1
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
2
|
Liu F, Lü W, Liu L. New implications for prion diseases therapy and prophylaxis. Front Mol Neurosci 2024; 17:1324702. [PMID: 38500676 PMCID: PMC10944861 DOI: 10.3389/fnmol.2024.1324702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Prion diseases are rare, fatal, progressive neurodegenerative disorders that affect both animal and human. Human prion diseases mainly present as Creutzfeldt-Jakob disease (CJD). However, there are no curable therapies, and animal prion diseases may negatively affect the ecosystem and human society. Over the past five decades, scientists are devoting to finding available therapeutic or prophylactic agents for prion diseases. Numerous chemical compounds have been shown to be effective in experimental research on prion diseases, but with the limitations of toxicity, poor efficacy, and low pharmacokinetics. The earliest clinical treatments of CJD were almost carried out with anti-infectious agents that had little amelioration of the course. With the discovery of pathogenic misfolding prion protein (PrPSc) and increasing insights into prion biology, amounts of novel technologies have attempted to eliminate PrPSc. This review presents new perspectives on clinical and experimental prion diseases, including immunotherapy, gene therapy, small-molecule drug, and stem cell therapy. It further explores the prospects and challenge associated with these emerging therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqi Lü
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Triller G, Garyfallos DA, Papavasiliou FN, Sklaviadis T, Stavropoulos P, Xanthopoulos K. Immunization with Genetically Modified Trypanosomes Provides Protection against Transmissible Spongiform Encephalopathies. Int J Mol Sci 2022; 23:ijms231810629. [PMID: 36142526 PMCID: PMC9503410 DOI: 10.3390/ijms231810629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathies are incurable neurodegenerative diseases, associated with the conversion of the physiological prion protein to its disease-associated counterpart. Even though immunization against transmissible spongiform encephalopathies has shown great potential, immune tolerance effects impede the use of active immunization protocols for successful prophylaxis. In this study, we evaluate the use of trypanosomes as biological platforms for the presentation of a prion antigenic peptide to the host immune system. Using the engineered trypanosomes in an immunization protocol without the use of adjuvants led to the development of a humoral immune response against the prion protein in wild type mice, without the appearance of adverse reactions. The immune reaction elicited with this protocol displayed in vitro therapeutic potential and was further evaluated in a bioassay where immunized mice were partially protected in a representative murine model of prion diseases. Further studies are underway to better characterize the immune reaction and optimize the immunization protocol.
Collapse
Affiliation(s)
- Gianna Triller
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Dimitrios A. Garyfallos
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - F. Nina Papavasiliou
- Division of Immune Diversity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pete Stavropoulos
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
- Correspondence: (P.S.); (K.X.); Tel.: +30-2310-997-654 (Κ.Χ.)
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thermi, Greece
- Correspondence: (P.S.); (K.X.); Tel.: +30-2310-997-654 (Κ.Χ.)
| |
Collapse
|
4
|
Eiden M, Gedvilaite A, Leidel F, Ulrich RG, Groschup MH. Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice. Viruses 2021; 13:v13050811. [PMID: 33946367 PMCID: PMC8147134 DOI: 10.3390/v13050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents.
Collapse
Affiliation(s)
- Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Correspondence:
| | - Alma Gedvilaite
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Task Force Animal Diseases, Darmstadt Regional Administrative Council, Luisenplatz 2, 64283 Darmstadt, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| |
Collapse
|
5
|
Chen C, Dong X. Therapeutic implications of prion diseases. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens 2020; 9:E216. [PMID: 32183309 PMCID: PMC7157205 DOI: 10.3390/pathogens9030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The term "prion disease" encompasses a group of neurodegenerative diseases affecting both humans and animals. Currently, there is no effective therapy and all forms of prion disease are invariably fatal. Because of (a) the outbreak of bovine spongiform encephalopathy in cattle and variant Creutzfeldt-Jakob disease in humans; (b) the heated debate about the prion hypothesis; and (c) the availability of a natural prion disease in rodents, the understanding of the pathogenic process in prion disease is much more advanced compared to that of other neurodegenerative disorders, which inspired many attempts to develop therapeutic strategies against these fatal diseases. In this review, we focus on immunotherapy against prion disease. We explain our rationale for immunotherapy as a plausible therapeutic choice, review previous trials using either active or passive immunization, and discuss potential strategies for overcoming the hurdles in developing a successful immunotherapy. We propose that immunotherapy is a plausible and practical therapeutic strategy and advocate more studies in this area to develop effective measures to control and treat these devastating disorders.
