1
|
Yin M, Kuang W, Wang Q, Wang X, Yuan C, Lin Z, Zhang H, Deng F, Jiang H, Gong P, Zou Z, Hu Z, Wang M. Dual roles and evolutionary implications of P26/poxin in antagonizing intracellular cGAS-STING and extracellular melanization immunity. Nat Commun 2022; 13:6934. [PMID: 36376305 PMCID: PMC9663721 DOI: 10.1038/s41467-022-34761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
P26, a homolog of the viral-encoded nuclease poxin that neutralizes the cGAS-STING innate immunity, is widely distributed in various invertebrate viruses, lepidopteran insects, and parasitoid wasps. P26/poxin from certain insect viruses also retains protease activity, though its biological role remains unknown. Given that many P26s contain a signal peptide, it is surmised that P26 may possess certain extracellular functions. Here, we report that a secretory baculoviral P26 suppresses melanization, a prominent insect innate immunity against pathogen invasion. P26 targets the cofactor of a prophenoloxidase-activating protease, and its inhibitory function is independent of nuclease activity. The analysis of P26/poxin homologs from different origins suggests that the ability to inhibit the extracellular melanization pathway is limited to P26s with a signal peptide and not shared by the homologs without it. These findings highlight the independent evolution of a single viral suppressor to perform dual roles in modulating immunity during virus-host adaptation.
Collapse
Affiliation(s)
- Mengyi Yin
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Kuang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qianran Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xi Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chuanfei Yuan
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Lin
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huanyu Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haobo Jiang
- grid.65519.3e0000 0001 0721 7331Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK USA
| | - Peng Gong
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Zou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Hu
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Zhao Z, Yue D, Ye B, Li P, Li W, Wang L, Zhang B, Fan Q. Functional analyses of inhibitor of apoptosis protein 1 (IAP1) of Antheraea pernyi multinucleocapsid nucleopolyhedrovirus (AnpeNPV) in viral replication and occlusion body production. J Invertebr Pathol 2022; 194:107816. [PMID: 35964678 DOI: 10.1016/j.jip.2022.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
Inhibitor of apoptosis protein 1 (IAP1) of Antheraea pernyi multinucleocapsid nucleopolyhedrovirus (AnpeNPV) belongs to the baculovirus IAP1 type. The function of AnpeNPV-IAP1 in viral replication and occlusion body (OB) production remains unknown. In this study, we demonstrated that AnpeNPV-iap1 is a late gene. AnpeNPV-IAP1 mainly localizes to the nuclear ring zone and exhibits dynamic distribution in the cytoplasm and the virogenic stroma during AnpeNPV infection. AnpeNPV-IAP1 impacted the expression of a variety of viral genes at the very late phase of infection in Tn-Hi5 cells. The deletion of AnpeNPV-iap1 caused decreased expression levels of polyhedrin, morphological changes to OBs and reduced OB production in A. pernyi pupae, along with a lengthening of the lethal time of A. pernyi larvae. These results suggest that AnpeNPV-iap1 is involved in regulating viral gene expression, OB production and morphogenesis in A. pernyi.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Bo Ye
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China
| | - Linmei Wang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Bo Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Qi Fan
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Bombyx mori Nucleopolyhedrovirus p26 Is Associated with Viral Late Stage Replication. INSECTS 2021; 12:insects12080707. [PMID: 34442273 PMCID: PMC8396461 DOI: 10.3390/insects12080707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) p26 is conserved among all Lepidoptera baculoviruses that have been completely sequenced thus far, and some baculoviruses even have two copies of p26, which suggested that p26 may play an important role in the virus infection cycle. This study aimed to characterize BmNPV p26. We found that BmNPV p26 transcripts were detectable as early as 3 h post-infection (hpi), and the transcript levels rapidly increased starting from 12 hpi. Western blot analysis using an anti-p26 polyclonal antibody demonstrated that the corresponding protein was also detectable from 6 hpi in BmNPV-infected cell lysates. Immunofluorescence analysis demonstrated that p26 was mainly dispersed in the infected cell cytoplasm, whereas the over-expressed fusion protein EGFP-p26 also accumulated in the nucleus. These results indicated that p26 is an early BmNPV gene and has functions both in the cytoplasm and the nucleus. RNAi-based knockdown of p26 could produce infectious virus and normal-appearing virions but decreased budded virus (BV) production in BmNPV-infected cells at 72 hpi. Moreover, the results of further quantitative PCR (Q-PCR) analysis indicated that the gp64 and p74 transcripts levels decreased significantly. These results indicated that BmNPV p26 may be associated with BmNPV replication during the late infection stage.
