1
|
Saleh M, Sellyei B, Kovács G, Székely C. Viruses Infecting the European Catfish ( Silurus glanis). Viruses 2021; 13:1865. [PMID: 34578446 PMCID: PMC8473376 DOI: 10.3390/v13091865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
In aquaculture, disease management and pathogen control are key for a successful fish farming industry. In past years, European catfish farming has been flourishing. However, devastating fish pathogens including limiting fish viruses are considered a big threat to further expanding of the industry. Even though mainly the ranavirus (Iridoviridea) and circovirus (Circoviridea) infections are considered well- described in European catfish, more other agents including herpes-, rhabdo or papillomaviruses are also observed in the tissues of catfish with or without any symptoms. The etiological role of these viruses has been unclear until now. Hence, there is a requisite for more detailed information about the latter and the development of preventive and therapeutic approaches to complete them. In this review, we summarize recent knowledge about viruses that affect the European catfish and describe their origin, distribution, molecular characterisation, and phylogenetic classification. We also highlight the knowledge gaps, which need more in-depth investigations in the future.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1220 Vienna, Austria
| | - Boglárka Sellyei
- Fish Pathology and Parasitology Research Team, Veterinary Medical Research Institute, Hungária krt. 21., 1143 Budapest, Hungary; (B.S.); (C.S.)
| | - Gyula Kovács
- Research Institute for Fisheries and Aquaculture (HAKI), Hungarian University of Agriculture and Life Sciences, Anna-liget utca 35., 5540 Szarvas, Hungary;
| | - Csaba Székely
- Fish Pathology and Parasitology Research Team, Veterinary Medical Research Institute, Hungária krt. 21., 1143 Budapest, Hungary; (B.S.); (C.S.)
| |
Collapse
|
2
|
Genome analysis of Ranavirus frog virus 3 isolated from American Bullfrog (Lithobates catesbeianus) in South America. Sci Rep 2019; 9:17135. [PMID: 31748669 PMCID: PMC6868289 DOI: 10.1038/s41598-019-53626-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022] Open
Abstract
Ranaviruses (family Iridoviridae) cause important diseases in cold-blooded vertebrates. In addition, some occurrences indicate that, in this genus, the same virus can infect animals from different taxonomic groups. A strain isolated from a Ranavirus outbreak (2012) in the state of Sao Paulo, Brazil, had its genome sequenced and presented 99.26% and 36.85% identity with samples of Frog virus 3 (FV3) and Singapore grouper iridovirus (SGIV) ranaviruses, respectively. Eight potential recombination events among the analyzed sample and reference FV3 samples were identified, including a recombination with Bohle iridovirus (BIV) sample from Oceania. The analyzed sample presented several rearrangements compared to FV3 reference samples from North America and European continent. We report for the first time the complete genome of Ranavirus FV3 isolated from South America, these results contribute to a greater knowledge related to evolutionary events of potentially lethal infectious agent for cold-blooded animals.
Collapse
|
3
|
Brady SP, Zamora‐Camacho FJ, Eriksson FAA, Goedert D, Comas M, Calsbeek R. Fitter frogs from polluted ponds: The complex impacts of human-altered environments. Evol Appl 2019; 12:1360-1370. [PMID: 31417620 PMCID: PMC6691218 DOI: 10.1111/eva.12751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023] Open
Abstract
Human-modified habitats rarely yield outcomes that are aligned with conservation ideals. Landscapes that are subdivided by roads are no exception, precipitating negative impacts on populations due to fragmentation, pollution, and road kill. Although many populations in human-modified habitats show evidence for local adaptation, rarely does environmental change yield outright benefits for populations of conservation interest. Contrary to expectations, we report surprising benefits experienced by amphibian populations breeding and dwelling in proximity to roads. We show that roadside populations of the wood frog, Rana sylvatica, exhibit better locomotor performance and higher measures of traits related to fitness compared with frogs from less disturbed environments located further away from roads. These results contrast previous evidence for maladaptation in roadside populations of wood frogs studied elsewhere. Our results indicate that altered habitats might not be unequivocally detrimental and at times might contribute to metapopulation success. While the frequency of such beneficial outcomes remains unknown, their occurrence underscores the complexity of inferring consequences of environmental change.