Collapse
Affiliation(s)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA;
| |
Collapse
|
7
|
Murugesan C, Manivannan P, Gangatharan M. Pros and cons in prion diseases abatement: Insights from nanomedicine and transmissibility patterns. Int J Biol Macromol 2020; 145:21-27. [PMID: 31866542 DOI: 10.1016/j.ijbiomac.2019.12.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/27/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Ample research progress with nanotechnology applications in health and medicine implies precision and accuracy in the scenario of neurodegenerative disorders, for which impending research in ultimate and complete cure has been the vision worldwide. The complexity of prion disease has been unravelled by scientists and demarcated for efficient abatement protocols, but which are still under research and clinical trials. Drug delivery strategies combating prion diseases across the blood brain barrier, the efficacy of drugs and biocompatibility remain a serious question to be thoroughly studied for effective diagnosis and treatment. The present review compiles comprehensively the current treatment modalities against prion diseases and future prospects of nanotechnology addressing diagnosis and treatment of prion diseases with a special emphasis on transmissibility. Further, approaches for anti-prion technology, immunotherapy, and hindrances in vaccine development are discussed.
Collapse
Affiliation(s)
- Chandrasekaran Murugesan
- Department of Food Science and Biotechnology, 209 Neungdong-ro, Gwangjin-gu, Sejong University, Seoul 05006, Republic of Korea.
| | - Paramasivan Manivannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 24, Tamilnadu, India
| | | |
Collapse
|
8
|
Jiang AA, Longardner K, Dickson D, Sell R. Gerstmann-Sträussler-Scheinker syndrome misdiagnosed as conversion disorder. BMJ Case Rep 2019; 12:12/8/e229729. [PMID: 31413052 DOI: 10.1136/bcr-2019-229729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) is a rare cause of genetic prion disease. Overlapping neurological, cognitive and psychiatric symptoms make GSS difficult to diagnose based on clinical features alone. We present a 40-year-old man without relevant medical or family history who developed progressive neurocognitive and behavioural symptoms over 3 years. Initial extensive diagnostic workup of his variable motor symptoms was unrevealing and he was diagnosed with conversion disorder. This diagnosis persisted for over 2 years, despite progressive neurocognitive symptoms. He eventually developed dementia and severe neurological impairment. Repeat brain MRI revealed generalised cortical volume loss, establishing the diagnosis of a rapidly progressive neurodegenerative process. He ultimately died from aspiration pneumonia at age 43. Postmortem neuropathological examination showed widespread multicentric prion protein amyloid plaques characteristic of GSS. Ultimately, genetic testing of brain tissue revealed a heterozygous A117V variant in the PNRP gene, confirming the diagnosis.
Collapse
Affiliation(s)
| | | | - Dennis Dickson
- Department of Pathology, Mayo Clinic Jacksonville, Jacksonville, USA
| | - Rebecca Sell
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
9
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
10
|
Abstract
Transmissible spongiform encephathalopathies or prion diseases are a group of neurological disorders characterized by neuronal loss, spongiform degeneration, and activation of astrocytes or microglia. These diseases affect humans and animals with an extremely high prevalence in some species such as deer and elk in North America. Although rare in humans, they result in a devastatingly swift neurological progression with dementia and ataxia. Patients usually die within a year of diagnosis. Prion diseases are familial, sporadic, iatrogenic, or transmissible. Human prion diseases include Kuru, sporadic, iatrogenic, and familial forms of Creutzfeldt–Jakob disease, variant Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker disease, and fatal familial insomnia. The causative agent is a misfolded version of the physiological prion protein called PrPSc in the brain. There are a number of therapeutic options currently under investigation. A number of small molecules have had some success in delaying disease progression in animal models and mixed results in clinical trials, including pentosan polysulfate, quinacrine, and amphotericin B. More promisingly, immunotherapy has reported success in vitro and in vivo in animal studies and clinical trials. The three main branches of immunotherapy research are focus on antibody vaccines, dendritic cell vaccines, and adoptive transfer of physiological prion protein-specific CD4+ T-lymphocytes. Vaccines utilizing antibodies generally target disease-specific epitopes that are only exposed in the misfolded PrPSc conformation. Vaccines utilizing antigen-loaded dendritic cell have the ability to bypass immune tolerance and prime CD4+ cells to initiate an immune response. Adoptive transfer of CD4+ T-cells is another promising target as this cell type can orchestrate the adaptive immune response. Although more research into mechanisms and safety is required, these immunotherapies offer novel therapeutic targets for prion diseases.