Collapse
|
4
|
Bombyx mori nucleopolyhedrovirus protein Bm11 is involved in occlusion body production and occlusion-derived virus embedding. Virology 2019; 527:12-20. [PMID: 30447410 DOI: 10.1016/j.virol.2018.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf11 (bm11) is a highly conserved gene with unknown function. It is homologous to AcMNPV orf19. In this study, a bm11 knockout virus was constructed and its role was investigated. Expression analysis indicated that bm11 is a late gene and confocal microscopy analysis demonstrated that Bm11 localizes predominantly in the nuclear ring zone at the late phase of infection. The bm11 deletion did not affect budded virus (BV) production or viral genome replication, but markedly reduced the production of occlusion bodies (OBs) and the embedding of occlusion-derived viruses (ODVs). Bio-assays showed that Bm11 was involved in BmNPV infectivity in vivo by direct injection. In conclusion, our results demonstrated that although Bm11 is not essential for BV production or mature ODV formation, it affects OB production and ODV occlusion.
Collapse
|
5
|
Baculovirus as a Tool for Gene Delivery and Gene Therapy. Viruses 2018; 10:v10090510. [PMID: 30235841 PMCID: PMC6164903 DOI: 10.3390/v10090510] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Based on its ability to express high levels of protein, baculovirus has been widely used for recombinant protein production in insect cells for more than thirty years with continued technical improvements. In addition, baculovirus has been successfully applied for foreign gene delivery into mammalian cells without any viral replication. However, several CpG motifs are present throughout baculoviral DNA and induce an antiviral response in mammalian cells, resulting in the production of pro-inflammatory cytokines and type I interferon through a Toll-like receptor (TLR)-dependent or -independent signaling pathway, and ultimately limiting the efficiency of transgene expression. On the other hand, by taking advantage of this strong adjuvant activity, recombinant baculoviruses encoding neutralization epitopes can elicit protective immunity in mice. Moreover, immunodeficient cells, such as hepatitis C virus (HCV)- or human immunodeficiency virus (HIV)-infected cells, are more susceptible to baculovirus infection than normal cells and are selectively eliminated by the apoptosis-inducible recombinant baculovirus. Here, we summarize the application of baculovirus as a gene expression vector and the mechanism of the host innate immune response induced by baculovirus in mammalian cells. We also discuss the future prospects of baculovirus vectors.
Collapse
|
6
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
7
|
Hou D, Chen X, Zhang LK. Proteomic Analysis of Mamestra Brassicae Nucleopolyhedrovirus Progeny Virions from Two Different Hosts. PLoS One 2016; 11:e0153365. [PMID: 27058368 PMCID: PMC4825930 DOI: 10.1371/journal.pone.0153365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023] Open
Abstract
Mamestra brassicae nucleopolyhedrovirus (MabrNPV) has a wide host range replication in more than one insect species. In this study, a sequenced MabrNPV strain, MabrNPV-CTa, was used to perform proteomic analysis of both BVs and ODVs derived from two infected hosts: Helicoverpa armigera and Spodoptera exigua. A total of 82 and 39 viral proteins were identified in ODVs and BVs, respectively. And totally, 23 and 76 host proteins were identified as virion-associated with ODVs and BVs, respectively. The host proteins incorporated into the virus particles were mainly involved in cytoskeleton, signaling, vesicle trafficking, chaperone and metabolic systems. Some host proteins, such as actin, cyclophilin A and heat shock protein 70 would be important for viral replication. Several host proteins involved in immune response were also identified in BV, and a C-type lectin protein was firstly found to be associated with BV and its family members have been demonstrated to be involved in entry process of other viruses. This study facilitated the annotation of baculovirus genome, and would help us to understand baculovirus virion structure. Furthermore, the identification of host proteins associated with virions produced in vivo would facilitate investigations on the involvement of intriguing host proteins in virus replication.
