1
|
Jablunovsky A, Jose J. The Dynamic Landscape of Capsid Proteins and Viral RNA Interactions in Flavivirus Genome Packaging and Virus Assembly. Pathogens 2024; 13:120. [PMID: 38392858 PMCID: PMC10893219 DOI: 10.3390/pathogens13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Zhu DR, Rajesh AJ, Meganck RM, Young EF, Munt JE, Tse VL, Yount B, Conrad H, White L, Henein S, DeSilva AM, Baric RS. Dengue virus 4/2 envelope domain chimeric virus panel maps type-specific responses against dengue serotype 2. mBio 2023; 14:e0081823. [PMID: 37800919 PMCID: PMC10653845 DOI: 10.1128/mbio.00818-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The four dengue virus (DENV) serotypes infect several hundred million people each year. Although primary infection is generally mild, subsequent infection by differing serotypes increases the risk for symptomatic disease ranging from fever to life-threatening shock. Despite the availability of licensed vaccines, a comprehensive understanding of antibodies that target the viral envelope protein and protect from infection remains incomplete. In this manuscript, we develop a panel of recombinant viruses that graft each envelope domain of DENV2 onto the DENV4 envelope glycoprotein, revealing protein interactions important for virus viability. Furthermore, we map neutralizing antibody responses after primary DENV2 natural infection and a human challenge model to distinct domains on the viral envelope protein. The panel of recombinant viruses provides a new tool for dissecting the E domain-specific targeting of protective antibody responses, informing future DENV vaccine design.
Collapse
Affiliation(s)
- Deanna R. Zhu
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alecia J. Rajesh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rita M. Meganck
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ellen F. Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer E. Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victor L. Tse
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen Conrad
- College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Laura White
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. DeSilva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
4
|
Ishida K, Yagi H, Kato Y, Morita E. N-linked glycosylation of flavivirus E protein contributes to viral particle formation. PLoS Pathog 2023; 19:e1011681. [PMID: 37819933 PMCID: PMC10593244 DOI: 10.1371/journal.ppat.1011681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.
Collapse
Affiliation(s)
- Kotaro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| |
Collapse
|
5
|
Jung JW, Park PG, Lee WK, Shin JH, Jang MH, Seo EH, An T, Kim YB, Moon MH, Choi SK, Yun JS, Hong KJ, Kim SR. Production of Plant-Derived Japanese Encephalitis Virus Multi-Epitope Peptide in Nicotiana benthamiana and Immunological Response in Mice. Int J Mol Sci 2023; 24:11643. [PMID: 37511402 PMCID: PMC10380836 DOI: 10.3390/ijms241411643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The current production of the Japanese encephalitis virus (JEV) vaccine is based on animal cells, where various risk factors for human health should be resolved. This study used a transient expression system to express the chimeric protein composed of antigenic epitopes from the JEV envelope (E) protein in Nicotiana benthamiana. JEV multi-epitope peptide (MEP) sequences fused with FLAG-tag or 6× His-tag at the C- or N-terminus for the purification were introduced into plant expression vectors and used for transient expression. Among the constructs, vector pSK480, which expresses MEP fused with a FLAG-tag at the C-terminus, showed the highest level of expression and yield in purification. Optimization of transient expression procedures further improved the target protein yield. The purified MEP protein was applied to an ICR mouse and successfully induced an antibody against JEV, which demonstrates the potential of the plant-produced JEV MEP as an alternative vaccine candidate.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Won-Kyung Lee
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| | - Mi-Hwa Jang
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| | - Eun-Hye Seo
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
- BK21 Plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Timothy An
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Young Beom Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Jee Sun Yun
- Eubiologics Co., Seoul 06026, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
- PhytoMab Co., Seoul 04107, Republic of Korea
| |
Collapse
|
6
|
Ahlawat A, Mishra SK, Herrmann H, Rajeev P, Gupta T, Goel V, Sun Y, Wiedensohler A. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses' Viability and Indoor Transmission. Viruses 2022; 14:v14071497. [PMID: 35891477 PMCID: PMC9318922 DOI: 10.3390/v14071497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.e., chemical composition and acidity (pH)) on viability and indoor transmission of coronavirus remain largely unknown. Recent studies suggest high organic content (proteins) in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy gel-type structure that restricts the virus inactivation process under low relative humidity (RH). In addition, the virus survival was found at neutral pH, and inactivation was observed to be best at low (<5) and high pH (>10) values (enveloped bacteriophage Phi6). Due to limited available information, this article illustrates an urgent need to research the impact of chemical properties of exhaled viral particles on virus viability. This will improve our fundamental understanding of indoor viral airborne transmission mechanisms.
