were the only components required for this effect, presumably because they generate ribose-phosphate derivatives from products of an unlinked but essential nucleoside phosphorylase. Our results underscore the extensive mechanisms that gut symbionts have evolved to access nutrients and the potential for unexpected dependencies among systems that mediate colonization and persistence.
Collapse
Affiliation(s)
- Robert W P Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yunus Tuncil
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Ana S Luis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anton I Terekhov
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bruce R Hamaker
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2'-O-methylribonucleosides. J Biosci Bioeng 2017; 125:38-45. [PMID: 28826816 DOI: 10.1016/j.jbiosc.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.
Collapse
|
4
|
Mitsukawa Y, Hibi M, Matsutani N, Horinouchi N, Takahashi S, Ogawa J. A novel nucleoside hydrolase from Lactobacillus buchneri LBK78 catalyzing hydrolysis of 2'-O-methylribonucleosides. Biosci Biotechnol Biochem 2016; 80:1568-76. [PMID: 27180876 DOI: 10.1080/09168451.2016.1182853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2'-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2'-O-methyluridine (2'-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2'-OMe-UR to 2'-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s(-1), and kcat/Km of 12 mM(-1) s(-1). In a substrate specificity analysis, LbNH preferred ribonucleosides and 2'-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2'-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes.
Collapse
Affiliation(s)
- Yuuki Mitsukawa
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Makoto Hibi
- b Industrial Microbiology, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Narihiro Matsutani
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Nobuyuki Horinouchi
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Satomi Takahashi
- b Industrial Microbiology, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Jun Ogawa
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| |
Collapse
|
5
|
Jin L, Bhuiya MW, Li M, Liu X, Han J, Deng W, Wang M, Yu O, Zhang Z. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production. PLoS One 2014; 9:e105368. [PMID: 25133732 PMCID: PMC4136831 DOI: 10.1371/journal.pone.0105368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022] Open
Abstract
Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g. tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.
Collapse
Affiliation(s)
- Lu Jin
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | | | - Mengmeng Li
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - XiangQi Liu
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Jixiang Han
- Conagen Inc., St. Louis, Missouri, United States of America
| | - WeiWei Deng
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Min Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Oliver Yu
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Zhengzhu Zhang
- Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
6
|
Riegler H, Geserick C, Zrenner R. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. THE NEW PHYTOLOGIST 2011; 191:349-359. [PMID: 21599668 PMCID: PMC3147060 DOI: 10.1111/j.1469-8137.2011.03711.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/25/2011] [Indexed: 05/17/2023]
Abstract
A central step in nucleoside and nucleobase salvage pathways is the hydrolysis of nucleosides to their respective nucleobases. In plants this is solely accomplished by nucleosidases (EC 3.2.2.x). To elucidate the importance of nucleosidases for nucleoside degradation, general metabolism, and plant growth, thorough phenotypic and biochemical analyses were performed using Arabidopsis thaliana T-DNA insertion mutants lacking expression of the previously identified genes annotated as uridine ribohydrolases (URH1 and URH2). Comprehensive functional analyses of single and double mutants demonstrated that both isoforms are unimportant for seedling establishment and plant growth, while one participates in uridine degradation. Rather unexpectedly, nucleoside and nucleotide profiling and nucleosidase activity screening of soluble crude extracts revealed a deficiency of xanthosine and inosine hydrolysis in the single mutants, with substantial accumulation of xanthosine in one of them. Mixing of the two mutant extracts, and by in vitro activity reconstitution using a mixture of recombinant URH1 and URH2 proteins, both restored activity, thus providing biochemical evidence that at least these two isoforms are needed for inosine and xanthosine hydrolysis. This mutant study demonstrates the utility of in vivo systems for the examination of metabolic activities, with the discovery of the new substrate xanthosine and elucidation of a mechanism for expanding the nucleosidase substrate spectrum.
Collapse
Affiliation(s)
- Heike Riegler
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
| | - Claudia Geserick
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
| | - Rita Zrenner
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops14979 Grossbeeren, Germany
| |
Collapse
|
7
|
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology (Reading) 2008; 154:1068-1081. [DOI: 10.1099/mic.0.2007/014001-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Karina Brinkrolf
- International NRW Graduate School in Bioinformatics and Genome Research, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Svenja Plöger
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sandra Solle
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Iris Brune
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Svenja S. Nentwich
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andrea T. Hüser
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|