Collapse
Affiliation(s)
- Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan, P. R. China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- * E-mail:
| |
Collapse
|
8
|
Occurrence and characterization of a tetrahedral nucleopolyhedrovirus from Spilarctia obliqua (Walker). J Invertebr Pathol 2015; 132:135-141. [DOI: 10.1016/j.jip.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
|
9
|
Chen L, Shen Y, Yang R, Wu X, Hu W, Shen G. Bombyx mori nucleopolyhedrovirus (BmNPV) Bm64 is required for BV production and per os infection. Virol J 2015; 12:173. [PMID: 26497116 PMCID: PMC4619395 DOI: 10.1186/s12985-015-0399-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022] Open
Abstract
Background Bombyx mori nucleopolyhedrovirus (BmNPV) orf64 (Bm64, a homologue of ac78) is a core baculovirus gene. Recently, Li et al. reported that Ac78 was not essential for budded viruses (BVs) production and occlusion-derived viruses (ODVs) formation (Virus Res 191:70–82, 2014). Conversely, Tao et al. demonstrated that Ac78 was localized to the BV and ODV envelopes and was required for BV production and ODV formation (J Virol 87:8441–50, 2013). In this study, the function of Bm64 was characterized to determine the role of Bm64 in the BmNPV infection cycle. Method The temporal expression of Bm64 was examined using total RNA extracted from BmNPV-infected BmN cells at different time points by reverse-transcription PCR (RT-PCR) and 5’ RACE analysis. To determine the functions of Bm64 in viral replication and the viral phenotype throughout the viral life cycle, a deletion virus (vBm64KO) was generated via homologous recombination in Escherichia coli. Viral replication and BV production were determined by real-time PCR. Electron microscopy was used to detect virion morphogenesis. The subcellular localization of Bm64 was determined by microscopy, and per os infectivity was used to determine its role in the baculovirus oral infection cycle. Results Viral plaque and titer assay results showed that a few infectious BVs were produced by vBm64KO, suggesting that deletion of Bm64 affected BV production. Viral DNA replication was detected and polyhedra were observed in vBm64KO-transfected cells. Microscopy analysis revealed that Bm64 was predominantly localized to the ring zone of the nuclei during the infection cycle. Electron microscopy showed that Bm64 was not essential for the formation of ODVs or the subsequent occlusion of ODV into polyhedra. The per os infectivity results showed that the polyhedra of vBm64KO were unable to infect silkworm larvae. Conclusion In conclusion, our results suggest that Bm64 plays an important role in BV production and per os infection, but is not required for viral DNA replication or ODV maturation. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0399-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Chen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,Lab of Silkworm Biotechnology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunwang Shen
- Lab of Silkworm Biotechnology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Yang
- Lab of Silkworm Biotechnology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wu
- Lab of Silkworm Biotechnology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Hu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
10
|
Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors. J Virol 2015; 89:8909-21. [PMID: 26085165 DOI: 10.1128/jvi.01001-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.
Collapse
|
11
|
Craveiro SR, Inglis PW, Togawa RC, Grynberg P, Melo FL, Ribeiro ZMA, Ribeiro BM, Báo SN, Castro MEB. The genome sequence of Pseudoplusia includens single nucleopolyhedrovirus and an analysis of p26 gene evolution in the baculoviruses. BMC Genomics 2015; 16:127. [PMID: 25765042 PMCID: PMC4346127 DOI: 10.1186/s12864-015-1323-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated. RESULTS The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX - Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins. CONCLUSIONS PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.
