1
|
Ca 2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2018; 200:JB.00538-17. [PMID: 29263098 DOI: 10.1128/jb.00538-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.
Collapse
|
2
|
Zhu C, Sun B, Liu T, Zheng H, Gu W, He W, Sun F, Wang Y, Yang M, Bei W, Peng X, She Q, Xie L, Chen L. Genomic and transcriptomic analyses reveal distinct biological functions for cold shock proteins (VpaCspA and VpaCspD) in Vibrio parahaemolyticus CHN25 during low-temperature survival. BMC Genomics 2017; 18:436. [PMID: 28583064 PMCID: PMC5460551 DOI: 10.1186/s12864-017-3784-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/10/2017] [Indexed: 11/24/2022] Open
Abstract
Background Vibrio parahaemolyticus causes serious seafood-borne gastroenteritis and death in humans. Raw seafood is often subjected to post-harvest processing and low-temperature storage. To date, very little information is available regarding the biological functions of cold shock proteins (CSPs) in the low-temperature survival of the bacterium. In this study, we determined the complete genome sequence of V. parahaemolyticus CHN25 (serotype: O5:KUT). The two main CSP-encoding genes (VpacspA and VpacspD) were deleted from the bacterial genome, and comparative transcriptomic analysis between the mutant and wild-type strains was performed to dissect the possible molecular mechanisms that underlie low-temperature adaptation by V. parahaemolyticus. Results The 5,443,401-bp V. parahaemolyticus CHN25 genome (45.2% G + C) consisted of two circular chromosomes and three plasmids with 4,724 predicted protein-encoding genes. One dual-gene and two single-gene deletion mutants were generated for VpacspA and VpacspD by homologous recombination. The growth of the ΔVpacspA mutant was strongly inhibited at 10 °C, whereas the VpacspD gene deletion strongly stimulated bacterial growth at this low temperature compared with the wild-type strain. The complementary phenotypes were observed in the reverse mutants (ΔVpacspA-com, and ΔVpacspD-com). The transcriptome data revealed that 12.4% of the expressed genes in V. parahaemolyticus CHN25 were significantly altered in the ΔVpacspA mutant when it was grown at 10 °C. These included genes that were involved in amino acid degradation, secretion systems, sulphur metabolism and glycerophospholipid metabolism along with ATP-binding cassette transporters. However, a low temperature elicited significant expression changes for 10.0% of the genes in the ΔVpacspD mutant, including those involved in the phosphotransferase system and in the metabolism of nitrogen and amino acids. The major metabolic pathways that were altered by the dual-gene deletion mutant (ΔVpacspAD) radically differed from those that were altered by single-gene mutants. Comparison of the transcriptome profiles further revealed numerous differentially expressed genes that were shared among the three mutants and regulators that were specifically, coordinately or antagonistically modulated by VpaCspA and VpaCspD. Our data also revealed several possible molecular coping strategies for low-temperature adaptation by the bacterium. Conclusions This study is the first to describe the complete genome sequence of V. parahaemolyticus (serotype: O5:KUT). The gene deletions, complementary insertions, and comparative transcriptomics demonstrate that VpaCspA is a primary CSP in the bacterium, while VpaCspD functions as a growth inhibitor at 10 °C. These results have improved our understanding of the genetic basis for low-temperature survival by the most common seafood-borne pathogen worldwide. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3784-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunhua Zhu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China
| | - Boyi Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Centre at Shanghai, Shanghai, 201203, People's Republic of China
| | - Wenyi Gu
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Centre at Shanghai, Shanghai, 201203, People's Republic of China
| | - Wei He
- Shanghai Hanyu Bio-lab, 151 Ke Yuan Road, Shanghai, 201203, People's Republic of China
| | - Fengjiao Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China
| | - Meicheng Yang
- Shanghai Institute for Food and Drug Control, 1500 Zhang Heng Road, Shanghai, 201203, People's Republic of China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Laboratory of Animal Infectious Diseases, College of Animal Science & Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200, Copenhagen N, Denmark
| | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200, Copenhagen N, Denmark
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 201203, People's Republic of China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
3
|
Santos JS, da Silva CAPT, Balhesteros H, Lourenço RF, Marques MV. CspC regulates the expression of the glyoxylate cycle genes at stationary phase in Caulobacter. BMC Genomics 2015; 16:638. [PMID: 26311251 PMCID: PMC4551563 DOI: 10.1186/s12864-015-1845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022] Open
Abstract
