1
|
Szilasi A, Dénes L, Krikó E, Murray C, Mándoki M, Balka G. Prevalence of feline leukaemia virus and feline immunodeficiency virus in domestic cats in Ireland. Acta Vet Hung 2021; 68:413-420. [PMID: 33459612 DOI: 10.1556/004.2020.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) are retroviruses affecting felid species worldwide. A study was performed over a period of 5 months in Ireland with the aim to get an updated and more realistic prevalence of these retroviruses. A total of 183 EDTA-anticoagulated whole-blood samples were collected from cats distributed between 10 clinics. The samples were tested using both point-of-care enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). Basic clinical data and vaccination history were also recorded for the sampled cats. The results of ELISA tests showed a prevalence of 10.4 and 3.3% for FIV and FeLV, respectively, and an apparent prevalence of 9.3% for FIV and 11.6% for FeLV with PCR. Phylogenetic analysis of the partial polymerase (pol) gene sequences obtained from 8 FIV-positive strains showed that all but one of the Irish strains belonged to FIV subtype A, and one to subtype B. The overall mean genetic similarity between the analysed strains was 91.15%.
Collapse
Affiliation(s)
- Anna Szilasi
- 1Department of Pathology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Lilla Dénes
- 1Department of Pathology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Eszter Krikó
- 2Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Caoimhe Murray
- 3Suirside Veterinary Clinic, Townparks, Carrick-On-Suir, Co. Tipperary, Ireland
| | - Míra Mándoki
- 1Department of Pathology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Gyula Balka
- 1Department of Pathology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| |
Collapse
|
2
|
Lack of protection against feline immunodeficiency virus infection among domestic cats in New Zealand vaccinated with the Fel-O-Vax® FIV vaccine. Vet Microbiol 2020; 250:108865. [PMID: 33045631 DOI: 10.1016/j.vetmic.2020.108865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022]
Abstract
Infections with feline immunodeficiency virus (FIV) are common in New Zealand, although the impact of those infections on the health status of the cats remains unclear. Although many cats are vaccinated yearly with a commercial FIV vaccine containing FIV subtypes A and D, the effectiveness of this vaccine in protection against infection with field FIVs is unclear, as a high proportion of New Zealand viruses belong to subtype C. The objective of the study was to compare the frequency of FIV infection among adult FIV-vaccinated and FIV-unvaccinated domestic cats with access to outdoors. Buccal swabs were collected by the participating veterinarians and tested for the presence of FIV provirus by quantitative PCR. Overall, 26/185 (14.0 %) samples were positive for FIV, including 7/82 (8.5 %) samples from FIV-unvaccinated and 19/103 (18.4 %) from FIV-vaccinated cats. There was no protective effect of vaccination on FIV infection among sampled cats (p = 0.05). Partial sequences of the FIV envelope gene from five New Zealand viruses were analysed by the maximum likelihood method. All clustered with other New Zealand FIV sequences from subtypes A (n = 2), C (n = 2) or putative recombinant viruses (n = 1). While the FIV vaccination did not prevent FIV infection among sampled cats, it may have had an impact on transmissibility of the virus or on disease progression. As neither was addressed in the current study, further research is needed to fully assess the potential benefits of FIV vaccination. Considering the frequency of FIV infection in FIV-vaccinated cats, FIV infection status should be monitored not only before the first vaccination, but before each yearly booster.
Collapse
|
3
|
Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants. Viruses 2019; 11:v11080697. [PMID: 31370217 PMCID: PMC6722909 DOI: 10.3390/v11080697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats worldwide. Diagnosis usually relies on antibody screening by point-of-care tests (POCT), e.g., by enzyme-linked immunosorbent assays (ELISA), and confirmation using Western blot (WB). We increasingly observed ELISA-negative, WB-positive samples and aimed to substantiate these observations using 1194 serum/plasma samples collected from 1998 to 2019 primarily from FIV-suspect cats. While 441 samples tested positive and 375 tested negative by ELISA and WB, 81 samples had discordant results: 70 were false ELISA-negative (WB-positive) and 11 were false ELISA-positive (WB-negative); 297 ambiguous results were not analyzed further. The diagnostic sensitivity and specificity of the ELISA (82% and 91%, respectively) were lower than those reported in 1995 (98% and 97%, respectively). The diagnostic efficiency was reduced from 97% to 86%. False ELISA-negative samples originated mainly (54%) from Switzerland (1995: 0%). Sixty-four false ELISA-negative samples were available for POCT (SNAPTM/WITNESSR): five were POCT-positive. FIV RT-PCR was positive for two of these samples and was weakly positive for two ELISA- and POCT-negative samples. Low viral loads prohibited sequencing. Our results suggest that FIV diagnosis has become more challenging, probably due to increasing travel by cats and the introduction of new FIV isolates not recognized by screening assays.
