1
|
Solis-Leal A, Karlinsey DC, Sithole ST, Lopez JB, Carlson A, Planelles V, Poole BD, Berges BK. The HIV-1 vpr R77Q Mutant Induces Apoptosis, G 2 Cell Cycle Arrest, and Lower Production of Pro-Inflammatory Cytokines in Human CD4+ T Cells. Viruses 2024; 16:1642. [PMID: 39459974 PMCID: PMC11512211 DOI: 10.3390/v16101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) occurs when HIV depletes CD4+ helper T cells. Some patients develop AIDS slowly or not at all, and are termed long-term non-progressors (LTNP), and while mutations in the HIV-1 Viral Protein R (vpr) gene such as R77Q are associated with LTNP, mechanisms for this correlation are unclear. This study examines the induction of apoptosis, cell cycle arrest, and pro-inflammatory cytokine release in the HUT78 T cell line following infection with replication-competent wild-type strain NL4-3, the R77Q mutant, or a vpr Null mutant. Our results show a significant enhancement of apoptosis and G2 cell cycle arrest in HUT78 cells infected with R77Q, but not with WT NL4-3 or the vpr Null strain. Conversely, HUT78 cells infected with the WT virus show higher levels of necrosis. We also detected lower TNF and IL-6 release after infection with R77Q vs. WT. The apoptotic phenotype was also seen in the CEM cell line and in primary CD4+ T cells. Protein expression of the R77Q vpr variant was low compared to WT vpr, but expression levels alone cannot explain these phenotypes because the Null virus did not show apoptosis or G2 arrest. These results suggest that R77Q triggers a non-inflammatory apoptotic pathway that attenuates inflammation, possibly contributing to LTNP.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Dalton C. Karlinsey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Sidney T. Sithole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Jack Brandon Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Amanda Carlson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Vicente Planelles
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA;
| | - Brian D. Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (A.S.-L.); (D.C.K.); (S.T.S.); (J.B.L.); (A.C.); (B.D.P.)
| |
Collapse
|
2
|
Vanegas-Torres CA, Schindler M. HIV-1 Vpr Functions in Primary CD4 + T Cells. Viruses 2024; 16:420. [PMID: 38543785 PMCID: PMC10975730 DOI: 10.3390/v16030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.
Collapse
Affiliation(s)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| |
Collapse
|
3
|
Ruhanya V, Jacobs GB, Paul RH, Joska JA, Seedat S, Nyandoro G, Glashoff RH, Engelbrecht S. HIV-1 Subtype C Vpr Amino Acid Residue 45Y and Specific Conserved Fragments Are Associated with Neurocognitive Impairment and Markers of Viral Load. AIDS Res Hum Retroviruses 2023; 39:166-175. [PMID: 36401355 DOI: 10.1089/aid.2022.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is increasing evidence that HIV-1 viral protein R (Vpr) plays an important role in the pathogenesis of cognitive impairment. We investigated the relationship between HIV-1 subtype C Vpr sequence variation and HIV-associated neurocognitive impairment as measured by global deficit score (GDS) in treatment-naive individuals. We used different bioinformatic tools and statistical models to correlate vpr variation and cognitive function. We identified a tyrosine at position 45 (45Y) as a signature for neurocognitive impairment and histidine (45H) as a signature in the non-impaired individuals. The presence of signature 45Y was associated by 3.66 times higher GDS, 525 times higher plasma viral load, 15.84 times higher proviral load, and 60% lower absolute CD4-T cell count compared with those without the signature. Additionally, we identified four conserved Vpr fragment sequences, PEDQGPQREPYNEWTLE (5-21), LGQYIY (42-47), TYGDTW (49-54), and PEDQGPQREPYNEW (5-18), that were associated with higher plasma viral load and proviral load. The implication of these findings is that variation of Vpr leads to neurocognitive impairment in HIV infection and worsens the progression of disease in general by promoting the production of provirus, promoting HIV replication and depletion of CD4+ T cells in the periphery.
