1
|
Palukaitis P, Akbarimotlagh M, Astaraki S, Shams-Bakhsh M, Yoon JY. The Forgotten Tobamovirus Genes Encoding the 54 kDa Protein and the 4-6 kDa Proteins. Viruses 2024; 16:1680. [PMID: 39599795 PMCID: PMC11599109 DOI: 10.3390/v16111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I1-subgenomic mRNA, but which has been found only by in vitro translation and not in plants. The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the movement protein gene or the capsid protein gene. Previously, two small proteins were referred to as the 4-6 kDa proteins, since only single proteins of such size had been characterized from tobacco mosaic virus and tomato mosaic virus genomes. Such putative proteins will be referred to here as P6 proteins, since many new proposed P6 open reading frames could be discerned, from an analysis of 45 of 47 tobamovirus genomes, with a coding capacity of >15 amino acids up to 94 amino acids, whereas other peptides with ≤15 amino acids were not considered here. The distribution of the putative P6 proteins among these tobamoviruses is described, as well as the various classes they fall into, based on their distribution with regard to the organization of other genes in the viral genomes. Models also are presented for possible functions of the 54 kDa protein and the P6 proteins, based on data in the literature.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Masoud Akbarimotlagh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Sajad Astaraki
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Kumar G, Dasgupta I. Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 2021; 9:microorganisms9040695. [PMID: 33801711 PMCID: PMC8066623 DOI: 10.3390/microorganisms9040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.
Collapse
|
3
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
4
|
Sheshukova EV, Ershova NM, Kamarova KA, Dorokhov YL, Komarova TV. The Tobamoviral Movement Protein: A "Conditioner" to Create a Favorable Environment for Intercellular Spread of Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:959. [PMID: 32670343 PMCID: PMC7328123 DOI: 10.3389/fpls.2020.00959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.
Collapse
Affiliation(s)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Dorokhov YL, Sheshukova EV, Komarova TV. Tobamovirus 3'-Terminal Gene Overlap May be a Mechanism for within-Host Fitness Improvement. Front Microbiol 2017; 8:851. [PMID: 28553276 PMCID: PMC5425575 DOI: 10.3389/fmicb.2017.00851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes (OGs) are a universal phenomenon in all kingdoms, and viruses display a high content of OGs combined with a high rate of evolution. It is believed that the mechanism of gene overlap is based on overprinting of an existing gene. OGs help virus genes compress a maximum amount of information into short sequences, conferring viral proteins with novel features and thereby increasing their within-host fitness. Analysis of tobamovirus 3′-terminal genes reveals at least two modes of OG organization and mechanisms of interaction with the host. Originally isolated from Solanaceae species, viruses (referred to as Solanaceae-infecting) such as tobacco mosaic virus do not show 3′-terminal overlap between movement protein (MP) and coat protein (CP) genes but do contain open reading frame 6 (ORF6), which overlaps with both genes. Conversely, tobamoviruses, originally isolated from Brassicaceae species (referred to as Brassicaceae-infecting) and also able to infect Solanaceae plants, have no ORF6 but are characterized by overlapping MP and CP genes. Our analysis showed that the MP/CP overlap of Brassicaceae-infecting tobamoviruses results in the following: (i) genome compression and strengthening of subgenomic promoters; (ii) CP gene early expression directly from genomic and dicistronic MP subgenomic mRNA using an internal ribosome entry site (IRES) and a stable hairpin structure in the overlapping region; (iii) loss of ORF6, which influences the symptomatology of Solanaceae-infecting tobamoviruses; and (iv) acquisition of an IRES polypurine-rich region encoding an MP nuclear localization signal. We believe that MP/CP gene overlap may constitute a mechanism for host range expansion and virus adjustment to Brassicaceae plants.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | | | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
6
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
7
|
Siddiqui SA, Sarmiento C, Valkonen S, Truve E, Lehto K. Suppression of infectious TMV genomes expressed in young transgenic tobacco plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1489-94. [PMID: 17990956 DOI: 10.1094/mpmi-20-12-1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Full-length cDNAs of the wild-type (wt) Tobacco mosaic virus (TMV) and of the coat protein gene-deleted (DeltaCP) derivative of wt-TMV, under control of the 35S promoter and downstream ribozyme sequence to produce accurate viral transcripts, were transformed to tobacco plants to analyze plant-virus interactions through different stages of plant development. Surprisingly, young wt-TMV transgenics accumulated only very low levels of viral RNA, remained free of symptoms, and were moderately resistant against exogenous inoculations. This early resistance caused significant stress to the plants, as indicated by reduced growth. Approximately 7 to 8 weeks after germination, the resistance was broken and plants developed typical wt-TMV symptoms, with high accumulation of the viral RNAs and proteins. The DeltaCP-TMV plants likewise were initially resistant to the endogenous inoculum and were stunted, although to a lesser extent than the wt-TMV plants. The resistance was broken at the same time as in the wt-TMV plants, but the mutant replicated to much lower levels and produced much milder symptoms than the wt virus. TMV-specific small interfering RNAs as well as increased transgene methylation were detected in the plants only after the resistance break, indicating that the resistance in the young plants was not due to RNA silencing.