Collapse
Affiliation(s)
- Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Francisco J. Zamora‐Camacho
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Debora Goedert
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | - Mar Comas
- Estación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Ryan Calsbeek
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| |
Collapse
|
4
|
Grant SA, Bienentreu JF, Vilaça ST, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. DISEASES OF AQUATIC ORGANISMS 2019; 134:1-13. [PMID: 32132268 DOI: 10.3354/dao03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Collapse
Affiliation(s)
- Samantha A Grant
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Mihaljevic JR, Hoverman JT, Johnson PTJ. Co-exposure to multiple ranavirus types enhances viral infectivity and replication in a larval amphibian system. DISEASES OF AQUATIC ORGANISMS 2018; 132:23-35. [PMID: 30530928 DOI: 10.3354/dao03300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multiple pathogens commonly co-occur in animal populations, yet few studies demonstrate how co-exposure of individual hosts scales up to affect transmission. Although viruses in the genus Ranavirus are globally widespread, and multiple virus species or strains likely co-occur in nature, no studies have examined how co-exposure affects infection dynamics in larval amphibians. We exposed individual northern red-legged frog Rana aurora larvae to 2 species of ranavirus, namely Ambystoma tigrinum virus (ATV), frog virus 3 (FV3), or an FV3-like strain isolated from a frog-culturing facility in Georgia, USA (RCV-Z2). We compared single-virus to pairwise co-exposures while experimentally accounting for dosage. Co-exposure to ATV and FV3-like strains resulted in almost twice as many infected individuals compared to single-virus exposures, suggesting an effect of co-exposure on viral infectivity. The viral load in infected individuals exposed to ATV and FV3 was also higher than the single-dose FV3 treatment, suggesting an effect of co-exposure on viral replication. In a follow-up experiment, we examined how the co-occurrence of ATV and FV3 affected epizootics in mesocosm populations of larval western chorus frogs Pseudacris triseriata. Although ATV did not generally establish within host populations (<4% prevalence), when ATV and FV3 were both present, this co-exposure resulted in a larger epizootic of FV3. Our results emphasize the importance of multi-pathogen interactions in epizootic dynamics and have management implications for natural and commercial amphibian populations.
Collapse
Affiliation(s)
- Joseph R Mihaljevic
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
6
|
Ranavirus genotypes in the Netherlands and their potential association with virulence in water frogs (Pelophylax spp.). Emerg Microbes Infect 2018; 7:56. [PMID: 29615625 PMCID: PMC5882854 DOI: 10.1038/s41426-018-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/04/2017] [Accepted: 02/25/2018] [Indexed: 12/15/2022]
Abstract
Ranaviruses are pathogenic viruses for poikilothermic vertebrates worldwide. The identification of a common midwife toad virus (CMTV) associated with massive die-offs in water frogs (Pelophylax spp.) in the Netherlands has increased awareness for emerging viruses in amphibians in the country. Complete genome sequencing of 13 ranavirus isolates collected from ten different sites in the period 2011–2016 revealed three CMTV groups present in distinct geographical areas in the Netherlands. Phylogenetic analysis showed that emerging viruses from the northern part of the Netherlands belonged to CMTV-NL group I. Group II and III viruses were derived from the animals located in the center-east and south of the country, and shared a more recent common ancestor to CMTV-amphibian associated ranaviruses reported in China, Italy, Denmark, and Switzerland. Field monitoring revealed differences in water frog host abundance at sites where distinct ranavirus groups occur; with ranavirus-associated deaths, host counts decreasing progressively, and few juveniles found in the north where CMTV-NL group I occurs but not in the south with CMTV-NL group III. Investigation of tandem repeats of coding genes gave no conclusive information about phylo-geographical clustering, while genetic analysis of the genomes revealed truncations in 17 genes across CMTV-NL groups II and III compared to group I. Further studies are needed to elucidate the contribution of these genes as well as environmental variables to explain the observed differences in host abundance.