Collapse
Affiliation(s)
- Jennifer T Burchell
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Western Australia, Australia
| |
Collapse
|
11
|
Ugen KE, Lin X, Bai G, Liang Z, Cai J, Li K, Song S, Cao C, Sanchez-Ramos J. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease. Hum Vaccin Immunother 2016; 11:922-30. [PMID: 25714663 DOI: 10.1080/21645515.2015.1012033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.
Collapse
Affiliation(s)
- Kenneth E Ugen
- a Department of Molecular Medicine ; University of South Florida; Morsani College of Medicine ; Tampa , FL USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The Good, the Bad, and the Ugly of Dendritic Cells during Prion Disease. J Immunol Res 2015; 2015:168574. [PMID: 26697507 PMCID: PMC4677227 DOI: 10.1155/2015/168574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022] Open
Abstract
Prions are a unique group of proteinaceous pathogens which cause neurodegenerative disease and can be transmitted by a variety of exposure routes. After peripheral exposure, the accumulation and replication of prions within secondary lymphoid organs are obligatory for their efficient spread from the periphery to the brain where they ultimately cause neurodegeneration and death. Mononuclear phagocytes (MNP) are a heterogeneous population of dendritic cells (DC) and macrophages. These cells are abundant throughout the body and display a diverse range of roles based on their anatomical locations. For example, some MNP are strategically situated to provide a first line of defence against pathogens by phagocytosing and destroying them. Conventional DC are potent antigen presenting cells and migrate via the lymphatics to the draining lymphoid tissue where they present the antigens to lymphocytes. The diverse roles of MNP are also reflected in various ways in which they interact with prions and in doing so impact on disease pathogenesis. Indeed, some studies suggest that prions exploit conventional DC to infect the host. Here we review our current understanding of the influence of MNP in the pathogenesis of the acquired prion diseases with particular emphasis on the role of conventional DC.
Collapse
|
13
|
Abstract
Prion diseases are subacute neurodegenerative diseases that affect humans and animals. An abnormally folded isoform (PrP(Sc)) of the host cellular prion protein is considered to constitute the major, if not sole, component of the infectious prion. The occurrence of variant Creutzfeldt-Jakob disease in humans most likely arose due to consumption of food contaminated with bovine spongiform encephalopathy prions. The demonstration that some prion infections may have the capacity to transmit to other species, especially humans, has focused attention on the development of safe and effective vaccines against these invariably fatal and currently incurable diseases. Although much effort has been invested in the development of safe and effective anti-PrP vaccines, many important issues remain to be resolved.
Collapse
Affiliation(s)
- Neil Andrew Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
14
|
Abstract
Individuals infected with prions succumb to brain damage, and prion infections continue to be inexorably lethal. However, many crucial steps in prion pathogenesis occur in lymphatic organs and precede invasion of the central nervous system. In the past two decades, a great deal has been learnt concerning the cellular and molecular mechanisms of prion lymphoinvasion. These properties are diagnostically useful and have, for example, facilitated preclinical diagnosis of variant Creutzfeldt-Jakob disease in the tonsils. Moreover, the early colonization of lymphoid organs can be exploited for post-exposure prophylaxis of prion infections. As stromal cells of lymphoid organs are crucial for peripheral prion infection, the dedifferentiation of these cells offers a powerful means of hindering prion spread in infected individuals. In this Review, we discuss the current knowledge of the immunobiology of prions with an emphasis on how basic discoveries might enable translational strategies.
Collapse
|
15
|
Immunotherapeutic approaches in prion disease: progress, challenges and potential directions. Ther Deliv 2013; 4:615-28. [DOI: 10.4155/tde.13.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic trials utilizing animal models of prion disease have explored a variety of compounds and a number of approaches with varying success, including several immunotherapeutic strategies, such as passive immunization through the delivery of viruses carrying nucleic acid inserts encoding prion protein-specific immunoglobulin. Targeted, organ-specific cellular production of therapeutic proteins is a relatively unexplored approach in the treatment of neurodegeneration despite many successful experimental outcomes in animal models and human trials of other diseases of the CNS. Emphasizing studies utilizing mouse models of disease, this review outlines developments and limitations of immunological approaches to the treatment of prion diseases. In addition, the authors discuss the potential of an experimental therapeutic strategy, utilizing hybridoma cells injected directly into the CNS to establish long-term production of anti-prion antibodies in vivo within the organ associated with the greatest pathogenic change in prion disease, the brain.