Background The Cold Shock proteins are RNA binding proteins involved in various cellular processes, including adaptation to low temperature, nutritional stress, cell growth and stationary phase. They may have an impact on gene expression by interfering with RNA stability and acting as transcription antiterminators. Caulobacter crescentus cspC is an essential gene encoding a stationary phase-induced protein of the Cold Shock Protein family and this work had as goal investigating the basis for the requirement of this gene for survival at this phase. In this work we investigate the role of CspC in C. crescentus stationary phase and discuss the molecular mechanisms that could be involved. Results The expression of cspC increased significantly at stationary phase in complex media and in glucose depletion, indicating a putative role in responding to carbon starvation. Global transcriptional profiling experiments comparing cspC and the wild type strain both at exponential and stationary phases as well as comparing exponential and stationary phase in wild type strain were carried out by DNA microarray analysis. The results showed that the absence of cspC affected the transcription of 11 genes at exponential phase and 60 genes at stationary phase. Among the differentially expressed genes it is worth noting those encoding respiratory enzymes and genes for sulfur metabolism, which were upregulated, and those encoding enzymes of the glyoxylate cycle, which were severely downregulated in the mutant at stationary phase. mRNA decay experiments showed that the aceA mRNA, encoding isocitrate lyase, was less stable in the cspC mutant, indicating that this effect was at least partially due to posttranscriptional regulation. These observations were supported by the observed arrested growth phenotype of the cspC strain when grown in acetate as the sole carbon source, and by the upregulation of genes for assimilatory sulfate reduction and methionine biosynthesis. Conclusions The stationary phase-induced RNA binding protein CspC has an important role in gene expression at this phase, and is necessary for maximal expression of the glyoxylate cycle genes. In the case of aceA, its downregulation may be attributed to the shorter half-life of the mRNA in the cspC mutant, indicating that one of the possible regulatory mechanisms is via altering RNA stabilization. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1845-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana S Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| | - Carolina A P T da Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| | - Heloise Balhesteros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| | - Rogério F Lourenço
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Marilis V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gzyl J, Chmielowska-Bąk J. Homocysteine over-accumulation as the effect of potato leaves exposure to biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:177-84. [PMID: 23266362 DOI: 10.1016/j.plaphy.2012.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/28/2012] [Indexed: 05/03/2023]
Abstract
Homocysteine (Hcy) is a naturally occurring intermediate metabolite formed during methionine metabolism. It has been well documented that its excess can be extremely toxic to mammalian, yeast and bacterial cells. In spite of the metabolic value of Hcy known for decades, the role of this amino acid in the plant response to stress has not been recognized yet. In the presented study, using potato plant (Solanum tuberosum L.) and Phytophthora infestans as a model system, the presence and tissue localization of Hcy in leaves was examined by an immunohistochemical method. The over-production of Hcy was more evidenced in the susceptible than in the resistant genotype of potato starting from 48 hpi. Furthermore, the elevated level of Hcy was correlated in time with the up-regulation of genes engaged in its biosynthesis, e.g. cystathionine β-lyase and S-adenosyl-l-homocysteine hydrolase. The pharmacological approach with exogenous Hcy resulted in significant rise in lipid peroxidation and more potent late blight disease development in leaves of susceptible potato as well. Finally, it has been found that key defense enzymes, i.e. phenylalanine ammonia lyase and β-1,3-glucanase were up-regulated early in the resistant potato genotype, starting from 1st hpi. In turn, in the susceptible potato the time-lag in expression of these enzymes tuned with excess production of Hcy might facilitate leaf tissue colonization by pathogen. Based on obtained results it should be stated that Hcy over-accumulation is engaged in pathophysiological mechanism leading to the abolishment of the resistance and might be an informative disease hallmark both in plant and in animal system.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
5
|
Expression of Escherichia coli cspA during early exponential growth at 37°C. Gene 2012; 492:382-8. [DOI: 10.1016/j.gene.2011.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/13/2011] [Accepted: 10/27/2011] [Indexed: 11/24/2022]
|
6
|