Collapse
Affiliation(s)
- Ajit Ahlawat
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
- Correspondence:
| | | | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| | - Pradhi Rajeev
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Vikas Goel
- School of Interdisciplinary Research, Indian Institute of Technology (IIT), Delhi 110016, India;
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China;
| | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| |
Collapse
|
7
|
Gao Y, Tai W, Wang X, Jiang S, Debnath AK, Du L, Chen S. A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biol 2022; 20:143. [PMID: 35706035 PMCID: PMC9202104 DOI: 10.1186/s12915-022-01344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Zika virus (ZIKV) and dengue virus (DENV) cause microcephaly and dengue hemorrhagic fever, respectively, leading to severe problems. No effective antiviral agents are approved against infections of these flaviviruses, calling for the need to develop potent therapeutics. We previously identified gossypol as an effective inhibitor against ZIKV and DENV infections, but this compound is toxic and not suitable for in vivo treatment. Results In this study, we showed that gossypol derivative ST087010 exhibited potent and broad-spectrum in vitro inhibitory activity against infections of at least ten ZIKV strains isolated from different hosts, time periods, and countries, as well as DENV-1-4 serotypes, and significantly reduced cytotoxicity compared to gossypol. It presented broad-spectrum in vivo protective efficacy, protecting ZIKV-infected Ifnar1−/− mice from lethal challenge, with increased survival and reduced weight loss. Ifnar1−/− mice treated with this gossypol derivative decreased viral titers in various tissues, including the brain and testis, after infection with ZIKV at different human isolates. Moreover, ST087010 potently blocked ZIKV vertical transmission in pregnant Ifnar1−/− mice, preventing ZIKV-caused fetal death, and it was safe for pregnant mice and their pups. It also protected DENV-2-challenged Ifnar1−/− mice against viral replication by reducing the viral titers in the brain, kidney, heart, and sera. Conclusions Overall, our data indicate the potential for further development of this gossypol derivative as an effective and safe broad-spectrum therapeutic agent to treat ZIKV and DENV diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01344-w.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Kapuganti SK, Bhardwaj A, Kumar P, Bhardwaj T, Nayak N, Uversky VN, Giri R. Role of structural disorder in the multi-functionality of flavivirus proteins. Expert Rev Proteomics 2022; 19:183-196. [PMID: 35655146 DOI: 10.1080/14789450.2022.2085563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The life cycle of a virus involves interacting with the host cell, entry, hijacking host machinery for viral replication, evading the host's immune system, and releasing mature virions. However, viruses, being small in size, can only harbor a genome large enough to code for the minimal number of proteins required for the replication and maturation of the virions. As a result, many viral proteins are multifunctional machines that do not directly obey the classic structure-function paradigm. Often, such multifunctionality is rooted in intrinsic disorder that allows viral proteins to interact with various cellular factors and remain functional in the hostile environment of different cellular compartments. AREAS COVERED This report covers the classification of flaviviruses, their proteome organization, and the prevalence of intrinsic disorder in the proteomes of different flaviviruses. Further, we have summarized the speculations made about the apparent roles of intrinsic disorder in the observed multifunctionality of flaviviral proteins. EXPERT OPINION Small sizes of viral genomes impose multifunctionality on their proteins, which is dependent on the excessive usage of intrinsic disorder. In fact, intrinsic disorder serves as a universal functional tool, weapon, and armor of viruses and clearly plays an important role in their functionality and evolution.
