1
|
Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines (Basel) 2022; 10:vaccines10101717. [PMID: 36298582 PMCID: PMC9611692 DOI: 10.3390/vaccines10101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
Collapse
|
2
|
Bęczkowski PM, Techakriengkrai N, Logan N, McMonagle E, Litster A, Willett BJ, Hosie MJ. Emergence of CD134 cysteine-rich domain 2 (CRD2)-independent strains of feline immunodeficiency virus (FIV) is associated with disease progression in naturally infected cats. Retrovirology 2014; 11:95. [PMID: 25430586 PMCID: PMC4275942 DOI: 10.1186/s12977-014-0095-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) infection is mediated by sequential interactions with CD134 and CXCR4. Field strains of virus vary in their dependence on cysteine-rich domain 2 (CRD2) of CD134 for infection. FINDINGS Here, we analyse the receptor usage of viral variants in the blood of 39 naturally infected cats, revealing that CRD2-dependent viral variants dominate in early infection, evolving towards CRD2-independence with disease progression. CONCLUSIONS These findings are consistent with a shift in CRD2 of CD134 usage with disease progression.
Collapse
|
3
|
Bęczkowski PM, Logan N, McMonagle E, Litster A, Willett BJ, Hosie MJ. An investigation of the breadth of neutralizing antibody response in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2014; 96:671-680. [PMID: 25395594 PMCID: PMC4336861 DOI: 10.1099/vir.0.071522-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neutralizing antibodies (NAbs) are believed to comprise an essential component of the protective immune response induced by vaccines against feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infections. However, relatively little is known about the role of NAbs in controlling FIV infection and subsequent disease progression. Here, we present studies where we examined the neutralization of HIV-luciferase pseudotypes bearing homologous and heterologous FIV envelope proteins (n = 278) by sequential plasma samples collected at 6 month intervals from naturally infected cats (n = 38) over a period of 18 months. We evaluated the breadth of the NAb response against non-recombinant homologous and heterologous clade A and clade B viral variants, as well as recombinants, and assessed the results, testing for evidence of an association between the potency of the NAb response and the duration of infection, CD4+ T lymphocyte numbers, health status and survival times of the infected cats. Neutralization profiles varied significantly between FIV-infected cats and strong autologous neutralization, assessed using luciferase-based in vitro assays, did not correlate with the clinical outcome. No association was observed between strong NAb responses and either improved health status or increased survival time of infected animals, implying that other protective mechanisms were likely to be involved. Similarly, no correlation was observed between the development of autologous NAbs and the duration of infection. Furthermore, cross-neutralizing antibodies were evident in only a small proportion (13 %) of cats.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK.,MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elizabeth McMonagle
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Willett BJ, Hosie MJ. The virus-receptor interaction in the replication of feline immunodeficiency virus (FIV). Curr Opin Virol 2013; 3:670-5. [PMID: 23992667 PMCID: PMC3857596 DOI: 10.1016/j.coviro.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 01/21/2023]
Abstract
The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus-receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| | | |
Collapse
|
6
|
Domestic cat microsphere immunoassays: detection of antibodies during feline immunodeficiency virus infection. J Immunol Methods 2013; 396:74-86. [PMID: 23954271 DOI: 10.1016/j.jim.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Microsphere immunoassays (MIAs) allow rapid and accurate evaluation of multiple analytes simultaneously within a biological sample. Here we describe the development and validation of domestic cat-specific MIAs for a) the quantification of total IgG and IgA levels in plasma, and b) the detection of IgG and IgA antibodies to feline immunodeficiency virus (FIV) capsid (CA) and surface (SU) proteins, and feline CD134 in plasma. These assays were used to examine the temporal antibody response of domestic cats infected with apathogenic and pathogenic FIVs, and domestic cats infected with parental and chimeric FIVs of varying pathogenicity. The results from these studies demonstrated that a) total IgG antibodies increase over time after infection; b) α-CA and α-SU IgG antibodies are detectable between 9 and 28 days post-infection and increase over time, and these antibodies combined represent a fraction (1.8 to 21.8%) of the total IgG increase due to infection; c) measurable α-CD134 IgG antibody levels vary among individuals and over time, and are not strongly correlated with viral load; d) circulating IgA antibodies, in general, do not increase during the early stage of infection; and e) total IgG, and α-CA and α-SU IgG antibody kinetics and levels vary with FIV viral strain/pathogenicity. The MIAs described here could be used to screen domestic cats for FIV infection, and to evaluate the FIV-specific or total antibody response elicited by various FIV strains/other diseases.
Collapse
|
7
|
Willett BJ, Kraase M, Logan N, McMonagle E, Varela M, Hosie MJ. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies. PLoS One 2013; 8:e54871. [PMID: 23372784 PMCID: PMC3553009 DOI: 10.1371/journal.pone.0054871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022] Open
Abstract
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
8
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
9
|
Hosie MJ, Pajek D, Samman A, Willett BJ. Feline immunodeficiency virus (FIV) neutralization: a review. Viruses 2011; 3:1870-90. [PMID: 22069520 PMCID: PMC3205386 DOI: 10.3390/v3101870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/16/2022] Open
Abstract
One of the major obstacles that must be overcome in the design of effective lentiviral vaccines is the ability of lentiviruses to evolve in order to escape from neutralizing antibodies. The primary target for neutralizing antibodies is the highly variable viral envelope glycoprotein (Env), a glycoprotein that is essential for viral entry and comprises both variable and conserved regions. As a result of the complex trimeric nature of Env, there is steric hindrance of conserved epitopes required for receptor binding so that these are not accessible to antibodies. Instead, the humoral response is targeted towards decoy immunodominant epitopes on variable domains such as the third hypervariable loop (V3) of Env. For feline immunodeficiency virus (FIV), as well as the related human immunodeficiency virus-1 (HIV-1), little is known about the factors that lead to the development of broadly neutralizing antibodies. In cats infected with FIV and patients infected with HIV-1, only rarely are plasma samples found that contain antibodies capable of neutralizing isolates from other clades. In this review we examine the neutralizing response to FIV, comparing and contrasting with the response to HIV. We ask whether broadly neutralizing antibodies are induced by FIV infection and discuss the comparative value of studies of neutralizing antibodies in FIV infection for the development of more effective vaccine strategies against lentiviral infections in general, including HIV-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cat Diseases/immunology
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Humans
- Immune Evasion
- Immunity, Humoral
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodominant Epitopes/immunology
- Lentivirus Infections/immunology
- Lentivirus Infections/prevention & control
- Lentivirus Infections/veterinary
- Lentivirus Infections/virology
- Molecular Sequence Data
Collapse
Affiliation(s)
- Margaret J Hosie
- Medical Research Council, University of Glasgow Centre for Virus Research, Henry Wellcome Building for Comparative Medical Sciences, 464 Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | |
Collapse
|
10
|
Isolation and partial characterization of Brazilian samples of feline immunodeficiency virus. Virus Res 2011; 160:59-65. [PMID: 21619902 DOI: 10.1016/j.virusres.2011.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in São Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline × human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of FIV. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested.
Collapse
|
11
|
Willett BJ, Kraase M, Logan N, McMonagle EL, Samman A, Hosie MJ. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody. Retrovirology 2010; 7:38. [PMID: 20420700 PMCID: PMC2873508 DOI: 10.1186/1742-4690-7-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Results Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. Conclusions The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|