Collapse
|
7
|
Ke F, Gui JF, Chen ZY, Li T, Lei CK, Wang ZH, Zhang QY. Divergent transcriptomic responses underlying the ranaviruses-amphibian interaction processes on interspecies infection of Chinese giant salamander. BMC Genomics 2018; 19:211. [PMID: 29558886 PMCID: PMC5861657 DOI: 10.1186/s12864-018-4596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ranaviruses (family Iridoviridae, nucleocytoplasmic large DNA viruses) have been reported as promiscuous pathogens of cold-blooded vertebrates. Rana grylio virus (RGV, a ranavirus), from diseased frog Rana grylio with a genome of 105.79 kb and Andrias davidianus ranavirus (ADRV), from diseased Chinese giant salamander (CGS) with a genome of 106.73 kb, contains 99% homologous genes. Results To uncover the differences in virus replication and host responses under interspecies infection, we analyzed transcriptomes of CGS challenged with RGV and ADRV in different time points (1d, 7d) for the first time. A total of 128,533 unigenes were obtained from 820,858,128 clean reads. Transcriptome analysis revealed stronger gene expression of RGV than ADRV at 1 d post infection (dpi), which was supported by infection in vitro. RGV replicated faster and had higher titers than ADRV in cultured CGS cell line. RT-qPCR revealed the RGV genes including the immediate early gene (RGV-89R) had higher expression level than that of ADRV at 1 dpi. It further verified the acute infection of RGV in interspecies infection. The number of differentially expressed genes and enriched pathways from RGV were lower than that from ADRV, which reflected the variant host responses at transcriptional level. No obvious changes of key components in pathway “Antigen processing and presentation” were detected for RGV at 1 dpi. Contrarily, ADRV infection down-regulated the expression levels of MHC I and CD8. The divergent host immune responses revealed the differences between interspecies and natural infection, which may resulted in different fates of the two viruses. Altogether, these results revealed the differences in transcriptome responses among ranavirus interspecies infection of amphibian and new insights in DNA virus-host interactions in interspecies infection. Conclusion The DNA virus (RGV) not only expressed self-genes and replicated quickly after entry into host under interspecies infection, but also avoided the over-activation of host responses. The strategy could gain time for the survival of interspecies pathogen, and may provide opportunity for its adaptive evolution and interspecies transmission. Electronic supplementary material The online version of this article (10.1186/s12864-018-4596-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cun-Ke Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Salamanova E, Costeira-Paulo J, Han KH, Kim DH, Nilsson L, Wright APH. A subset of functional adaptation mutations alter propensity for α-helical conformation in the intrinsically disordered glucocorticoid receptor tau1core activation domain. Biochim Biophys Acta Gen Subj 2018; 1862:1452-1461. [PMID: 29550429 DOI: 10.1016/j.bbagen.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adaptive mutations that alter protein functionality are enriched within intrinsically disordered protein regions (IDRs), thus conformational flexibility correlates with evolvability. Pre-structured motifs (PreSMos) with transient propensity for secondary structure conformation are believed to be important for IDR function. The glucocorticoid receptor tau1core transcriptional activation domain (GR tau1core) domain contains three α-helical PreSMos in physiological buffer conditions. METHODS Sixty change-of-function mutants affecting the intrinsically disordered 58-residue GR tau1core were studied using disorder prediction and molecular dynamics simulations. RESULTS Change-of-function mutations were partitioned into seven clusters based on their effect on IDR predictions and gene activation activity. Some mutations selected from clusters characterized by mutations altering the IDR prediction score, altered the apparent stability of the α-helical form of one of the PreSMos in molecular dynamics simulations, suggesting PreSMo stabilization or destabilization as strategies for functional adaptation. Indeed all tested gain-of-function mutations affecting this PreSMo were associated with increased stability of the α-helical PreSMo conformation, suggesting that PreSMo stabilization may be the main mechanism by which adaptive mutations can increase the activity of this IDR type. Some mutations did not appear to affect PreSMo stability. CONCLUSIONS Changes in PreSMo stability account for the effects of a subset of change-of-function mutants affecting the GR tau1core IDR. GENERAL SIGNIFICANCE Long IDRs occur in about 50% of human proteins. They are poorly characterized despite much recent attention. Our results suggest the importance of a subtle balance between PreSMo stability and IDR activity, which may provide a novel target for future pharmaceutical intervention.