Collapse
|
4
|
Variation in Intra-individual Lentiviral Evolution Rates: a Systematic Review of Human, Nonhuman Primate, and Felid Species. J Virol 2019; 93:JVI.00538-19. [PMID: 31167917 DOI: 10.1128/jvi.00538-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
Lentiviral replication mediated by reverse transcriptase is considered to be highly error prone, leading to a high intra-individual evolution rate that promotes evasion of neutralization and persistent infection. Understanding lentiviral intra-individual evolutionary dynamics on a comparative basis can therefore inform research strategies to aid in studies of pathogenesis, vaccine design, and therapeutic intervention. We conducted a systematic review of intra-individual evolution rates for three species groups of lentiviruses-feline immunodeficiency virus (FIV), simian immunodeficiency virus (SIV), and human immunodeficiency virus (HIV). Overall, intra-individual rate estimates differed by virus but not by host, gene, or viral strain. Lentiviral infections in spillover (nonadapted) hosts approximated infections in primary (adapted) hosts. Our review consistently documents that FIV evolution rates within individuals are significantly lower than the rates recorded for HIV and SIV. FIV intra-individual evolution rates were noted to be equivalent to FIV interindividual rates. These findings document inherent differences in the evolution of FIV relative to that of primate lentiviruses, which may signal intrinsic difference of reverse transcriptase between these viral species or different host-viral interactions. Analysis of lentiviral evolutionary selection pressures at the individual versus population level is valuable for understanding transmission dynamics and the emergence of virulent and avirulent strains and provides novel insight for approaches to interrupt lentiviral infections.IMPORTANCE To the best of our knowledge, this is the first study that compares intra-individual evolution rates for FIV, SIV, and HIV following systematic review of the literature. Our findings have important implications for informing research strategies in the field of intra-individual virus dynamics for lentiviruses. We observed that FIV evolves more slowly than HIV and SIV at the intra-individual level and found that mutation rates may differ by gene sequence length but not by host, gene, strain, an experimental setting relative to a natural setting, or spillover host infection relative to primary host infection.
Collapse
|
5
|
Szilasi A, Dénes L, Krikó E, Heenemann K, Ertl R, Mándoki M, Vahlenkamp TW, Balka G. Prevalence of feline immunodeficiency virus and feline leukaemia virus in domestic cats in Hungary. JFMS Open Rep 2019; 5:2055116919892094. [PMID: 31839979 PMCID: PMC6904780 DOI: 10.1177/2055116919892094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) are retroviruses affecting cats worldwide. The objectives of the study were to estimate the prevalence of these retroviruses in domestic cats in Hungary and to characterise the phylogenetic relationships of FIV strains. METHODS A total of 335 anticoagulated whole-blood samples obtained from both a healthy and ill cat population were examined for the presence of FIV and FeLV with two methods: ELISA and PCR. Statistical analysis was carried out to analyse the data obtained. Sequencing and phylogenetic analysis of partial polymerase (pol) gene sequences was performed to describe circulating FIV subtypes. RESULTS Statistical analysis showed 11.8% and 9.9% true prevalence of FeLV and FIV, respectively, with ELISA. The apparent prevalence calculated from the PCR results were 17.3% for FeLV and 13.1% for FIV. Phylogenetic analysis of partial pol gene sequences obtained from 22 FIV strains showed that all observed Hungarian strains belonged to FIV subtype B. The strains were grouped into several monophyletic subgroups reflecting the geographic locations of the origin of the samples. The overall mean genetic similarity between the analysed strains was 98.2%. CONCLUSIONS AND RELEVANCE We report the first thorough overview of the prevalence of FeLV and FIV in Hungary, which is relatively high, and give insight into the genetic diversity of Hungarian strains of FIV.
