1
|
Ashokkumar M, Nesakumar M, Cheedarla N, Vidyavijayan KK, Babu H, Tripathy SP, Hanna LE. Molecular Characteristics of the Envelope of Vertically Transmitted HIV-1 Strains from Infants with HIV Infection. AIDS Res Hum Retroviruses 2017; 33:796-806. [PMID: 28401776 DOI: 10.1089/aid.2016.0260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mother-to-child transmission (MTCT) of HIV offers a good opportunity to study the dynamics of early viral evolution in the host environment to which the virus has partially adapted. Such studies would throw light on the unique features of the infecting viruses, which will subsequently help to design preventive or therapeutic measures against the newly infecting and evolving strains of HIV. Therefore, we undertook a study to determine the genetic divergence of proviral envelope sequences from the HIV-infected infants (<2 years). Detailed analysis revealed unique features of potential N-linked glycosylation sites (PNGS) and their frequency of occurrence that built on the difference in length of the V1V2 region of the envelope sequences. Surprisingly, frequency of PNGS in the V5 region was found to revert rapidly, in about 75% of the sequences, which could surmise a fitness disadvantage in the variant forms. Further, a stable net charge was observed in the V2 and V3 regions prompting us to speculate on the established interaction of the transmitted variant with the integrin α4β7 receptor and R5 co-receptor, respectively. In brief, our observations suggest that differences in the length of the variable regions and variation in the frequency of PNGS in the envelope of the viruses obtained from very recently infected individuals in our population could be important characteristics of the unique quasispecies that is responsible for the spread of HIV in the early stages of infection in MTCT.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Manohar Nesakumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Narayaniah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - K K Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Hemalatha Babu
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Srikanth P Tripathy
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Li Y, Yang D, Wang JY, Yao Y, Zhang WZ, Wang LJ, Cheng DC, Yang FK, Zhang FM, Zhuang M, Ling H. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry. PLoS One 2014; 9:e86083. [PMID: 24465884 PMCID: PMC3897638 DOI: 10.1371/journal.pone.0086083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022] Open
Abstract
The importance of the fourth variable (V4) region of the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein (Env) in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS). In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS), greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain) resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Yuan Yao
- Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, China
| | - Wei-Zhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Lu-Jing Wang
- Department of Biochemistry, Harbin Medical University, Harbin, China
| | - De-Chun Cheng
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Kun Yang
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Min Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (HL); (MZ)
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Department of Parasitology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (HL); (MZ)
| |
Collapse
|