Collapse
Affiliation(s)
- Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Roberto C Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Zilda Maria A Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Sônia N Báo
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil.
| | - Maria Elita B Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, W5 Norte Final, 70770-917, Brasília, DF, Brazil.
| |
Collapse
|
12
|
Ream DC, Murakami ST, Schmidt EE, Huang GH, Liang C, Friedberg I, Cheng XW. Comparative analysis of error-prone replication mononucleotide repeats across baculovirus genomes. Virus Res 2013; 178:217-25. [PMID: 24140718 DOI: 10.1016/j.virusres.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/25/2022]
Abstract
Genome replication by the baculovirus DNA polymerase often generates errors in mononucleotide repeat (MNR) sequences due to replication slippage. This results in the inactivation of genes that affects different stages of the cell infection cycle. Here we mapped these MNRs in the 59 baculovirus genomes. We found that the MNR frequencies of baculovirus genomes are different and not correlated with the genome sizes. Although the average A/T content of baculoviruses is 58.67%, the A/T MNR frequency is significantly higher than that of the G/C MNRs. Furthermore, the A7/T7 MNRs are the most frequent of those we studied. Finally, MNR frequencies in different classes of baculovirus genes, such as immediate early genes, show differences between baculovirus genomes, suggesting that the distribution and frequency of different MNRs are unique to each baculovirus species or strain. Therefore, the results of this study can help select appropriate baculoviruses for the development of biological insecticides.
Collapse
Affiliation(s)
- David C Ream
- Department of Microbiology, Miami University, Oxford, OH, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tao XY, Choi JY, Wang Y, Roh JY, Lee JH, Liu Q, Park JB, Kim JS, Kim W, Je YH. Functional characterization of Autographa californica multiple nucleopolyhedrovirus ORF43 and phenotypic changes of ORF43-knockout mutant. J Microbiol 2013; 51:515-21. [DOI: 10.1007/s12275-013-3058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
|
14
|
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) that infects the silkworm, B. mori, accounts for >50% of silk cocoon crop losses globally. We speculated that simultaneous targeting of several BmNPV essential genes in transgenic silkworm would elicit a stable defense against the virus. We introduced into the silkworm germline the vectors carrying short sequences of four essential BmNPV genes in tandem, either in sense or antisense or in inverted-repeat arrangement. The transgenic silkworms carrying the inverted repeat-containing transgene showed stable protection against high doses of baculovirus infection. Further, the antiviral trait was incorporated to a commercially productive silkworm strain highly susceptible to BmNPV. This led to combining the high-yielding cocoon and silk traits of the parental commercial strain and a very high level of refractoriness (>75% survival rate as compared to <15% in nontransgenic lines) to baculovirus infection conferred by the transgene. We also observed impaired infectivity of the occlusion bodies derived from the transgenic lines as compared to the wild-type ones. Currently, large-scale exploitation of these transgenic lines is underway to bring about economic transformation of sericulture.
Collapse
|
15
|
Cheng XH, Kumar CMS, Arif BM, Krell PJ, Zhang CX, Cheng XW. Cell-dependent production of polyhedra and virion occlusion of Autographa californica multiple nucleopolyhedrovirus fp25k mutants in vitro and in vivo. J Gen Virol 2012; 94:177-186. [PMID: 22993192 DOI: 10.1099/vir.0.045591-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Members of the family Baculoviridae are insect-specific dsDNA viruses that have been used for biological control of insect pests in agriculture and forestry, as well as in research and pharmaceutical protein expression in insect cells and larvae. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the type species of the family Baculoviridae. During infection of AcMNPV in permissive cells, fp25k mutants are positively selected, leading to the formation of the few polyhedra (FP) phenotype with reduced yield of polyhedra and reduced virion occlusion efficiency, which leads to decreased oral infectivity for insects. Here we report that polyhedra of AcMNPV fp25k mutants produced from different insect cell lines and insects have differences in larval per os infectivity, and that these variations are due to different virion occlusion efficiencies in these cell lines and insects. Polyhedra of AcMNPV fp25k mutants produced from Sf cells (Sf21 and Sf9, derived from Spodoptera frugiperda) and S. frugiperda larvae had poorer virion occlusion efficiency than those from Hi5 cells (derived from Trichoplusia ni) and T. ni larvae, based on immunoblots, DNA isolation and larval oral infection analysis. AcMNPV fp25k mutants formed clusters of FP and many polyhedra (MP) in the fat body cells of both T. ni and S. frugiperda larvae. Transmission electron microscopy revealed that the nature of virion occlusion of AcMNPV fp25k mutants was dependent on the different cells of the T. ni fat body tissue. Taken together, these results indicate that the FP phenotype and virion occlusion efficiency of fp25k mutants are influenced by the host insect cells.