Collapse
|
16
|
Roettger Y, Du Y, Bacher M, Zerr I, Dodel R, Bach JP. Immunotherapy in prion disease. Nat Rev Neurol 2012; 9:98-105. [DOI: 10.1038/nrneurol.2012.258] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012; 124:599-614. [PMID: 22825593 PMCID: PMC3700359 DOI: 10.1007/s00401-012-1018-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. In their quiescent and mature form, the presentation of self-antigens by DC leads to tolerance; whereas, antigen presentation by mature DC, after stimulation by pathogen-associated molecular patterns, leads to the onset of antigen-specific immunity. DC have been found in many of the major organs in mammals (e.g. skin, heart, lungs, intestines and spleen); while the brain has long been considered devoid of DC in the absence of neuroinflammation. Consequently, microglia, the resident immune cell of the brain, have been charged with many functional attributes commonly ascribed to DC. Recent evidence has challenged the notion that DC are either absent or minimal players in brain immune surveillance. This review will discuss the recent literature examining DC involvement within both the young and aged steady-state brain. We will also examine DC contributions during various forms of neuroinflammation resulting from neurodegenerative autoimmune disease, injury, and CNS infections. This review also touches upon DC trafficking between the central nervous system and peripheral immune compartments during viral infections, the new molecular technologies that could be employed to enhance our current understanding of brain DC ontogeny, and some potential therapeutic uses of DC within the CNS.
Collapse
Affiliation(s)
- Paul M. D’Agostino
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | | | - Niroshana Anandasabapathy
- The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Bulloch
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Neuroimmunology and Inflammation Program, The Rockefeller University, 1230 York Avenue, Box 165, New York, NY 10065, USA
| |
Collapse
|
18
|
Sacquin A, Chaigneau T, Defaweux V, Adam M, Schneider B, Bruley Rosset M, Eloit M. Prolongation of prion disease-associated symptomatic phase relates to CD3+ T cell recruitment into the CNS in murine scrapie-infected mice. Brain Behav Immun 2012; 26:919-30. [PMID: 22522067 DOI: 10.1016/j.bbi.2012.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are caused by the transconformation of the host cellular prion protein PrP(c) into an infectious neurotoxic isoform called PrP(Sc). While vaccine-induced PrP-specific CD4(+) T cells and antibodies partially protect scrapie-infected mice from disease, the potential autoreactivity of CD8(+) cytotoxic T lymphocytes (CTLs) received little attention. Beneficial or pathogenic influence of PrP(c)-specific CTL was evaluated by stimulating a CD8(+) T-cell-only response against PrP in scrapie-infected C57BL/6 mice. To circumvent immune tolerance to PrP, five PrP-derived nonamer peptides identified using prediction algorithms were anchored-optimized to improve binding affinity for H-2D(b) and immunogenicity (NP-peptides). All of the NP-peptides elicited a significant number of IFNγ secreting CD8(+) T cells that better recognized the NP-peptides than the natives; three of them induced T cells that were lytic in vivo for NP-peptide-loaded target cells. Peptides 168 and 192 were naturally processed and presented by the 1C11 neuronal cell line. Minigenes encoding immunogenic NP-peptides inserted into adenovirus (rAds) vectors enhanced the specific CD8(+) T-cell responses. Immunization with rAd encoding 168NP before scrapie inoculation significantly prolonged the survival of infected mice. This effect was attributable to a significant lengthening of the symptomatic phase and was associated with enhanced CD3(+) T cell recruitment to the CNS. However, immunization with Ad168NP in scrapie-incubating mice induced IFNγ-secreting CD8(+) T cells that were not cytolytic in vivo and did not influence disease progression nor infiltrated the brain. In conclusion, the data suggest that vaccine-induced PrP-specific CD8(+) T cells interact with prions into the CNS during the clinical phase of the disease.
