1
|
Robinson CRP, Dolezal AG, Newton ILG. Host species and geography impact bee-associated RNA virus communities with evidence for isolation by distance in viral populations. ISME COMMUNICATIONS 2024; 4:ycad003. [PMID: 38304079 PMCID: PMC10833078 DOI: 10.1093/ismeco/ycad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Virus symbionts are important mediators of ecosystem function, yet we know little of their diversity and ecology in natural populations. The alarming decline of pollinating insects in many regions of the globe, especially the European honey bee, Apis mellifera, has been driven in part by worldwide transmission of virus pathogens. Previous work has examined the transmission of known honey bee virus pathogens to wild bee populations, but only a handful of studies have investigated the native viromes associated with wild bees, limiting epidemiological predictors associated with viral pathogenesis. Further, variation among different bee species might have important consequences in the acquisition and maintenance of bee-associated virome diversity. We utilized comparative metatranscriptomics to develop a baseline description of the RNA viromes associated with wild bee pollinators and to document viral diversity, community composition, and structure. Our sampling includes five wild-caught, native bee species that vary in social behavior as well as managed honey bees. We describe 26 putatively new RNA virus species based on RNA-dependent RNA polymerase phylogeny and show that each sampled bee species was associated with a specific virus community composition, even among sympatric populations of distinct host species. From 17 samples of a single host species, we recovered a single virus species despite over 600 km of distance between host populations and found strong evidence for isolation by distance in associated viral populations. Our work adds to the small number of studies examining viral prevalence and community composition in wild bees.
Collapse
Affiliation(s)
- Chris R P Robinson
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
2
|
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, Nishihara M, Nakatsuka T. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes corolla lobe-specific whiting of Japanese gentian. PLANTA 2021; 255:29. [PMID: 34964920 DOI: 10.1007/s00425-021-03815-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Post-transcriptional gene silencing of the chalcone synthase gene CHS specifically suppresses anthocyanin biosynthesis in corolla lobes and is responsible for the formation of a stripe type bicolor in Japanese gentian. The flower of Japanese gentian is a bell-shaped corolla composed of lobes and plicae, which is painted uniformly blue. However, the gentian cultivar 'Hakuju' shows bicolor phenotype (blue-white stripe corolla), in which anthocyanin accumulation is suppressed only in corolla lobes. Expression analysis indicated that steady-state levels of chalcone synthase (CHS) transcripts were remarkably reduced in corolla lobes compared with plicae during petal pigmentation initiation. However, no significant difference in expression levels of other flavonoid biosynthetic structural and regulatory genes was detected in its lobes and plicae. On feeding naringenin in white lobes, anthocyanin accumulation was recovered. Northern blotting probed with CHS confirmed the abundant accumulation of small RNAs in corolla lobes. Likewise, small RNA-seq analysis indicated that short reads from its lobes were predominantly mapped onto the 2nd exon region of the CHS gene, whereas those from the plicae were scarcely mapped. Subsequent infection with the gentian ovary ringspot virus (GORV), which had an RNA-silencing activity, showed the recovery of partial pigmentation in lobes. Hence, these results strongly suggested that suppressing anthocyanin accumulation in the lobes of bicolored 'Hakuju' was attributed to the specific degradation of CHS mRNA in corolla lobes, which was through post-transcriptional gene silencing (PTGS). Herein, we revealed the molecular mechanism of strip bicolor formation in Japanese gentian, and showed that PTGS of CHS was also responsible for flower color pattern in a floricultural plant other than petunia and dahlia.
Collapse
Affiliation(s)
- Yuka Ohta
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Translation of Plant RNA Viruses. Viruses 2021; 13:v13122499. [PMID: 34960768 PMCID: PMC8708638 DOI: 10.3390/v13122499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Collapse
|
4
|
Fujisaki K, Tateda C, Abe Y, Dominguez JJA, Iwai M, Obara K, Nakamura T, Iwadate Y, Kaido M, Mise K. Infectious in vitro transcripts from a cDNA clone of a Japanese gentian isolate of Sikte waterborne virus, which shows host-specific low-temperature-dependent replication. Arch Virol 2021; 166:1991-1997. [PMID: 33929615 DOI: 10.1007/s00705-021-05074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 11/28/2022]
Abstract
Tombusviruses have been identified in several crops, including gentian virus A (GeVA) in Japanese gentian. In this study, we isolated another tombusvirus, Sikte waterborne virus strain C1 (SWBV-C1), from Japanese gentian. Although SWBV-C1 and GeVA are not closely related, SWBV-C1, like GeVA, showed host-specific low-temperature-dependent replication in gentian and arabidopsis. The use of in vitro transcripts from full-length cDNA clones of SWBV-C1 genomic RNA as inocula confirmed these properties, indicating that the identified genomic RNA sequences encode viral factors responsible for the characteristic features of SWBV-C1.
