1
|
Pritzkow S, Schauer I, Tupaki-Sreepurna A, Morales R, Soto C. Screening of Anti-Prion Compounds Using the Protein Misfolding Cyclic Amplification Technology. Biomolecules 2024; 14:1113. [PMID: 39334879 PMCID: PMC11430292 DOI: 10.3390/biom14091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prion diseases are 100% fatal infectious neurodegenerative diseases affecting the brains of humans and other mammals. The disease is caused by the formation and replication of prions, composed exclusively of the misfolded prion protein (PrPSc). We invented and developed the protein misfolding cyclic amplification (PMCA) technology for in vitro prion replication, which allow us to replicate the infectious agent and it is commonly used for ultra-sensitive prion detection in biological fluids, tissues and environmental samples. In this article, we studied whether PMCA can be used to screen for chemical compounds that block prion replication. A small set of compounds previously shown to have anti-prion activity in various systems, mostly using cells infected with murine prions, was evaluated for their ability to prevent the replication of prions. Studies were conducted simultaneously with prions derived from 4 species, including human, cattle, cervid and mouse. Our results show that only one of these compounds (methylene blue) was able to completely inhibit prion replication in all species. Estimation of the IC50 for methylene blue inhibition of human prions causing variant Creutzfeldt-Jakob disease (vCJD) was 7.7 μM. Finally, we showed that PMCA can be used for structure-activity relationship studies of anti-prion compounds. Interestingly, some of the less efficient prion inhibitors altered the replication of prions in some species and not others, suggesting that PMCA is useful for studying the differential selectivity of potential drugs.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Isaac Schauer
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Ananya Tupaki-Sreepurna
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Rodrigo Morales
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| |
Collapse
|
2
|
Abstract
Introduction: Prion diseases are a class of rare and fatal neurodegenerative diseases for which no cure is currently available. They are characterized by conformational conversion of cellular prion protein (PrPC) into the disease-associated 'scrapie' isoform (PrPSc). Under an etiological point of view, prion diseases can be divided into acquired, genetic, and idiopathic form, the latter of which are the most frequent.Areas covered: Therapeutic approaches targeting prion diseases are based on the use of chemical and nature-based compounds, targeting either PrPC or PrPSc or other putative player in pathogenic mechanism. Other proposed anti-prion treatments include passive and active immunization strategies, peptides, aptamers, and PrPC-directed RNA interference techniques. The treatment efficacy has been mainly assessed in cell lines or animal models of the disease testing their ability to reduce prion accumulation.Expert opinion: The assessed strategies focussing on the identification of an efficient anti-prion therapy faced various issues, which go from permeation of the blood brain barrier to immunological tolerance of the host. Indeed, the use of combinatory approaches, which could boost a synergistic anti-prion effect and lower the potential side effects of single treatments and may represent an extreme powerful and feasible way to tackle prion disease.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
3
|
Mustazza C, Sbriccoli M, Minosi P, Raggi C. Small Molecules with Anti-Prion Activity. Curr Med Chem 2020; 27:5446-5479. [PMID: 31560283 DOI: 10.2174/0929867326666190927121744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
Prion pathologies are fatal neurodegenerative diseases caused by the misfolding of the physiological Prion Protein (PrPC) into a β-structure-rich isoform called PrPSc. To date, there is no available cure for prion diseases and just a few clinical trials have been carried out. The initial approach in the search of anti-prion agents had PrPSc as a target, but the existence of different prion strains arising from alternative conformations of PrPSc, limited the efficacy of the ligands to a straindependent ability. That has shifted research to PrPC ligands, which either act as chaperones, by stabilizing the native conformation, or inhibit its interaction with PrPSc. The role of transition-metal mediated oxidation processes in prion misfolding has also been investigated. Another promising approach is the indirect action via other cellular targets, like membrane domains or the Protein- Folding Activity of Ribosomes (PFAR). Also, new prion-specific high throughput screening techniques have been developed. However, so far no substance has been found to be able to extend satisfactorily survival time in animal models of prion diseases. This review describes the main features of the Structure-Activity Relationship (SAR) of the various chemical classes of anti-prion agents.