Collapse
Affiliation(s)
- Anna Szilasi
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Lilla Dénes
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Eszter Krikó
- Centre for Bioinformatics, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Kristin Heenemann
- Institute of Virology, Faculty of
Veterinary Medicine, Leipzig University, Leipzig, Sachsen, Germany
| | - Reinhard Ertl
- VetCore Facility for Research,
University of Veterinary Medicine, Vienna, Austria
| | - Míra Mándoki
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| | - Thomas W Vahlenkamp
- Institute of Virology, Faculty of
Veterinary Medicine, Leipzig University, Leipzig, Sachsen, Germany
| | - Gyula Balka
- Department of Pathology, University of
Veterinary Medicine, Budapest, Pest, Hungary
| |
Collapse
|
6
|
First Nearly Complete Genome Sequence of Feline immunodeficiency virus from Brazil. GENOME ANNOUNCEMENTS 2017; 5:5/39/e00947-17. [PMID: 28963205 PMCID: PMC5624751 DOI: 10.1128/genomea.00947-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feline immunodeficiency virus (FIV) has worldwide distribution; nevertheless, only a few FIV genomes from domestic cats are available. This is the first report of a nearly complete genome of FIV from a Brazilian cat (8,967 nucleotides [nt]), including the entire coding region and the 3′ untranslated region.
Collapse
|
7
|
Phylodynamics of the Brazilian feline immunodeficiency virus. INFECTION GENETICS AND EVOLUTION 2017; 55:166-171. [PMID: 28919546 DOI: 10.1016/j.meegid.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
Abstract
Feline immunodeficiency virus (FIV), like other retroviruses, displays large genomic divergence when different isolates are compared. In this study, 31 FIV positive samples of domestic cats from Porto Alegre, RS, Brazil were used aiming at a detailed genomic characterization and a better understanding of the molecular epidemiology of the virus in Brazil. The proviral env genes were partially amplified, sequenced and compared with another 237 sequences from different continents. We identified several Brazilian highly supported clades (A, B1, B2, C and D) that suggest independent events of introduction of FIV in Brazil. Forty six reference-sequences from the GenBank were used with our 31 sequences to infer the virus subtypes. Our sequences belong to the subtype B and three of them result from a recombination with the previously described subtype F. The other 28 Brazilian samples belonging to subtype B and another 46 Brazilian sequences from the GenBank were used to estimate the time to the most recent common ancestor of each Brazilian clade, using a Bayesian approach and a relaxed molecular clock model. The analyses of Brazilian sequences suggest several different entries of the virus in the Brazilian cat population between 1981 and 1991.
Collapse
|
8
|
Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration. Vet Sci 2017; 4:vetsci4010014. [PMID: 29056673 PMCID: PMC5606611 DOI: 10.3390/vetsci4010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.
Collapse
|
9
|
Bęczkowski PM, Harris M, Techakriengkrai N, Beatty JA, Willett BJ, Hosie MJ. Neutralising antibody response in domestic cats immunised with a commercial feline immunodeficiency virus (FIV) vaccine. Vaccine 2015; 33:977-84. [PMID: 25613718 PMCID: PMC4327927 DOI: 10.1016/j.vaccine.2015.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/31/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022]
Abstract
FIV vaccinated cats screened for neutralising antibodies Homologous neutralisation in 50% of cats tested No heterologous neutralisation
Across human and veterinary medicine, vaccines against only two retroviral infections have been brought to market successfully, the vaccines against feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV). FeLV vaccines have been a global success story, reducing virus prevalence in countries where uptake is high. In contrast, the more recent FIV vaccine was introduced in 2002 and the degree of protection afforded in the field remains to be established. However, given the similarities between FIV and HIV, field studies of FIV vaccine efficacy are likely to advise and inform the development of future approaches to HIV vaccination. Here we assessed the neutralising antibody response induced by FIV vaccination against a panel of FIV isolates, by testing blood samples collected from client-owned vaccinated Australian cats. We examined the molecular and phenotypic properties of 24 envs isolated from one vaccinated cat that we speculated might have become infected following natural exposure to FIV. Cats vaccinated against FIV did not display broadly neutralising antibodies, suggesting that protection may not extend to some virulent recombinant strains of FIV circulating in Australia.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom; Small Animal Hospital, University of Glasgow, Glasgow, United Kingdom.
| | - Matthew Harris
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | | | - Julia A Beatty
- Valentine Charlton Cat Centre, University of Sydney, Sydney, NSW, Australia.
| | - Brian J Willett
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | - Margaret J Hosie
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|