Collapse
Affiliation(s)
- Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Mari Iwai
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kazue Obara
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Taiki Nakamura
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | - Yasuya Iwadate
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Kyoto University, Kyoto, Japan.,Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Isogai M, Miyoshi K, Watanabe M, Yoshikawa N. Characterization of horizontal transmission of blueberry latent spherical virus by pollen. Arch Virol 2020; 165:2807-2815. [PMID: 32990842 DOI: 10.1007/s00705-020-04818-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Nicotiana benthamiana plants became infected with blueberry latent spherical virus (BLSV) after pollination with pollen grains produced by BLSV-infected N. benthamiana plants. Interestingly, pollen grains produced by BLSV-infected Vaccinium corymbosum (blueberry), Nicotiana alata, and Petunia × hybrida (petunia) plants also transmitted the virus to healthy N. benthamiana plants after pollination. As seen using aniline blue staining and fluorescence microscopy, pollen grains from BLSV-infected blueberry, N. alata, and petunia plants germinated on stigmas of N. benthamiana, and the pollen tubes penetrated the stigmas in a manner similar to that of N. benthamiana pollen grains on N. benthamiana stigmas. Whole-mount in situ hybridization and chromogenic in situ hybridization analysis showed that infected blueberry and N. benthamiana pollen grains germinated on N. benthamiana stigmas, and virus-containing pollen tubes penetrated the stigmas. Tissue blot hybridization analysis revealed that the initial infection sites were the N. benthamiana stigmas pollinated with infected pollen grains from blueberry and N. benthamiana. In addition, the virus spread from the initial infection sites to the phloem in the stigma and style. Taken together, we suggest that penetrating pollen tubes that harbored the virus results in infection foci in the stigma, and the virus then moves to the vascular tissues in the stigma and style and eventually establishes systemic infection.
Collapse
Affiliation(s)
- Masamichi Isogai
- Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka, 020-8550, Japan.
| | - Kotaro Miyoshi
- Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka, 020-8550, Japan
| | - Manabu Watanabe
- Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Agr-innovation Center, Iwate University, Ueda 3-chome 18-8, Morioka, 020-8550, Japan
| |
Collapse
|
6
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Fujisaki K, Abe Y, Tateda C, Iwai M, Kaido M, Mise K. Host specific preference for low temperature in the multiplication of a tombusvirus, gentian virus A. Virus Res 2020; 286:198048. [PMID: 32522536 DOI: 10.1016/j.virusres.2020.198048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Gentian virus A (GeVA), a novel tombusvirus isolated from Japanese gentian, has shown only a limited ability to infect Japanese gentians under experimental conditions. In this study, temperature was found to affect the efficient multiplication of GeVA in Japanese gentians. GeVA efficiently multiplied in inoculated leaves of gentians at 18 °C but not at 23 °C. This low-temperature (18 °C)-preferred GeVA multiplication was specifically observed in Japanese gentians and Arabidopsis thaliana but not in other experimental plants, including Nicotiana benthamiana. In A. thaliana, visible defense responses, including pathogenesis-related protein 1 expression, were not detected at 23 °C. Furthermore, several A. thaliana mutants, including those defective in RNA silencing, with altered plant immunities did not allow GeVA to multiply to detectable levels at 23 °C. Taken together, these data suggest that unique interaction between GeVA and gentians/A. thaliana, which is independent of RNA silencing, may underlie the low-temperature-preferred multiplication of GeVA.
