1
|
Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo. Viruses 2018; 10:v10030111. [PMID: 29510577 PMCID: PMC5869504 DOI: 10.3390/v10030111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.
Collapse
|
2
|
Carpentier DCJ, Van Loggerenberg A, Dieckmann NMG, Smith GL. Vaccinia virus egress mediated by virus protein A36 is reliant on the F12 protein. J Gen Virol 2017. [PMID: 28631604 PMCID: PMC5656793 DOI: 10.1099/jgv.0.000816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Egress of vaccinia virus from its host cell is mediated by the microtubule-associated motor kinesin-1, and three viral proteins, A36 and the F12/E2 complex, have been implicated in this process. Deletion of F12 expression causes a more severe reduction in egress than deletion of A36 but whether these proteins are involved in the same or different mechanisms of kinesin-1 recruitment is unknown. Here it is shown that a virus lacking both proteins forms a smaller plaque than mutants lacking either gene alone, indicating non-redundant functions. A36 not only links virions directly to kinesin-1 but also nucleates actin polymerization to propel surface virions away from the host cell. To address the relative importance of these functions for virus spread, a panel of recombinant viruses was constructed in which the ability of A36 to bind kinesin-1 or to nucleate actin polymerization was abrogated individually or together, in the presence or absence of F12 expression. Analysis of these viruses revealed that in the presence of the F12 protein, loss of kinesin-1 interaction made a greater contribution to plaque size than did the formation of actin tails. However in the absence of F12, the ability of A36 to promote egress was abrogated. Therefore, the ability of A36 to promote egress by kinesin-1 is reliant on the F12 protein.
Collapse
Affiliation(s)
- David C J Carpentier
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | - Nele M G Dieckmann
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,Present address: Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
3
|
Newsome TP, Marzook NB. Viruses that ride on the coat-tails of actin nucleation. Semin Cell Dev Biol 2015; 46:155-63. [PMID: 26459972 DOI: 10.1016/j.semcdb.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
Abstract
Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.
Collapse
Affiliation(s)
- Timothy P Newsome
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - N Bishara Marzook
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Leite F, Way M. The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res 2015; 209:87-99. [PMID: 25681743 DOI: 10.1016/j.virusres.2015.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/25/2023]
Abstract
Viruses are obligate intracellular parasites that are critically dependent on their hosts to replicate and generate new progeny. To achieve this goal, viruses have evolved numerous elegant strategies to subvert and utilise the different cellular machineries and processes of their unwilling hosts. Moreover, they often accomplish this feat with a surprisingly limited number of proteins. Among the different systems of the cell, the cytoskeleton is often one of the first to be hijacked as it provides a convenient transport system for viruses to reach their site of replication with relative ease. At the latter stages of their replication cycle, the cytoskeleton also provides an efficient means for newly assembled viral progeny to reach the plasma membrane and leave the infected cell. In this review we discuss how Vaccinia virus takes advantage of the microtubule and actin cytoskeletons of its host to promote the spread of infection into neighboring cells. In particular, we highlight how analysis of actin-based motility of Vaccinia has provided unprecedented insights into how a phosphotyrosine-based signalling network is assembled and functions to stimulate Arp2/3 complex-dependent actin polymerization. We also suggest that the formin FHOD1 promotes actin-based motility of the virus by capping the fast growing ends of actin filaments rather than directly promoting filament assembly. We have come a long way since 1976, when electron micrographs of vaccinia-infected cells implicated the actin cytoskeleton in promoting viral spread. Nevertheless, there are still many unanswered questions concerning the role of signalling and the host cytoskeleton in promoting viral spread and pathogenesis.
Collapse
Affiliation(s)
- Flavia Leite
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| |
Collapse
|
5
|
Abstract
Intracellular pathogens have developed elaborate mechanisms to exploit the different cellular systems of their unwilling hosts to facilitate their entry, replication, and survival. In particular, a diverse range of bacteria and viruses have evolved unique strategies to harness the power of Arp2/3-mediated actin polymerization to enhance their cell-to-cell spread. In this review, we discuss how studying these pathogens has revolutionized our molecular understanding of Arp2/3-dependent actin assembly and revealed key signaling pathways regulating actin assembly in cells. Future analyses of microbe-host interactions are likely to continue uncovering new mechanisms regulating actin assembly and dynamics, as well as unexpected cellular functions for actin. Further, studies with known and newly emerging pathogens will also undoubtedly continue to enhance our understanding of the role of the actin cytoskeleton during pathogenesis and potentially highlight future therapeutic approaches.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
6
|
Lynn H, Horsington J, Ter LK, Han S, Chew YL, Diefenbach RJ, Way M, Chaudhri G, Karupiah G, Newsome TP. Loss of cytoskeletal transport during egress critically attenuates ectromelia virus infection in vivo. J Virol 2012; 86:7427-43. [PMID: 22532690 PMCID: PMC3416336 DOI: 10.1128/jvi.06636-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/30/2012] [Indexed: 12/18/2022] Open
Abstract
Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.