Collapse
Affiliation(s)
- Vurayai Ruhanya
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert H Paul
- Department of Psychology and Behavioral Neuroscience, University of Missouri-St Louis, University Boulevard, St Louis, Missouri, USA
| | - John A Joska
- MRC Unit of Anxiety and Stress Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- MRC Unit of Anxiety and Stress Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - George Nyandoro
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| | - Richard Helmuth Glashoff
- Division of Medical Microbiology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Business Unity, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Pagani I, Demela P, Ghezzi S, Vicenzi E, Pizzato M, Poli G. Host Restriction Factors Modulating HIV Latency and Replication in Macrophages. Int J Mol Sci 2022; 23:ijms23063021. [PMID: 35328442 PMCID: PMC8951319 DOI: 10.3390/ijms23063021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Pietro Demela
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina n. 58, 20132 Milano, Italy
- Correspondence: ; Tel.: +39-02-2643-4909
| |
Collapse
|
5
|
Gomes STM, da Silva Graça Amoras E, Gomes ÉR, Queiroz MAF, Júnior ECS, de Vasconcelos Massafra JM, da Silva Lemos P, Júnior JLV, Ishak R, Vallinoto ACR. Immune escape mutations in HIV-1 controllers in the Brazilian Amazon region. BMC Infect Dis 2020; 20:546. [PMID: 32711474 PMCID: PMC7382849 DOI: 10.1186/s12879-020-05268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV-1) infection is characterized by high viral replication and a decrease in CD4+ T cells (CD4+TC), resulting in AIDS, which can lead to death. In elite controllers and viremia controllers, viral replication is naturally controlled, with maintenance of CD4+TC levels without the use of antiretroviral therapy (ART). METHODS The aim of the present study was to describe virological and immunological risk factors among HIV-1-infected individuals according to characteristics of progression to AIDS. The sample included 30 treatment-naive patients classified into three groups based on infection duration (> 6 years), CD4+TC count and viral load: (i) 2 elite controllers (ECs), (ii) 7 viremia controllers (VCs) and (iii) 21 nonviremia controllers (NVCs). Nested PCR was employed to amplify the virus genome, which was later sequenced using the Ion PGM platform for subtyping and analysis of immune escape mutations. RESULTS Viral samples were classified as HIV-1 subtypes B and F. Greater selection pressure on mutations was observed in the group of viremia controllers, with a higher frequency of immunological escape mutations in the genes investigated, including two new mutations in gag. The viral sequences of viremia controllers and nonviremia controllers did not differ significantly regarding the presence of immune escape mutations. CONCLUSION The results suggest that progression to AIDS is not dependent on a single variable but rather on a set of characteristics and pressures exerted by virus biology and interactions with immunogenetic host factors.
Collapse
Affiliation(s)
- Samara Tatielle Monteiro Gomes
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Ananindeua, Brazil
| | | | - Érica Ribeiro Gomes
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | - Edivaldo Costa Sousa Júnior
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Poliana da Silva Lemos
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | - João Lídio Vianez Júnior
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | | |
Collapse
|
6
|
Wallet C, Rohr O, Schwartz C. Evolution of a concept: From accessory protein to key virulence factor, the case of HIV-1 Vpr. Biochem Pharmacol 2020; 180:114128. [PMID: 32619426 DOI: 10.1016/j.bcp.2020.114128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Back in 1989 some studies have shown that the viral protein Vpr was dispensable for HIV-1 replication in vitro. From then the concept of accessory or auxiliary protein for Vpr has emerged and it is still used to date. However, Vpr soon appeared to be very important for in vivo virus spread and pathogenesis. Vpr has been involved in many biological functions including regulation of reverse transcriptase activity, the nuclear import of the pre-integration complex (PIC), HIV-1 transcription, gene splicing, apoptosis and in cell cycle arrest. Thus, we might rather consider Vpr as a true virulence factor instead of just an accessory factor. At present, Vpr can be regarded as a potential and promising target in different strategies aiming to fight infected cells including latently infected cells.
Collapse
Affiliation(s)
- Clémentine Wallet
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
7
|
Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019; 8:cells8111310. [PMID: 31652959 PMCID: PMC6912716 DOI: 10.3390/cells8111310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.