Collapse
Affiliation(s)
- Evdokiya Salamanova
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden.
| | - Kyou-Hoon Han
- Genome Editing Research Center, Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Nano and Bioinformatics, University of Science and Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea.
| | - Do-Hyoung Kim
- Genome Editing Research Center, Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden.
| | - Anthony P H Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, NOVUM Level 5, Hälsovägen 7, SE-141 57 Huddinge, Sweden.
| |
Collapse
|
9
|
Kayansamruaj P, Rangsichol A, Dong HT, Rodkhum C, Maita M, Katagiri T, Pirarat N. Outbreaks of ulcerative disease associated with ranavirus infection in barcoo grunter, Scortum barcoo (McCulloch & Waite). JOURNAL OF FISH DISEASES 2017; 40:1341-1350. [PMID: 28111768 DOI: 10.1111/jfd.12606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
In 2013, an outbreak of ulcerative disease associated with ranavirus infection occurred in barcoo grunter, Scortum barcoo (McCulloch & Waite), farms in Thailand. Affected fish exhibited extensive haemorrhage and ulceration on skin and muscle. Microscopically, the widespread haemorrhagic ulceration and necrosis were noted in gill, spleen and kidney with the presence of intracytoplasmic eosinophilic inclusion bodies. When healthy barcoo grunter were experimentally challenged via intraperitoneal and oral modes with homogenized tissue of naturally infected fish, gross and microscopic lesions occurred with a cumulative mortality of 70-90%. Both naturally and experimentally infected fish yielded positive results to the ranavirus-specific PCR. The full-length nucleotide sequences of major capsid protein gene of ranaviral isolates were similar to largemouth bass virus (LMBV) and identical to largemouth bass ulcerative syndrome virus (LBUSV), previously reported in farmed largemouth bass (Micropterus salmoides L.), which also produced lethal ulcerative skin lesions. To the best of our knowledge, this is the first report of a LMBV-like infection associated with skin lesions in barcoo grunter, adding to the known examples of ranavirus infection associated with skin ulceration in fish.
Collapse
Affiliation(s)
- P Kayansamruaj
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - A Rangsichol
- Department of Fish Disease Diagnosis, Aquatic Animal Research Center, Bangkok, Thailand
| | - H T Dong
- Department Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - C Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - M Maita
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - T Katagiri
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - N Pirarat
- Wildlife, Exotic and Aquatic Pathology- Special Task Force for Activating Research, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
From fish to frogs and beyond: Impact and host range of emergent ranaviruses. Virology 2017; 511:272-279. [PMID: 28860047 DOI: 10.1016/j.virol.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022]
Abstract
Ranaviruses are pathogens of ectothermic vertebrates, including amphibians. We reviewed patterns of host range and virulence of ranaviruses in the context of virus genotype and postulate that patterns reflect significant variation in the historical and current host range of three groups of Ranavirus: FV3-like, CMTV-like and ATV-like ranaviruses. Our synthesis supports previous hypotheses about host range and jumps: FV3s are amphibian specialists, while ATVs are predominantly fish specialists that switched once to caudate amphibians. The most recent common ancestor of CMTV-like ranaviruses and FV3-like forms appears to have infected amphibians but CMTV-like ranaviruses may circulate in both amphibian and fish communities independently. While these hypotheses are speculative, we hope that ongoing efforts to describe ranavirus genetics, increased surveillance of host species and targeted experimental assays of susceptibility to infection and/or disease will facilitate better tests of the importance of hypothetical evolutionary drivers of ranavirus virulence and host range.
Collapse
|
11
|
Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: Signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 2017; 511:330-343. [PMID: 28803676 DOI: 10.1016/j.virol.2017.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Ranaviruses are emerging pathogens of fish, amphibians, and reptiles that threaten aquatic animal industries and wildlife worldwide. Our objective was to genetically characterize ranaviruses isolated during separate bullfrog Lithobates catesbeianus die-offs that occurred eight years apart on the same North American farm. The earlier outbreak was due to a highly pathogenic strain of common midwife toad virus (CMTV) previously known only from Europe and China. The later outbreak was due to a chimeric ranavirus that displayed a novel genome arrangement and a DNA backbone typical for Frog virus 3 (FV3) strains except for interspersed fragments acquired through recombination with the CMTV isolated earlier. Both bullfrog ranaviruses are more pathogenic than wild-type FV3 suggesting recombination may have resulted in the increased pathogenicity observed in the ranavirus isolated in the later outbreak. Our study underscores the role international trade in farmed bullfrogs may have played in the global dissemination of highly pathogenic ranaviruses.