Collapse
Affiliation(s)
- Xin-Hua Cheng
- Department of Microbiology, Miami University, Oxford, OH 45056, USA.,Graduate Program in Cell, Molecular and Structural Biology, Miami University, Oxford, OH 45056, USA
| | | | - Basil M Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Center, Sault Ste Marie, Ontario, P6A 2E5, Canada
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Chuan-Xi Zhang
- Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiao-Wen Cheng
- Department of Microbiology, Miami University, Oxford, OH 45056, USA.,Graduate Program in Cell, Molecular and Structural Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
16
|
Xiang XW, Yang R, Chen L, Hu XL, Yu SF, Cao CP, Wu XF. Immobilization of foreign protein into polyhedra of Bombyx mori nucleopolyhedrovirus (BmNPV). J Zhejiang Univ Sci B 2012; 13:111-7. [PMID: 22302424 DOI: 10.1631/jzus.b1100131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the late phase of Bombyx mori nucleopolyhedrovirus (BmNPV) infection, a large amount of polyhedra appear in the infected cell nucleolus, these polyhedra being dense protein crystals protecting the incorporated virions from the harsh environment. To investigate whether the foreign protein could be immobilized into the polyhedra of BmNPV, two recombinant baculoviruses were generated by a novel BmNPV polyhedrin-plus (polh(+)) Bac-to-Bac system, designated as vBmBac(polh(+))-enhanced green fluorescent protein (EGFP) and vBmBac(polh(+))-LacZ, which can express the polyhedrin and foreign protein simultaneously. Light microscopy analysis showed that all viruses produced polyhedra of normal appearance. Green fluorescence can be apparently detected on the surface of the vBmBac(polh(+))-EGFP polyhedra, but not the BmNPV polyhedra. Fluorescence analysis and anti-desiccation testing confirmed that EGFP was embedded in the polyhedra. As expected, the vBmBac(polh(+))-LacZ polyhedra contained an amount of LacZ and had a higher β-galactosidase activity. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were also performed to verify if the foreign proteins were immobilized into polyhedra. This study provides a new inspiration for efficient preservation of useful proteins and development of new pesticides with toxic proteins.
Collapse
Affiliation(s)
- Xing-wei Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
17
|
López MG, Alfonso V, Carrillo E, Taboga O. Description of a novel single mutation in the AcMNPV polyhedrin gene that results in abnormally large cubic polyhedra. Arch Virol 2010; 156:695-9. [DOI: 10.1007/s00705-010-0885-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/04/2010] [Indexed: 11/28/2022]
|
18
|
Slack JM, Lawrence SD, Krell PJ, Arif BM. A soluble form of P74 can act as a per os infectivity factor to the Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 2009; 91:915-8. [PMID: 20007360 DOI: 10.1099/vir.0.017145-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica multicapsid nucleopolyhedrovirus P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in the ODV envelope by a C-terminal transmembrane anchor domain and is N-terminally exposed on the ODV surface. In the present study, a series of N-terminal and C-terminal truncation mutants of P74 were evaluated for their ability to rescue per os infectivity of the P74-null virus, AcLP4. It was discovered that a P74 truncation mutant lacking the C-terminal transmembrane anchor domain of P74 was able to rescue per os infection. This result shows that a soluble form of P74 retains per os infectivity factor function and suggests that P74 may be complexed with other proteins in the ODV envelope.
Collapse
Affiliation(s)
- Jeffrey M Slack
- Great Lakes Forestry Centre, Sault Ste Marie, ON P6A 2E5, Canada
| | | | | | | |
Collapse
|