Collapse
Affiliation(s)
- Carlo Mustazza
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Sbriccoli
- Department of Neurosciences, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Raggi
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
4
|
Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017; 22:molecules22060864. [PMID: 28538692 PMCID: PMC6152669 DOI: 10.3390/molecules22060864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer’s is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer’s pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases’ biological processes and, if known, their role in Alzheimer’s. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Collapse
|
5
|
Abstract
A possible therapeutic strategy for amyloid diseases involves the use of small molecule compounds to inhibit protein assembly into insoluble aggregates. According to the recently proposed Crystallization-Like Model, the kinetics of amyloid fibrillization can be retarded by decreasing the frequency of new fibril formation or by decreasing the elongation rate of existing fibrils. To the compounds that affect the nucleation and/or the growth steps we call true inhibitors. An apparent inhibition mechanism may however result from the alteration of thermodynamic properties such as the solubility of the amyloidogenic protein. Apparent inhibitors markedly influence protein aggregation kinetics measured in vitro, yet they are likely to lead to disappointing results when tested in vivo. This is because cells and tissues media are in general much more buffered against small variations in composition than the solutions prepared in lab. Here we show how to discriminate between true and apparent inhibition mechanisms from experimental data on protein aggregation kinetics. The goal is to be able to identify false positives much earlier during the drug development process.
Collapse
Affiliation(s)
- Pedro M Martins
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Janouskova O, Rakusan J, Karaskova M, Holada K. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine. J Gen Virol 2012; 93:2512-2517. [DOI: 10.1099/vir.0.044727-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfonated phthalocyanines (Pcs) are cyclic tetrapyrroles that constitute a group of photosensitizers. In the presence of visible light and diatomic oxygen, Pcs produce singlet oxygen and other reactive oxygen species that have known degradation effects on lipids, proteins and/or nucleic acids. Pcs have been used successfully in the treatment of bacterial, yeast and fungal infections, but their use in the photodynamic inactivation of prions has never been reported. Here, we evaluated the photodynamic activity of the disodium salt of disulfonated hydroxyaluminium phthalocyanine (PcDS) against mouse-adapted scrapie RML prions in vitro. PcDS treatment of RML brain homogenate resulted in a time- and dose-dependent inactivation of prions. The photodynamic potential of Pcs offers a new way to inactivate prions using biodegradable compounds at room temperature and normal pressure, which could be useful for treating thermolabile materials and liquids.
Collapse
Affiliation(s)
- Olga Janouskova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, 128 00 Prague 2, Czech Republic
| | - Jan Rakusan
- Centre for Organic Chemistry Ltd, Rybitvi 296, 53354 Rybitvi, Czech Republic
| | - Marie Karaskova
- Centre for Organic Chemistry Ltd, Rybitvi 296, 53354 Rybitvi, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
7
|
Mikhailova EV, Artemov AV, Snigirevskaya ES, Artamonova TO, Khodorkovskii MA, Soidla TR, Nevzglyadova OV. Effect of red pigment on insulin fibril formation in vitro. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1990519x11060095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Poncet-Montange G, St Martin SJ, Bogatova OV, Prusiner SB, Shoichet BK, Ghaemmaghami S. A survey of antiprion compounds reveals the prevalence of non-PrP molecular targets. J Biol Chem 2011; 286:27718-28. [PMID: 21610081 DOI: 10.1074/jbc.m111.234393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases caused by the accumulation of the misfolded isoform (PrP(Sc)) of the prion protein (PrP(C)). Cell-based screens have identified several compounds that induce a reduction in PrP(Sc) levels in infected cultured cells. However, the molecular targets of most antiprion compounds remain unknown. We undertook a large-scale, unbiased, cell-based screen for antiprion compounds and then investigated whether a representative subset of the active molecules had measurable affinity for PrP, increased the susceptibility of PrP(Sc) to proteolysis, or altered the cellular localization or expression level of PrP(C). None of the antiprion compounds showed in vitro affinity for PrP or had the ability to disaggregate PrP(Sc) in infected brain homogenates. These observations suggest that most antiprion compounds identified in cell-based screens deploy their activity via non-PrP targets in the cell. Our findings indicate that in comparison to PrP conformers themselves, proteins that play auxiliary roles in prion propagation may be more effective targets for future drug discovery efforts.