Collapse
Affiliation(s)
- Helena Lynn
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Lee Kuan Ter
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Shuyi Han
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Russell J. Diefenbach
- Centre for Virus Research, The Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Michael Way
- Cancer Research UK, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Geeta Chaudhri
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gunasegaran Karupiah
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Timothy P. Newsome
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Morgan GW, Hollinshead M, Ferguson BJ, Murphy BJ, Carpentier DCJ, Smith GL. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export. PLoS Pathog 2010; 6:e1000785. [PMID: 20195521 PMCID: PMC2829069 DOI: 10.1371/journal.ppat.1000785] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/21/2010] [Indexed: 01/16/2023] Open
Abstract
Vaccinia virus (VACV) uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC), a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs). Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD) motif, which is conserved in the kinesin-1-binding sequence (KBS) of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.
Collapse
Affiliation(s)
- Gareth W. Morgan
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Brian J. Ferguson
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Brendan J. Murphy
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David C. J. Carpentier
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Rottner K, Stradal TEB. Poxviruses taking a ride on actin: new users of known hardware. Cell Host Microbe 2010; 6:497-9. [PMID: 20006837 DOI: 10.1016/j.chom.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vaccinia virus uses A36 to recruit the actin polymerization effectors Nck and N-WASP to drive actin tail formation. Now, Dodding and Way identify functional orthologs of A36 in other vertebrate poxviruses that harbor varying numbers of Nck-binding sites and can substitute for A36 despite no sequence homology.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany.
| | | |
Collapse
|
9
|
Dodding MP, Way M. Nck- and N-WASP-Dependent Actin-Based Motility Is Conserved in Divergent Vertebrate Poxviruses. Cell Host Microbe 2009; 6:536-50. [DOI: 10.1016/j.chom.2009.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 01/21/2023]
|
10
|
Gubser C, Goodbody R, Ecker A, Brady G, O'Neill LAJ, Jacobs N, Smith GL. Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence. J Gen Virol 2007; 88:1667-1676. [PMID: 17485525 PMCID: PMC2885618 DOI: 10.1099/vir.0.82748-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/25/2007] [Indexed: 11/18/2022] Open
Abstract
Camelpox virus (CMLV) gene 176R encodes a protein with sequence similarity to murine schlafen (m-slfn) proteins. In vivo, short and long members of the m-slfn family inhibited T-cell development, whereas in vitro, only short m-slfns caused arrest of fibroblast growth. CMLV 176 protein (v-slfn) is most closely related to short m-slfns; however, when expressed stably in mammalian cells, v-slfn did not inhibit cell growth. v-slfn is a predominantly cytoplasmic 57 kDa protein that is expressed throughout infection. Several other orthopoxviruses encode v-slfn proteins, but the v-slfn gene is fragmented in all sequenced variola virus and vaccinia virus (VACV) strains. Consistent with this, all 16 VACV strains tested do not express a v-slfn detected by polyclonal serum raised against the CMLV protein. In the absence of a small animal model to study CMLV pathogenesis, the contribution of CMLV v-slfn to orthopoxvirus virulence was studied via its expression in an attenuated strain of VACV. Recombinant viruses expressing wild-type v-slfn or v-slfn tagged at its C terminus with a haemagglutinin (HA) epitope were less virulent than control viruses. However, a virus expressing v-slfn tagged with the HA epitope at its N terminus had similar virulence to controls, implying that the N terminus has an important function. A greater recruitment of lymphocytes into infected lung tissue was observed in the presence of wild-type v-slfn but, interestingly, these cells were less activated. Thus, v-slfn is an orthopoxvirus virulence factor that affects the host immune response to infection.