Collapse
Affiliation(s)
- S A Siddiqui
- Laboratory of Plant Physiology and Molecular Biology, University of Turku, Finland
| | | | | | | | | |
Collapse
|
8
|
Karetnikov A, Lehto K. Translation mechanisms involving long-distance base pairing interactions between the 5' and 3' non-translated regions and internal ribosomal entry are conserved for both genomic RNAs of Blackcurrant reversion nepovirus. Virology 2007; 371:292-308. [PMID: 17976678 DOI: 10.1016/j.virol.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/02/2007] [Accepted: 10/04/2007] [Indexed: 01/07/2023]
Abstract
One of the mechanisms of functioning for viral cap-independent translational enhancers (CITEs), located in 3' non-translated regions (NTRs), is 3' NTR-5' leader long-distance base pairing. Previously, we have demonstrated that the RNA2 3' NTR of Blackcurrant reversion nepovirus (BRV) contains a CITE, which must base pair with the 5' NTR to facilitate translation. Here we compared translation strategies employed by BRV RNA1 and RNA2, by using mutagenesis of the BRV NTRs in firefly luciferase reporter mRNA, in plant protoplasts. Translation mechanisms, based on 3' CITEs, 5' NTR-3' NTR base pairing and poly(A) tail-stimulation, were found conserved between RNA1 and RNA2. The 40S ribosomal subunit entry at the RNA1 leader occurred, at least partly, via an internal ribosomal entry site (IRES). Two RNA1 leader segments complementary to plant 18S rRNA enhanced translation. A model for BRV RNAs translation, involving IRES-dependent 40S subunit recruitment and long-distance 5' NTR-3' NTR base pairing, is discussed.
Collapse
Affiliation(s)
- Alexey Karetnikov
- Laboratory of Plant Physiology and Molecular Biology, University of Turku, FIN-20014 Turku, Finland.
| | | |
Collapse
|
9
|
Schwartz AM, Komarova TV, Skulachev MV, Zvereva AS, Dorokhov IL, Atabekov JG. Stability of plant mRNAs depends on the length of the 3'-untranslated region. BIOCHEMISTRY. BIOKHIMIIA 2006; 71:1377-84. [PMID: 17223792 DOI: 10.1134/s0006297906120145] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eukaryotic mRNAs that prematurely terminate translation are recognized and degraded by nonsense mediated decay (NMD). This degradation pathway is well studied in animal and yeast cells. The data available imply that NMD also takes place in plants. However, the molecular mechanism of recognition and degradation of plant RNAs containing premature terminator codon (PTC) is not known. Here we report that in plant cells this mechanism involves the recognition of the sizes of the 3'-untranslated regions (3'UTR). Plant 3'UTRs longer than 300 nucleotides induce mRNA instability. Contrary to mammalian and yeast cells, this destabilization does not depend on the presence of any specific sequences downstream of the terminator codon. Unlike nuclear-produced mRNAs, plant virus vector long 3'UTR-containing RNAs, which are synthesized directly in the cytoplasm, are stable and translated efficiently. This shows that RNAs produced in the cytoplasm by viral RNA-dependent RNA polymerase are able to avoid the proposed mechanism.
Collapse
Affiliation(s)
- A M Schwartz
- Department of Virology and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Dorokhov YL, Ivanov PA, Komarova TV, Skulachev MV, Atabekov JG. An internal ribosome entry site located upstream of the crucifer-infecting tobamovirus coat protein (CP) gene can be used for CP synthesis in vivo. J Gen Virol 2006; 87:2693-2697. [PMID: 16894210 DOI: 10.1099/vir.0.82095-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was previously shown that, unlike the type member of the genus Tobamovirus (TMV U1), a crucifer-infecting tobamovirus (crTMV) contains a 148 nt internal ribosome entry site (IRES)(CP,148)(CR) upstream of the coat protein (CP) gene. Here, viral vectors with substitutions in the stem-loop (SL) region of CP subgenomic promoters (TMV U1-CP-GFP/SL-mut and crTMV-CP-GFP/SL-mut) were constructed and the levels of CP synthesis in agroinoculation experiments were compared. No CP-GFP (green fluorescent protein) synthesis was detected in Nicotiana benthamiana leaves inoculated with TMV U1-CP-GFP/SL-mut, whereas a small amount of CP-GFP synthesis was obtained in crTMV-CP-GFP/SL-mut-injected leaves. Northern blots proved that both promoters were inactive. It could be hypothesized that IRES-mediated early production of the CP by crTMV is needed for realization of its crucifer-infecting capacity.
Collapse
Affiliation(s)
- Yu L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - P A Ivanov
- Department of Virology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - T V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - M V Skulachev
- Department of Virology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| | - J G Atabekov
- Department of Virology, Moscow State University, Leninsky Gory 1, Laboratory Building A, Moscow 119992, Russia
| |
Collapse
|
11
|
Pettit Kneller EL, Rakotondrafara AM, Miller WA. Cap-independent translation of plant viral RNAs. Virus Res 2005; 119:63-75. [PMID: 16360925 PMCID: PMC1880899 DOI: 10.1016/j.virusres.2005.10.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/01/2005] [Accepted: 10/19/2005] [Indexed: 11/29/2022]
Abstract
The RNAs of many plant viruses lack a 5' cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (<200 nt), some are located in the 3' untranslated region, some require ribosome scanning from the 5' end of the mRNA, and the 5' UTR elements are much less structured than those of animal viruses. We discuss how these elements may interact with host translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery.
Collapse
Affiliation(s)
- Elizabeth L. Pettit Kneller
- Interdepartmental Plant Physiology Program, Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | - Aurélie M. Rakotondrafara
- Molecular, Cellular and Developmental Biology Program, Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | - W. Allen Miller
- Molecular, Cellular and Developmental Biology Program, Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
- * Corresponding author. Tel.: +1 515 294 2436; fax: +1 515 294 9420. E-mail address: (W.A. Miller)
| |
Collapse
|