Collapse
|
9
|
Seidel R, Engelhard M. Chemical biology of prion protein: tools to bridge the in vitro/vivo interface. Top Curr Chem (Cham) 2011; 305:199-223. [PMID: 21769714 DOI: 10.1007/128_2011_201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research on prion protein (PrP) and pathogenic prion has been very intensive because of its importance as model system for neurodegenerative diseases. One important aspect of this research has been the application of chemical biology tools. In this review we describe new developments like native chemical ligation (NCL) and expressed protein ligation (EPL) for the synthesis and semisynthesis of proteins in general and PrP in particular. These techniques allow the synthesis of designed tailor made analogs which can be used in conjunction with modern biophysical methods like fluorescence spectroscopy, solid state Nuclear Magnetic Resonance (ssNMR), and Electron Paramagnetic Resonance (EPR). Another aspect of prion research is concerned with the interaction of PrP with small organic molecules and metals. The results are critically reviewed and put into perspective of their implication for PrP function.
Collapse
Affiliation(s)
- Ralf Seidel
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | | |
Collapse
|
10
|
SAXS and X-ray crystallography suggest an unfolding model for the GDP/GTP conformational switch of the small GTPase Arf6. J Mol Biol 2010; 402:696-707. [PMID: 20709080 DOI: 10.1016/j.jmb.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022]
Abstract
The small GTPases Arf1 and Arf6 have nonoverlapping functions in cellular traffic despite their very high sequence and structural resemblance. Notably, the exquisite isoform specificity of their guanine nucleotide exchange factors and their distinctive sensitivity to the drug brefeldin A cannot be explained by any straightforward structural model. Here we integrated structural and spectroscopic methods to address this issue using Δ13Arf6-GDP, a truncated mutant that mimics membrane-bound Arf6-GDP. The crystal structure of Δ13Arf6-GDP reveals an unprecedented unfolding of the GTPase core β-strands, which is fully accounted for by small-angle X-ray scattering data in solution and by ab initio three-dimensional envelope calculation. NMR chemical shifts identify this structural disorder in Δ13Arf6-GDP, but not in the closely related Δ17Arf1-GDP, which is consistent with their comparative thermodynamic and hydrodynamic analyses. Taken together, these experiments suggest an unfolding model for the nucleotide switch of Arf6 and shed new light on its biochemical differences with Arf1.
Collapse
|
11
|
Involvement of Dab1 in APP processing and beta-amyloid deposition in sporadic Creutzfeldt-Jakob patients. Neurobiol Dis 2009; 37:324-9. [PMID: 19853035 DOI: 10.1016/j.nbd.2009.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/05/2009] [Accepted: 10/10/2009] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease and prion pathologies (e.g., Creutzfeldt-Jakob disease (CJD)) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. Dab1 has been implicated in the regulation of amyloid precursor protein (APP), but a direct link between human prion diseases and Dab1/APP interactions has not been published. Here we examined this putative relationship in 17 cases of sporadic CJD (sCJD) post-mortem. Biochemical analyses of brain tissue revealed two groups, which also correlated with PrP(sc) types 1 and 2. One group with PrP(sc) type 1 showed increased Dab1 phosphorylation and lower betaCTF production with an absence of Abeta deposition. The second sCJD group, which carried PrP(sc) type 2, showed lower levels of Dab1 phosphorylation and betaCTF production, and Abeta deposition. Thus, the present observations suggest a correlation between Dab1 phosphorylation, Abeta deposition and PrP(sc) type in sCJD.
Collapse
|