Collapse
Affiliation(s)
- Sieara C Claytor
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA
| | | | | | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA.
| |
Collapse
|
12
|
Talbot B, Balvín O, Vonhof MJ, Broders HG, Fenton B, Keyghobadi N. Host association and selection on salivary protein genes in bed bugs and related blood-feeding ectoparasites. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170446. [PMID: 28680688 PMCID: PMC5493930 DOI: 10.1098/rsos.170446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Reciprocal selective pressures can drive coevolutionary changes in parasites and hosts, and result in parasites that are highly specialized to their hosts. Selection and host co-adaptation are better understood in endoparasites than in ectoparasites, whose life cycles may be more loosely linked to that of their hosts. Blood-feeding ectoparasites use salivary proteins to prevent haemostasis in the host, and maximize energy intake. Here we looked for signals of selection in salivary protein genes of ectoparasite species from a single genus (Cimex) that associate with a range of hosts including mammals (bats and humans) and birds (swallows). We analysed two genes that code for salivary proteins that inhibit platelet aggregation and vasoconstriction and may directly affect the efficiency of blood feeding in these species. Significant positive selection was detected at five codons in one gene in all bat-associated species groups. Our results suggest association with bats, versus humans or swallows, has posed a selective pressure on the salivary apyrase gene in species of Cimex.
Collapse
Affiliation(s)
- Benoit Talbot
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, CanadaN6A 3K7
| | - Ondřej Balvín
- Department of Ecology, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Maarten J. Vonhof
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Avenue, Kalamazoo, MI 49008-5410, USA
| | - Hugh G. Broders
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, CanadaN2L 3G1
| | - Brock Fenton
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, CanadaN6A 3K7
| | - Nusha Keyghobadi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
13
|
Price SJ. Comparative Genomics of Amphibian-like Ranaviruses, Nucleocytoplasmic Large DNA Viruses of Poikilotherms. Evol Bioinform Online 2016; 11:71-82. [PMID: 27812275 PMCID: PMC5081246 DOI: 10.4137/ebo.s33490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Recent research on genome evolution of large DNA viruses has highlighted a number of incredibly dynamic processes that can facilitate rapid adaptation. The genomes of amphibian-like ranaviruses – double-stranded DNA viruses infecting amphibians, reptiles, and fish (family Iridoviridae) – were examined to assess variation in genome content and evolutionary processes. The viruses studied were closely related, but their genome content varied considerably, with 29 genes identified that were not present in all of the major clades. Twenty-one genes had evidence of recombination, while a virus isolated from a captive reptile appeared to be a mosaic of two divergent parents. Positive selection was also found to be acting on more than a quarter of Ranavirus genes and was found most frequently in the Spanish common midwife toad virus, which has had a severe impact on amphibian host communities. Efforts to resolve the root of this group by inclusion of an outgroup were inconclusive, but a set of core genes were identified, which recovered a well-supported species tree.