Collapse
Affiliation(s)
- Caroline Gubser
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Rory Goodbody
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Andrea Ecker
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gareth Brady
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nathalie Jacobs
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
11
|
Gubser C, Bergamaschi D, Hollinshead M, Lu X, van Kuppeveld FJM, Smith GL. A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 2007; 3:e17. [PMID: 17319741 PMCID: PMC1803007 DOI: 10.1371/journal.ppat.0030017] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 12/21/2006] [Indexed: 01/28/2023] Open
Abstract
A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein). Stable expression of both viral GAAP (v-GAAP) and human GAAP (h-GAAP), which is expressed in all human tissues tested, inhibited apoptosis induced by intrinsic and extrinsic apoptotic stimuli. Conversely, knockout of h-GAAP by siRNA induced cell death by apoptosis. v-GAAP and h-GAAP display overlapping functions as shown by the ability of v-GAAP to complement for the loss of h-GAAP. Lastly, deletion of the v-GAAP gene from vaccinia virus did not affect virus replication in cell culture, but affected virus virulence in a murine infection model. This study identifies a new regulator of cell death that is highly conserved in evolution from plants to insects, amphibians, mammals, and poxviruses.
Collapse
Affiliation(s)
- Caroline Gubser
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Daniele Bergamaschi
- Ludwig Institute for Cancer Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xin Lu
- Ludwig Institute for Cancer Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Frank J. M van Kuppeveld
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Law M, Carter GC, Roberts KL, Hollinshead M, Smith GL. Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 2006; 103:5989-94. [PMID: 16585508 PMCID: PMC1424662 DOI: 10.1073/pnas.0601025103] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hitherto, all enveloped viruses were thought to shed their lipid membrane during entry into cells by membrane fusion. The extracellular form of Vaccinia virus has two lipid envelopes surrounding the virus core, and consequently a single fusion event will not deliver a naked core into the cell. Here we report a previously underscribed mechanism in which the outer viral membrane is disrupted by a ligand-induced nonfusogenic reaction, followed by the fusion of the inner viral membrane with the plasma membrane and penetration of the virus core into the cytoplasm. The dissolution of the outer envelope depends on interactions with cellular polyanionic molecules and requires the virus glycoproteins A34 and B5. This discovery represents a remarkable example of how viruses manipulate biological membranes, solves the topological problem of how a double-enveloped virus enters cells, reveals a new effect of polyanions on viruses, and provides a therapeutic approach for treatment of poxvirus infections, such as smallpox.
Collapse
Affiliation(s)
- Mansun Law
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Gemma C. Carter
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Kim L. Roberts
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Najarro P, Gubser C, Hollinshead M, Fox J, Pease J, Smith GL. Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. J Gen Virol 2006; 87:809-816. [PMID: 16528029 DOI: 10.1099/vir.0.81427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yaba-like disease virus (YLDV) gene 7L encodes a seven-transmembrane G protein-coupled receptor with 53 % amino acid identity to human CC chemokine receptor 8 (CCR8). Initial characterization of 7L showed that this 56 kDa cell-surface glycoprotein binds human CCL1 with high affinity (K
d=0·6 nM) and induces signal transduction by activation of heterotrimeric G proteins and downstream protein kinases. Further characterization of YLDV 7L is presented here and shows that murine CC chemokines can induce G-protein activation via the 7L receptor, despite having a low binding affinity for this receptor. In addition, when expressed by recombinant vaccinia virus (VACV), YLDV 7L was found on the outer envelope of VACV extracellular enveloped virus. The contribution of 7L to poxvirus pathogenesis was investigated by infection of mice with a recombinant VACV expressing 7L (vΔB8R-7L) and was compared with the outcome of infection by parental and revertant control viruses. In both intranasal and intradermal models, expression of 7L caused attenuation of VACV. The role of this protein in viral virulence is discussed.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Cell Line
- Chemokines, CC/metabolism
- Humans
- Injections, Intradermal
- Mice
- Mice, Inbred BALB C
- Receptors, CCR8
- Receptors, Chemokine/chemistry
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Recombination, Genetic
- Signal Transduction
- Vaccinia/pathology
- Vaccinia/virology
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Vaccinia virus/pathogenicity
- Virion/metabolism
- Virulence
- Yatapoxvirus/genetics
- Yatapoxvirus/metabolism
- Yatapoxvirus/pathogenicity
Collapse
Affiliation(s)
- Pilar Najarro
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Caroline Gubser
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - James Fox
- Department of Leukocyte Biology, Faculty of Medicine, Imperial College London, South Kensington Campus, Exhibition Road, London SW1 2AZ, UK
| | - James Pease
- Department of Leukocyte Biology, Faculty of Medicine, Imperial College London, South Kensington Campus, Exhibition Road, London SW1 2AZ, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|