Sachs R, Max KE, Heinemann U, Balbach J. RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. RNA (NEW YORK, N.Y.) 2012; 18:65-76. [PMID: 22128343 PMCID: PMC3261745 DOI: 10.1261/rna.02809212] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/29/2011] [Indexed: 05/26/2023]
Abstract
Bacterial cold shock proteins (CSPs) regulate the cellular response to temperature downshift. Their general principle of function involves RNA chaperoning and transcriptional antitermination. Here we present two crystal structures of cold shock protein B from Bacillus subtilis (Bs-CspB) in complex with either a hexanucleotide (5'-UUUUUU-3') or heptanucleotide (5'-GUCUUUA-3') single-stranded RNA (ssRNA). Hydrogen bonds and stacking interactions between RNA bases and aromatic sidechains characterize individual binding subsites. Additional binding subsites which are not occupied by the ligand in the crystal structure were revealed by NMR spectroscopy in solution on Bs-CspB·RNA complexes. Binding studies demonstrate that Bs-CspB associates with ssDNA as well as ssRNA with moderate sequence specificity. Varying affinities of oligonucleotides are reflected mainly in changes of the dissociation rates. The generally lower binding affinity of ssRNA compared to its ssDNA analog is attributed solely to the substitution of thymine by uracil bases in RNA.
Collapse
Affiliation(s)
- Rolf Sachs
- Fachgruppe Biophysik Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Klaas E.A. Max
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, 13125 Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jochen Balbach
- Fachgruppe Biophysik Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals 2011; 24:429-44. [PMID: 21384090 DOI: 10.1007/s10534-011-9434-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/24/2011] [Indexed: 12/18/2022]
Abstract
Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications.
Collapse
|
8
|
Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol 2010; 161:643-50. [PMID: 20600858 DOI: 10.1016/j.resmic.2010.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 11/20/2022]
Abstract
The efficacy of antibiotics varies under different growth conditions due to the induction of specific or more general defense pathways, but the mechanisms are not completely understood. Actively swarming Salmonella show elevated resistance to many types of antibiotics. Previously, we had shown that cysteine biosynthesis was important for the induced antibiotic resistance phenotype of swarm cells. Here we examine the connection of cysteine to oxidative stress and demonstrate that the antioxidant properties of cysteine or cysteine-derived metabolites contribute to the antibiotic resistance in both vegetative and swarm cell populations. We observed that cys auxotrophs were oxidatively stressed, and in wild-type cells expression of the cys regulon was induced during periods of oxidative stress. In swarm cells, we found a 6-fold increase in reduced glutathione compared to swim cells and a corresponding increased resistance to oxidants. Wild-type and cys auxotrophs exhibited the same sensitivities to gentamicin, polymyxin and ciprofloxacin when grown anaerobically, suggesting that induced oxidative stress defense was contributing to elevated antibiotic resistance in swarm cells aerobically. Induction of the CysB regulon by addition of exogenous inducer resulted in elevated antibiotic resistance independently of swarming.
Collapse
|
9
|
Cesselin B, Ali D, Gratadoux JJ, Gaudu P, Duwat P, Gruss A, El Karoui M. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. MICROBIOLOGY-SGM 2009; 155:2274-2281. [PMID: 19389779 DOI: 10.1099/mic.0.027797-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous strategies allowing bacteria to detect and respond to oxidative conditions depend on the cell redox state. Here we examined the ability of Lactococcus lactis to survive aerobically in the presence of the reducing agent dithiothreitol (DTT), which would be expected to modify the cell redox state and disable the oxidative stress response. DTT inhibited L. lactis growth at 37 degrees C in aerobic conditions, but not in anaerobiosis. Mutants selected as DTT resistant all mapped to the pstFEDCBA locus, encoding a high-affinity phosphate transporter. Transcription of pstFEDCBA and a downstream putative regulator of stress response, phoU, was deregulated in a pstA strain, but amounts of major oxidative stress proteins were unchanged. As metals participate in oxygen radical formation, we compared metal sensitivity of wild-type and pstA strains. The pstA mutant showed approximately 100-fold increased resistance to copper and zinc. Furthermore, copper or zinc addition exacerbated the sensitivity of a wild-type L. lactis strain to DTT. Inactivation of pstA conferred a more general resistance to oxidative stress, alleviating the oxygen- and thermo-sensitivity of a clpP mutant. This study establishes a role for the pst locus in metal homeostasis, suggesting that pst inactivation lowers intracellular reactivity of copper and zinc, which would limit bacterial sensitivity to oxygen.