Collapse
Affiliation(s)
- Stephen J Price
- Genetics, Evolution and Environment department, UCL Genetics Institute, London, UK.; Institute of Zoology, Zoological Society of London (ZSL), London, UK
| |
Collapse
|
14
|
Fehér E, Doszpoly A, Horváth B, Marton S, Forró B, Farkas SL, Bányai K, Juhász T. Whole genome sequencing and phylogenetic characterization of brown bullhead (Ameiurus nebulosus) origin ranavirus strains from independent disease outbreaks. INFECTION GENETICS AND EVOLUTION 2016; 45:402-407. [PMID: 27717748 DOI: 10.1016/j.meegid.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 11/30/2022]
Abstract
Ranaviruses are emerging pathogens associated with high mortality diseases in fish, amphibians and reptiles. Here we describe the whole genome sequence of two ranavirus isolates from brown bullhead (Ameiurus nebulosus) specimens collected in 2012 at two different locations in Hungary during independent mass mortality events. The two Hungarian isolates were highly similar to each other at the genome sequence level (99.9% nucleotide identity) and to a European sheatfish (Silurus glanis) origin ranavirus (ESV, 99.7%-99.9% nucleotide identity). The coding potential of the genomes of both Hungarian isolates, with 136 putative proteins, were shared with that of the ESV. The core genes commonly used in phylogenetic analysis of ranaviruses were not useful to differentiate the two brown bullhead ESV strains. However genome-wide distribution of point mutations and structural variations observed mainly in the non-coding regions of the genome suggested that the ranavirus disease outbreaks in Hungary were caused by different virus strains. At this moment, due to limited whole genome sequence data of ESV it is unclear whether these genomic changes are useful in molecular epidemiological monitoring of ranavirus disease outbreaks. Therefore, complete genome sequencing of further isolates will be needed to identify adequate genetic markers, if any, and demonstrate their utility in disease control and prevention.
Collapse
Affiliation(s)
- Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Balázs Horváth
- Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Barbara Forró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Szilvia L Farkas
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary.
| | - Tamás Juhász
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok u. 2, 1143 Budapest, Hungary
| |
Collapse
|
15
|
Warne RW, LaBumbard B, LaGrange S, Vredenburg VT, Catenazzi A. Co-Infection by Chytrid Fungus and Ranaviruses in Wild and Harvested Frogs in the Tropical Andes. PLoS One 2016; 11:e0145864. [PMID: 26726999 PMCID: PMC4701007 DOI: 10.1371/journal.pone.0145864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
While global amphibian declines are associated with the spread of Batrachochytrium dendrobatidis (Bd), undetected concurrent co-infection by other pathogens may be little recognized threats to amphibians. Emerging viruses in the genus Ranavirus (Rv) also cause die-offs of amphibians and other ectotherms, but the extent of their distribution globally, or how co-infections with Bd impact amphibians are poorly understood. We provide the first report of Bd and Rv co-infection in South America, and the first report of Rv infections in the amphibian biodiversity hotspot of the Peruvian Andes, where Bd is associated with extinctions. Using these data, we tested the hypothesis that Bd or Rv parasites facilitate co-infection, as assessed by parasite abundance or infection intensity within individual adult frogs. Co-infection occurred in 30% of stream-dwelling frogs; 65% were infected by Bd and 40% by Rv. Among terrestrial, direct-developing Pristimantis frogs 40% were infected by Bd, 35% by Rv, and 20% co-infected. In Telmatobius frogs harvested for the live-trade 49% were co-infected, 92% were infected by Bd, and 53% by Rv. Median Bd and Rv loads were similar in both wild (Bd = 101.2 Ze, Rv = 102.3 viral copies) and harvested frogs (Bd = 103.1 Ze, Rv = 102.7 viral copies). While neither parasite abundance nor infection intensity were associated with co-infection patterns in adults, these data did not include the most susceptible larval and metamorphic life stages. These findings suggest Rv distribution is global and that co-infection among these parasites may be common. These results raise conservation concerns, but greater testing is necessary to determine if parasite interactions increase amphibian vulnerability to secondary infections across differing life stages, and constitute a previously undetected threat to declining populations. Greater surveillance of parasite interactions may increase our capacity to contain and mitigate the impacts of these and other wildlife diseases.