Collapse
|
8
|
Scutari R, Faieta M, D'Arrigo R, Fabeni L, Mussini C, Cossarizza A, Casoli C, Perno CF, Svicher V, Alteri C, Aquaro S. The degree of HIV-1 amino acid variability is strictly related to different disease progression rates. Virus Genes 2018; 54:493-501. [PMID: 29777446 DOI: 10.1007/s11262-018-1571-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
The aim of this study is to evaluate the amino acid variability of HIV-1 Gp41, C2-V3, and Nef in a group of patients characterized by different disease progression rates. HIV-1 sequences were collected from 19 Long term non progressor patients (LTNPs), 9 slow progressors (SPs), and 11 rapid progressors (RPs). Phylogenetic trees were estimated by MEGA 6. Differences in amino acid variability among sequences belonging to the 3 groups have been evaluated by amino acid divergence, Shannon entropy analysis, and the number of amino acid mutations (defined as amino acid variations compared with HxB2). The involvement of amino acid mutations on epitope rich regions was also investigated. The population was mainly composed of males (74.3%) and HIV-1 subtype B strains (B: 92.32%, CRF_12BF, A1, C: 2.56% each). Viral load (log10 copies/mL) and CD4+T cell count (cells/mm3) were 3.9 (3.5-4.2) and 618 (504-857) in LTNPs, 3.3 (2.8-4.7) and 463 (333-627) in SPs, and 4.6 (4.3-5.3) and 201 (110-254) in RPs. Gp41 and C2-V3 amino acid divergence was lower in LTNP and SP strains compared to RPs (median value: 0.085 and 0.091 vs. 0.114, p = 0.005 and 0.042) and a trend of lower variability was observed for Nef (p = 0.198). A lower entropy value was observed at 10, 3, and 7 positions of Gp41, C2-V3, and Nef belonging to LTNPs and at 7, 3, and 1 positions of Gp41, C2-V3, and Nef belonging to SPs compared with RPs (p < 0.05). Focusing on epitope rich regions, again a higher degree of conservation was observed in Gp41 and C2-V3 sequences belonging to LTNPs and SPs compared to those belonging to RPs. This study shows that the extent of amino acid variability correlates with a different HIV-1 progression rate. This variability also involves CTL epitope rich regions, thus suggesting its involvement in the immune escape process modulation.
Collapse
Affiliation(s)
- Rossana Scutari
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Roberta D'Arrigo
- Department of Microbiology and Virology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Lavinia Fabeni
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Mussini
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Claudio Casoli
- GEMIB Laboratory, Centre for Medical Research and Molecular Diagnostic, Parma, Italy
| | | | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
9
|
Retroviral restriction: nature's own solution. Curr Opin Infect Dis 2018; 29:609-614. [PMID: 27749368 DOI: 10.1097/qco.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The present review will discuss recent advances in the development of anti-HIV therapies inspired by studies of the mechanisms of host restriction factor-mediated resistance to HIV infection. RECENT FINDINGS Manipulating the interplay between host cell restriction factors and viral accessory factors that overcome them can potentially be therapeutically useful. Preliminarily successful therapies - some of which are entering clinical trials - either inhibit the ability of virus to evade restriction factor-mediated immunity, or promote intracellular levels of restriction factors. These aims are achieved by multiple means, which are discussed. SUMMARY Many restriction factors appear to provide potentially useful targets for anti-HIV therapies, so time and interest should be invested in investigating ways to successfully therapeutically manipulate restriction factor-mediated immunity.
Collapse
|
10
|
González ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. Int J Mol Sci 2017; 18:ijms18010126. [PMID: 28075409 PMCID: PMC5297760 DOI: 10.3390/ijms18010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is an attractive target for antiretroviral drug development. The conservation both of the structure along virus evolution and the amino acid sequence in viral isolates from patients underlines the importance of Vpr for the establishment and progression of HIV-1 disease. While its contribution to virus replication in dividing and non-dividing cells and to the pathogenesis of HIV-1 in many different cell types, both extracellular and intracellular forms, have been extensively studied, its precise mechanism of action nevertheless remains enigmatic. The present review discusses how the apparently multifaceted interplay between Vpr and host cells may be due to the impairment of basic metabolic pathways. Vpr protein modifies host cell energy metabolism, oxidative status, and proteasome function, all of which are likely conditioned by the concentration and multimerization of the protein. The characterization of Vpr domains along with new laboratory tools for the assessment of their function has become increasingly relevant in recent years. With these advances, it is conceivable that drug discovery efforts involving Vpr-targeted antiretrovirals will experience substantial growth in the coming years.