Collapse
Affiliation(s)
- Bénédicte Cesselin
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Djae Ali
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Jean-Jacques Gratadoux
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Philippe Gaudu
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Patrick Duwat
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Alexandra Gruss
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Meriem El Karoui
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| |
Collapse
|
10
|
Abed N, Bickle M, Mari B, Schapira M, Sanjuan-España R, Robbe Sermesant K, Moncorgé O, Mouradian-Garcia S, Barbry P, Rudkin BB, Fauvarque MO, Michaud-Soret I, Colas P. A comparative analysis of perturbations caused by a gene knock-out, a dominant negative allele, and a set of peptide aptamers. Mol Cell Proteomics 2007; 6:2110-21. [PMID: 17785351 DOI: 10.1074/mcp.m700105-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of protein function mostly relies on perturbing regulatory networks by acting upon protein expression levels or using transdominant negative agents. Here we used the Escherichia coli global transcription regulator Fur (ferric uptake regulator) as a case study to compare the perturbations exerted by a gene knock-out, the expression of a dominant negative allele of a gene, and the expression of peptide aptamers that bind a gene product. These three perturbations caused phenotypes that differed quantitatively and qualitatively from one another. The Fur peptide aptamers inhibited the activity of their target to various extents and reduced the virulence of a pathogenic E. coli strain in Drosophila. A genome-wide transcriptome analysis revealed that the "penetrance" of a peptide aptamer was comparable to that of a dominant negative allele but lower than the penetrance of the gene knock-out. Our work shows that comparative analysis of phenotypic and transcriptome responses to different types of perturbation can help decipher complex regulatory networks that control various biological processes.
Collapse
Affiliation(s)
- Nadia Abed
- Differentiation and Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239 CNRS/ENS Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IFR 128 BioSciences Lyon-Gerland, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Coleman SA, Fischer ER, Cockrell DC, Voth DE, Howe D, Mead DJ, Samuel JE, Heinzen RA. Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun 2006; 75:290-8. [PMID: 17088354 PMCID: PMC1828411 DOI: 10.1128/iai.00883-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A biphasic developmental cycle whereby highly resistant small-cell variants (SCVs) are generated from large-cell variants (LCVs) is considered fundamental to the virulence of Coxiella burnetii, the causative agent of human Q fever. In this study a proteome analysis of C. burnetii developmental forms was conducted to provide insight into their unique biological and immunological properties. Silver-stained gels of SCV and LCV lysates separated by two-dimensional (2-D) gel electrophoresis resolved over 675 proteins in both developmental forms. Forty-eight proteins were greater than twofold more abundant in LCVs than in SCVs, with six proteins greater than twofold more abundant in SCVs than in LCVs. Four and 15 upregulated proteins of SCVs and LCVs, respectively, were identified by mass spectrometry, and their predicted functional roles are consistent with a metabolically active LCV and a structurally resistant SCV. One-dimensional and 2-D immunoblots of cell form lysates probed with sera from infected/vaccinated guinea pigs and convalescent-phase serum from human patients who had recovered from acute Q fever, respectively, revealed both unique SCV/LCV antigens and common SCV/LCV antigens that were often differentially synthesized. Antigens recognized during human infection were identified by mass spectroscopy and included both previously described immunodominant proteins of C. burnetii and novel immunogenic proteins that may be important in the pathophysiology of clinical Q fever and/or the induction of protective immunity.
Collapse
Affiliation(s)
- Sherry A Coleman
- Coxiella Pathogenesis Section, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|