Collapse
Affiliation(s)
- Robin W. Warne
- Southern Illinois University, Department of Zoology, 1125 Lincoln Dr., MC6501, Carbondale, IL, 62901, United States of America
- * E-mail:
| | - Brandon LaBumbard
- Southern Illinois University, Department of Zoology, 1125 Lincoln Dr., MC6501, Carbondale, IL, 62901, United States of America
| | - Seth LaGrange
- Southern Illinois University, Department of Zoology, 1125 Lincoln Dr., MC6501, Carbondale, IL, 62901, United States of America
| | - Vance T. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, United States of America
| | - Alessandro Catenazzi
- Southern Illinois University, Department of Zoology, 1125 Lincoln Dr., MC6501, Carbondale, IL, 62901, United States of America
| |
Collapse
|
16
|
Zhang H, Zhou S, Xia L, Huang X, Huang Y, Cao J, Qin Q. Characterization of the VP39 envelope protein from Singapore grouper iridovirus. Can J Microbiol 2015; 61:924-37. [PMID: 26524136 DOI: 10.1139/cjm-2015-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Singapore grouper iridovirus (SGIV) is a major pathogen that causes heavy economic losses to the grouper aquaculture industry in China and Southeast Asian countries. In the present study, a viral envelope protein, VP39, encoded by SGIV ORF39L, was identified and characterized. SGIV ORF39L was found in all sequenced iridoviruses and is now considered to be a core gene of the family Iridoviridae. ORF39L was classified as a late gene during in vitro infection using reverse transcription–polymerase chain reaction, western blotting, and a drug inhibition analysis. An indirect immunofluorescence assay revealed that the VP39 protein was confined to the cytoplasm, especially at viral assembly sites. Western blot and matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry analyses suggested that VP39 is an envelope protein. Immunogold electron microscopy further confirmed that VP39 is a viral envelope protein. Furthermore, a mouse anti-VP39 polyclonal antibody exhibited SGIV-neutralizing activity in vitro, suggesting that VP39 is involved in SGIV infection. Taken together, the current data suggest that VP39 represents a conserved envelope protein of iridoviruses that contributes to viral infection.
Collapse
Affiliation(s)
- Honglian Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, People’s Republic of China
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, Guangdong, People’s Republic of China
| | - Sheng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Liqun Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, Guangdong, People’s Republic of China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| | - Jianhao Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, People’s Republic of China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People’s Republic of China
| |
Collapse
|
17
|
Epstein B, Storfer A. Comparative Genomics of an Emerging Amphibian Virus. G3 (BETHESDA, MD.) 2015; 6:15-27. [PMID: 26530419 PMCID: PMC4704714 DOI: 10.1534/g3.115.023762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022]
Abstract
Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination.
Collapse
Affiliation(s)
- Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
18
|
McNamara M, Ernst I, Adlard RD. Using the Neptune project to benefit Australian aquatic animal health research. DISEASES OF AQUATIC ORGANISMS 2015; 115:1-8. [PMID: 26119294 DOI: 10.3354/dao02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diseases of aquatic animals have had, and continue to have, a significant impact on aquatic animal health. In Australia, where fisheries and aquaculture are important industries, aquatic species have been subject to serious disease outbreaks, including pilchard herpesvirus, the cause of one of the largest wild fish kills ever recorded. At the same time, there is a consensus that Australia's parasite fauna are largely unknown, and that aquatic animal health information is difficult to access. Managing aquatic animal diseases is challenging because they may be entirely new, their hosts may be new to aquaculture, and specialist expertise and basic diagnostic tools may be lacking or absent. The Neptune project was created in response to these challenges, and it aims to increase awareness of aquatic animal diseases, improve disease management, and promote communication between aquatic animal health professionals in Australia. The project consists of an online database, a digital microscopy platform containing a whole-slide image library, a community space, and online communications technology. The database contains aquatic animal health information from published papers, government reports, and other sources, while the library contains slides of key diseases both endemic and exotic to Australia. These assets make Neptune a powerful resource for researchers, students, and biosecurity officials.
Collapse
Affiliation(s)
- M McNamara
- Natural Environments Program, Queensland Museum, South Brisbane, Queensland 4101, Australia
| | | | | |
Collapse
|
19
|
Stöhr AC, López-Bueno A, Blahak S, Caeiro MF, Rosa GM, Alves de Matos AP, Martel A, Alejo A, Marschang RE. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe. PLoS One 2015; 10:e0118633. [PMID: 25706285 PMCID: PMC4338083 DOI: 10.1371/journal.pone.0118633] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of ranaviruses and the emergence of pathogen pollution via animal trade of ectothermic vertebrates.