Collapse
Affiliation(s)
- María Eugenia González
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
11
|
Dampier W, Antell GC, Aiamkitsumrit B, Nonnemacher MR, Jacobson JM, Pirrone V, Zhong W, Kercher K, Passic S, Williams JW, James T, Devlin KN, Giovannetti T, Libon DJ, Szep Z, Ehrlich GD, Wigdahl B, Krebs FC. Specific amino acids in HIV-1 Vpr are significantly associated with differences in patient neurocognitive status. J Neurovirol 2016; 23:113-124. [PMID: 27400931 DOI: 10.1007/s13365-016-0462-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 11/26/2022]
Abstract
Even in the era of combination antiretroviral therapies used to combat human immunodeficiency virus type 1 (HIV-1) infection, up to 50 % of well-suppressed HIV-1-infected patients are still diagnosed with mild neurological deficits referred to as HIV-associated neurocognitive disorders (HAND). The multifactorial nature of HAND likely involves the HIV-1 accessory protein viral protein R (Vpr) as an agent of neuropathogenesis. To investigate the effect of naturally occurring variations in Vpr on HAND in well-suppressed HIV-1-infected patients, bioinformatic analyses were used to correlate peripheral blood-derived Vpr sequences with patient neurocognitive performance, as measured by comprehensive neuropsychological assessment and the resulting Global Deficit Score (GDS). Our studies revealed unique associations between GDS and the presence of specific amino acid changes in peripheral blood-derived Vpr sequences [neuropsychological impairment Vpr (niVpr) variants]. Amino acids N41 and A55 in the Vpr sequence were associated with more pronounced neurocognitive deficits (higher GDS). In contrast, amino acids I37 and S41 were connected to measurably lower GDS. All niVpr variants were also detected in DNA isolated from HIV-1-infected brain tissues. The implication of these results is that niVpr variants alter the genesis and/or progression of HAND through differences in Vpr-mediated effects in the peripheral blood and/or the brain.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory C Antell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Section of Infectious Disease, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jean W Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tony James
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kathryn N Devlin
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | | | - David J Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Zsofia Szep
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred C Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Kamori D, Hasan Z, Ohashi J, Kawana-Tachikawa A, Gatanaga H, Oka S, Ueno T. Identification of two unique naturally occurring Vpr sequence polymorphisms associated with clinical parameters in HIV-1 chronic infection. J Med Virol 2016; 89:123-129. [PMID: 27328918 DOI: 10.1002/jmv.24612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
Abstract
HIV-1 viral protein R (Vpr) plays important roles in HIV-1 replication. Despite the identification of a number of HLA class I-associated immune escape mutations; it is yet known whether immune-driven Vpr polymorphisms are associated with disease outcome. Hereby, we comprehensively analyzed Vpr sequence polymorphisms and their association with disease outcome and host HLA genotypes, by using plasma viral RNA isolated from 444 HLA-typed, treatment-naïve, chronically HIV-1 infected individuals. Vpr amino acid residues at positions 13, 37, 45, 55, 63, 77, 84, 85, 86, and 93 were significantly associated with patients' plasma viral load and/or CD4 count. Further analysis revealed Ala at position 55 was significantly associated with lower plasma viral load; and Thr at position 63 was significantly associated with lower plasma viral load and higher CD4 count. Also, the number of amino acid residues at the two positions, located in a functionally important α-helical domain, correlated inversely with plasma viral load and positively with CD4 count. Moreover, a phylogenetically corrected method revealed residues at positions 55 and 63 are associated with patients' HLA genotypes. Taken together, our results suggest that Vpr polymorphisms at functionally important and immune-reactive sites may contribute, at least in part, to viral replication and disease outcome in vivo. J. Med. Virol. 89:123-129, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Doreen Kamori
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Zafrul Hasan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
13
|
Abstract
Viruses often interfere with the DNA damage response to better replicate in their hosts. The human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) protein has been reported to modulate the activity of the DNA repair structure-specific endonuclease subunit (SLX4) complex and to promote cell cycle arrest. Vpr also interferes with the base-excision repair pathway by antagonizing the uracil DNA glycosylase (Ung2) enzyme. Using an unbiased quantitative proteomic screen, we report that Vpr down-regulates helicase-like transcription factor (HLTF), a DNA translocase involved in the repair of damaged replication forks. Vpr subverts the DDB1-cullin4-associated-factor 1 (DCAF1) adaptor of the Cul4A ubiquitin ligase to trigger proteasomal degradation of HLTF. This event takes place rapidly after Vpr delivery to cells, before and independently of Vpr-mediated G2 arrest. HLTF is degraded in lymphocytic cells and macrophages infected with Vpr-expressing HIV-1. Our results reveal a previously unidentified strategy for HIV-1 to antagonize DNA repair in host cells.
Collapse
|
14
|
Vpr Enhances Tumor Necrosis Factor Production by HIV-1-Infected T Cells. J Virol 2015; 89:12118-30. [PMID: 26401039 DOI: 10.1128/jvi.02098-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the cell cycle in the G2 phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the production of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion by infected lymphocytes. De novo production of Vpr is required for this effect. Vpr mutants known to be defective for G2 cell cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-1-infected cells triggers NF-κB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus, the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replication in vivo. IMPORTANCE The role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogenesis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and antiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1 and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates TNF production and helps clarify the role of Vpr in innate immune responses and inflammation.
Collapse
|
15
|
Gene expression profile in long-term non progressor HIV infected patients: In search of potential resistance factors. Mol Immunol 2014; 62:63-70. [DOI: 10.1016/j.molimm.2014.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/22/2022]
|