Collapse
Affiliation(s)
- Antoine Sacquin
- UMR-S 938, Hôpital St-Antoine, Bât. R. Kourilsky, 184 rue du Fg St-Antoine, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Iken S, Bachy V, Gourdain P, Lim A, Grégoire S, Chaigneau T, Aucouturier P, Carnaud C. Th2-polarised PrP-specific transgenic T-cells confer partial protection against murine scrapie. PLoS Pathog 2011; 7:e1002216. [PMID: 21909267 PMCID: PMC3164648 DOI: 10.1371/journal.ppat.1002216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
Several hurdles must be overcome in order to achieve efficient and safe immunotherapy against conformational neurodegenerative diseases. In prion diseases, the main difficulty is that the prion protein is tolerated as a self protein, which prevents powerful immune responses. Passive antibody therapy is effective only during early, asymptomatic disease, well before diagnosis is made. If efficient immunotherapy of prion diseases is to be achieved, it is crucial to understand precisely how immune tolerance against the prion protein can be overcome and which effector pathways may delay disease progression. To this end, we generated a transgenic mouse that expresses the ß-chain of a T cell receptor recognizing a PrP epitope presented by the class II major histocompatibility complex. The fact that the constraint is applied to only one TCR chain allows adaptation of the other chain according to the presence or absence of tolerogenic PrP. We first show that transgene-bearing T cells, pairing with rearranged α-chains conferring anti-PrP specificity, are systematically eliminated during ontogeny in PrP+ mice, suggesting that precursors with good functional avidity are rare in a normal individual. Second, we show that transgene-bearing T cells with anti-PrP specificity are not suppressed when transferred into PrP+ recipients and proliferate more extensively in a prion-infected host. Finally, such T cells provide protection through a cell-mediated pathway involving IL-4 production. These findings support the idea that cell-mediated immunity in neurodegenerative conditions may not be necessarily detrimental and may even contribute, when properly controlled, to the resolution of pathological processes. It is generally accepted that prion-specific antibodies can protect against mouse scrapie infection. However, passive antibody therapy is limited to the lymphoinvasion stage of the disease. Active immunization has been attempted but the results have been disappointing. There is therefore a need for developing analytical models that will allow a fine dissection of the immune mechanisms at play in prion diseases and help distinguish between protective effects mediated by B cells and antibodies, and the effect of T cells. The aim of our study was to thoroughly examine T cell tolerance to the prion protein and to evaluate whether a pure specific population of T cells adoptively transferred to a normal host could proliferate and confer protection against scrapie. We designed a transgenic mouse in which the majority of T lymphocytes recognize the prion protein. Our key findings are that prion-specific T cells remain functional when transferred to normal recipients, even more so when the host is infected with scrapie, and confer partial protection against the disease by slowing down prion replication, in complete absence of anti-prion antibodies. Anti-prion T cells may therefore be considered as a therapeutic tool in the future.
Collapse
Affiliation(s)
- Saci Iken
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | - Véronique Bachy
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | - Pauline Gourdain
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | - Annick Lim
- Unité du Développement des Lymphocytes, Institut Pasteur, Paris and INSERM U668, Paris, France
| | - Sylvie Grégoire
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | - Thomas Chaigneau
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | - Pierre Aucouturier
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | - Claude Carnaud
- UPMC Univ Paris 6, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- INSERM, UMR_S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Carnaud C, Bachy V. Cell-based immunotherapy of prion diseases by adoptive transfer of antigen-loaded dendritic cells or antigen-primed CD(4+) T lymphocytes. Prion 2010; 4:66-71. [PMID: 20622507 DOI: 10.4161/pri.4.2.12597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are neurodegenerative conditions caused by the transconformation of a normal host glycoprotein, the cellular prion protein (PrPc) into a neurotoxic, self-aggregating conformer (PrPSc). TSEs are ineluctably fatal and no treatment is yet available. In principle, prion diseases could be attacked from different angles including: blocking conversion of PrPc into PrPSc, accelerating the clearance of amyloid deposits in peripheral tissues and brain, stopping prion progression in secondary lymphoid organs, reducing brain inflammation and promoting neuronal healing. There are many indications that adaptive and innate immunity might mediate those effects but so far, the achievements of immunointervention have not matched all expectations. Difficulties arise from the impossibility to diagnose TSE before substantial brain damage, poor accessibility of the CNS to immunological agents, deep immune tolerance to self-PrP and short term effects of many immune interventions contrasting with the slow progression of TSEs. Here, we discuss two approaches, inspired from cancer immunotherapy, which might overcome some of those obstacles. One is vaccination with antigen-pulsed or antigen-transduced dendritic cells to bypass self-tolerance. The other one is the adoptive transfer of PrP-sensitized CD4(+) T cells which can promote humoral, cell-mediated or regulatory responses, coordinate adaptive and innate immunity and have long lasting effects.
Collapse
Affiliation(s)
- Claude Carnaud
- INSERM UMR_S 938, UPMC University Paris 06, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|