Collapse
Affiliation(s)
- Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Mari Iwai
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Kyoto University, Kyoto, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Jia H, Gong P. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. Front Microbiol 2019; 10:1945. [PMID: 31507560 PMCID: PMC6713929 DOI: 10.3389/fmicb.2019.01945] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses are a unique class of nucleic acid polymerases. Each viral RdRP contains a 500–600 residue catalytic module with palm, fingers, and thumb domains forming an encircled human right hand architecture. Seven polymerase catalytic motifs are located in the RdRP palm and fingers domains, comprising the most conserved parts of the RdRP and are responsible for the RNA-only specificity in catalysis. Functional regions are often found fused to the RdRP catalytic module, resulting in a high level of diversity in RdRP global structure and regulatory mechanism. In this review, we surveyed all 46 RdRP-sequence available virus families of the positive-strand RNA viruses listed in the 2018b collection of the International Committee on Virus Taxonomy (ICTV) and chose a total of 49 RdRPs as representatives. By locating hallmark residues in RdRP catalytic motifs and by referencing structural and functional information in the literature, we were able to estimate the N- and C-terminal boundaries of the catalytic module in these RdRPs, which in turn serve as reference points to predict additional functional regions beyond the catalytic module. Interestingly, a large number of virus families may have additional regions fused to the RdRP N-terminus, while only a few of them have such regions on the C-terminal side of the RdRP. The current knowledge on these additional regions, either in three-dimensional (3D) structure or in function, is quite limited. In the five RdRP-structure available virus families in the positive-strand RNA viruses, only the Flaviviridae family has the 3D structural information resolved for such regions. Hence, future efforts to solve full-length RdRP structures containing these regions and to dissect the functional contribution of them are necessary to improve the overall understanding of the RdRP proteins as an evolutionarily integrated group, and our analyses here may serve as a guideline for selecting representative RdRP systems in these studies.
Collapse
Affiliation(s)
- Hengxia Jia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Isogai M, Matsudaira T, Ito M, Yoshikawa N. The 1b gene of raspberry bushy dwarf virus is a virulence component that facilitates systemic virus infection in plants. Virology 2019; 526:222-230. [PMID: 30447555 DOI: 10.1016/j.virol.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
A product translated from the 1b gene of raspberry bushy dwarf virus (RBDV) was specifically detected in RBDV-infected Nicotiana benthamiana plants by immunoblot analysis. To analyze the effects of the 1b gene on virus infection in host plants, an RBDV deletion mutant virus (RB∆1bstop), which is unable to express the 1b gene, was constructed and inoculated to N. benthamiana plants. The results showed that accumulation of the virus genomic (g) RNAs 1 and 2 decreased in inoculated leaves, and that systemic virus spread was delayed compared with wild-type RBDV. In contrast, accumulation of the viral gRNAs 1 and 2 was elevated in RB∆1bstop-infected leaf tissues during ectopic expression of the 1b gene. Furthermore, we found that the 1b has weak RNA silencing suppressor activity.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan.
| | - Takanori Matsudaira
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Makoto Ito
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| |
Collapse
|
10
|
Fujisaki K, Tateda C, Shirakawa A, Iwai M, Abe Y. Identification and characterization of a tombusvirus isolated from Japanese gentian. Arch Virol 2018; 163:2477-2483. [PMID: 29786120 DOI: 10.1007/s00705-018-3888-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
The DECS (dsRNA isolation, exhaustive amplification, cloning and sequencing) analysis technique for viral diagnosis detected a tombusvirus in Japanese gentian not displaying severe symptoms. We tentatively named this virus "gentian virus A" (GeVA). GeVA systemically but inefficiently infected Japanese gentian without causing visible symptoms, while it led to severe symptoms in some other plants. The complete genome sequence of GeVA indicated a typical tombusvirus-like structure. Phylogenetic analysis of the deduced amino acid sequences of four tombusvirus-encoded proteins did not reveal other known tombusviruses that were closely-related to GeVA, suggesting that it is a novel tombusvirus.