Collapse
Affiliation(s)
- Anke C. Stöhr
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Silvia Blahak
- Chemisches und Veterinäruntersuchungsamt Ostwestfalen Lippe (CVUA-OWL), Detmold, Germany
| | - Maria F. Caeiro
- Centro de Estudos do Ambiente e do Mar (CESAM) Lisboa, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo M. Rosa
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - António Pedro Alves de Matos
- Centro de Estudos do Ambiente e do Mar (CESAM) Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, Portugal
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Spain
| | - Rachel E. Marschang
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
- Laboklin GmbH & Co. KG, Laboratory for Clinical Diagnostics, Bad Kissingen, Germany
- * E-mail:
| |
Collapse
|
20
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
21
|
Robert J, Grayfer L, Edholm ES, Ward B, De Jesús Andino F. Inflammation-induced reactivation of the ranavirus Frog Virus 3 in asymptomatic Xenopus laevis. PLoS One 2014; 9:e112904. [PMID: 25390636 PMCID: PMC4229299 DOI: 10.1371/journal.pone.0112904] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/17/2014] [Indexed: 12/16/2022] Open
Abstract
Natural infections of ectothermic vertebrates by ranaviruses (RV, family Iridoviridae) are rapidly increasing, with an alarming expansion of RV tropism and resulting die-offs of numerous animal populations. Notably, infection studies of the amphibian Xenopus laevis with the ranavirus Frog Virus 3 (FV3) have revealed that although the adult frog immune system is efficient at controlling RV infections, residual quiescent virus can be detected in mononuclear phagocytes of otherwise asymptomatic animals following the resolution of RV infections. It is noteworthy that macrophage-lineage cells are now believed to be a critical element in the RV infection strategy. In the present work, we report that inflammation induced by peritoneal injection of heat-killed bacteria in asymptomatic frogs one month after infection with FV3 resulted in viral reactivation including detectable viral DNA and viral gene expression in otherwise asymptomatic frogs. FV3 reactivation was most prominently detected in kidneys and in peritoneal HAM56+ mononuclear phagocytes. Notably, unlike adult frogs that typically clear primary FV3 infections, a proportion of the animals succumbed to the reactivated FV3 infection, indicating that previous exposure does not provide protection against subsequent reactivation in these animals.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, United States of America
- * E-mail:
| | - Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, United States of America
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, United States of America
| | - Brian Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, United States of America
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, United States of America
| |
Collapse
|
22
|
Fu JP, Chen SN, Zou PF, Huang B, Guo Z, Zeng LB, Qin QW, Nie P. IFN-γ in turtle: conservation in sequence and signalling and role in inhibiting iridovirus replication in Chinese soft-shelled turtle Pelodiscus sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:87-95. [PMID: 24239708 DOI: 10.1016/j.dci.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/03/2013] [Accepted: 11/03/2013] [Indexed: 06/02/2023]
Abstract
The IFN-γ gene was identified in a turtle, the Chinese soft-shelled turtle, Pelodiscus sinensis, with its genome consisting of 4 exons and 3 introns. The deduced amino acid sequence of this gene contains a signal peptide, an IFN-γ family signature motif (130)IQRKAVNELFPT, an NLS motif (155)KRKR and three potential N-glycosylation sites. As revealed by real-time quantitative PCR, the gene was constitutively expressed in all tested organs/tissues, with higher level observed in blood, intestine and thymus. An induced expression of IFN-γ at mRNA level was observed in peripheral blood leucocytes (PBLs) in response to in vitro stimulation of LPS and PolyI:C. The overexpression of IFN-γ in the Chinese soft-shelled turtle artery (STA) cell line resulted in the increase in the expression of transcriptional regulators, such as IRF1, IRF7 and STAT1, and antiviral genes, such as Mx, PKR, implying possibly the existence of a conserved signalling network and role for IFN-γ in the turtle. Furthermore, the infection of soft-shelled turtle iridovirus (STIV) in the cell line transfected with IFN-γ may cause the cell death as demonstrated with the elevated lactate dehydrogenase (LDH) level and cell mortality. However, the mechanism involved in the antiviral activity may require further investigation.
Collapse
Affiliation(s)
- Jian Ping Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Peng Fei Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Bei Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China
| | - Zheng Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ling Bing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei Province 430223, China
| | - Qi Wei Qin
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong Province 510301, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China.
| |
Collapse
|