Collapse
Affiliation(s)
- Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Mari Iwai
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
11
|
Isogai M, Kamata Y, Ando S, Kamata M, Shirakawa A, Sekine KT, Yoshikawa N. Horizontal pollen transmission of Gentian ovary ring-spot virus is initiated during penetration of the stigma and style by infected pollen tubes. Virology 2017; 503:6-11. [PMID: 28073069 DOI: 10.1016/j.virol.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 11/15/2022]
Abstract
Gentian ovary ring-spot virus (GORV) infected gentian plants by pollination with GORV-infected gentian pollen grains, but the virus was not horizontally transmitted to gentian plants by transfer of pollen from GORV-infected Nicotiana benthamiana plants. However, N. benthamiana plants were infected with the virus by pollination with infected gentian pollen as well as by pollination with infected N. benthamiana pollen. When infected gentian pollen grains were placed on N. benthamiana stigmas, germinating pollen tubes penetrated into the stigmas and the styles (stigma-style). Virus infection occurred during penetration of the stigma-style, and the virus subsequently spread systemically to the mother plant. On the other hand, most infected N. benthamiana pollen grains failed to germinate on gentian stigmas, and virus infections were not detected in the stigma-style.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan.
| | - Yukie Kamata
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Syunpei Ando
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Misaki Kamata
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Asuka Shirakawa
- Plant Pathology Group, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami 024-0003, Iwate, Japan
| | - Ken-Taro Sekine
- Plant Pathology Group, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami 024-0003, Iwate, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| |
Collapse
|
12
|
Andika IB, Kondo H, Sun L. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots. Front Microbiol 2016; 7:1458. [PMID: 27695446 PMCID: PMC5023674 DOI: 10.3389/fmicb.2016.01458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Hideki Kondo
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
13
|
Atsumi G, Suzuki H, Miyashita Y, Choi SH, Hisa Y, Rihei S, Shimada R, Jeon EJ, Abe J, Nakahara KS, Uyeda I. P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas. J Virol 2016; 90:7388-7404. [PMID: 27279605 PMCID: PMC4984661 DOI: 10.1128/jvi.00190-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1 Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. IMPORTANCE Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line recognized the increased amount of P3N-PIPO produced by Cl-90-1 Br2 and activated the salicylic acid-mediated defense pathway, inducing lethal systemic cell death. We found a gradation of virulence among ClYVV isolates in a cyv1-carrying pea line and two susceptible pea lines. This study suggests a trade-off between breaking of recessive resistance (cyv1) and host viability; the latter is presumably regulated by the dominant Cyn1 gene, which may impose evolutionary constraints upon P3N-PIPO for overcoming resistance. We propose a working model of the host strategy to sustain the durability of resistance and control fast-evolving viruses.
Collapse
Affiliation(s)
- Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Haruka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuri Miyashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Hisa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Rihei
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoko Shimada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ichiro Uyeda
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses. Viruses 2016; 8:70. [PMID: 27072419 PMCID: PMC4810260 DOI: 10.3390/v8030070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/26/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023] Open
Abstract
The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as "DECS-C," is a powerful method for detecting novel plant viruses.
Collapse
|
15
|
Hagiwara-Komoda Y, Choi SH, Sato M, Atsumi G, Abe J, Fukuda J, Honjo MN, Nagano AJ, Komoda K, Nakahara KS, Uyeda I, Naito S. Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Sci Rep 2016; 6:21411. [PMID: 26898356 PMCID: PMC4761962 DOI: 10.1038/srep21411] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
RNA viruses use various strategies to condense their genetic information into small genomes. Potyviruses not only use the polyprotein strategy, but also embed an open reading frame, pipo, in the P3 cistron in the -1 reading frame. PIPO is expressed as a fusion protein with the N-terminal half of P3 (P3N-PIPO) via transcriptional slippage of viral RNA-dependent RNA polymerase (RdRp). We herein show that clover yellow vein virus (ClYVV) produces a previously unidentified factor, P3N-ALT, in the +1 reading frame via transcriptional slippage at a conserved G(1-2)A(6-7) motif, as is the case for P3N-PIPO. The translation of P3N-ALT terminates soon, and it is considered to be a C-terminal truncated form of P3. In planta experiments indicate that P3N-ALT functions in cell-to-cell movement along with P3N-PIPO. Hence, all three reading frames are used to produce functional proteins. Deep sequencing of ClYVV RNA from infected plants endorses the slippage by viral RdRp. Our findings unveil a virus strategy that optimizes the coding capacity.
Collapse
Affiliation(s)
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masanao Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan
- National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Junya Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Junya Fukuda
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Atsushi J. Nagano
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi 332-0012, Japan
- Faculty of Agriculture, Ryukoku University, Otsu 520-2194, Japan
| | - Keisuke Komoda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji S. Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Ichiro Uyeda
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|