Collapse
Affiliation(s)
| | - Aparna Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Namyashree Nayak
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
9
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
10
|
Baba MM, Yahaya KM, Ezra EM, Adamu M, Kulloma BM, Ikusemoran M, Momoh JP, Oderinde BS. Assessment of immunity against Yellow Fever virus infections in northeastern Nigeria using three serological assays. J Med Virol 2021; 93:4856-4864. [PMID: 33783842 DOI: 10.1002/jmv.26978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
Poor systematic surveillance for Yellow Fever virus (YFV) is primarily due to lack of affordable diagnostic facilities in resource-constrained countries. This study aimed at providing evidence-based information on immunity against Yellow Fever with a view to assessing the possibility of the recent epidemics persisting in Nigeria. Six hundred patients with febrile illness seeking malaria test in selected hospitals were tested for YFV antibody using three serological assays: ELISA IgM, microneutralization test (MNT) and plaque reduction neutralization test (PRNT). The three assays commonly detected YFV antibody (Ab) in 1.7% patients, MNT: IgM in 8.3%, IgM: PRNT in 7.1%, and MNT: PRNT in 3.2%. Immunity against YF was significantly higher in Bauchi and Borno than Adamawa and children aged 0-9 years compared to 20-29 years. YFV neutralizing antibody (nAb) strongly correlated with the vaccination status of the patients. More unvaccinated patients had nAb compared with the vaccinated. Immunity against YF among treated patients with antibiotic and/or antimalaria before sample collection inversely correlated with the untreated. YVnAb among unvaccinated indicates natural infections. Acute YFV infections were mistaken for malaria and natural infections are ongoing. Individuals aged more than or equal to 20 years should be targeted during mass vaccination campaigns. With low population immunity, repetitive YF epidemics in Nigeria is not yet over. The current policy on Yellow Fever vaccination in Nigeria still leaves a large unimmunized population at the risk of epidemics. Sufficient mass vaccination in combination with National Programme on Immunization remains key to averting YF epidemics.
Collapse
Affiliation(s)
- Marycelin M Baba
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Khalid M Yahaya
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Emmanuel M Ezra
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Musa Adamu
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Bulama M Kulloma
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Mayomi Ikusemoran
- Department of Geography (Remote Sensing/GIS Unit), University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - John P Momoh
- Facts Foundation, Maiduguri, Borno State, Nigeria
| | - Bamidele S Oderinde
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
11
|
Renner M, Dejnirattisai W, Carrique L, Martin IS, Karia D, Ilca SL, Ho SF, Kotecha A, Keown JR, Mongkolsapaya J, Screaton GR, Grimes JM. Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glycoproteins. Nat Commun 2021; 12:1238. [PMID: 33623019 PMCID: PMC7902656 DOI: 10.1038/s41467-021-21505-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Flaviviruses such as Dengue (DENV) or Zika virus (ZIKV) assemble into an immature form within the endoplasmatic reticulum (ER), and are then processed by furin protease in the trans-Golgi. To better grasp maturation, we carry out cryo-EM reconstructions of immature Spondweni virus (SPOV), a human flavivirus of the same serogroup as ZIKV. By employing asymmetric localised reconstruction we push the resolution to 3.8 Å, enabling us to refine an atomic model which includes the crucial furin protease recognition site and a conserved Histidine pH-sensor. For direct comparison, we also solve structures of the mature forms of SPONV and DENV to 2.6 Å and 3.1 Å, respectively. We identify an ordered lipid that is present in only the mature forms of ZIKV, SPOV, and DENV and can bind as a consequence of rearranging amphipathic stem-helices of E during maturation. We propose a structural role for the pocket and suggest it stabilizes mature E.
Collapse
Affiliation(s)
- Max Renner
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Itziar Serna Martin
- Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Dimple Karia
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Serban L Ilca
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shu F Ho
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeremy R Keown
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Gavin R Screaton
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Jonathan M Grimes
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Science Division, Diamond Light Source Ltd, Didcot, UK.
| |
Collapse
|
12
|
Alom MW, Shehab MN, Sujon KM, Akter F. Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: A host-targeted approach to combat Flaviviridae infections. Antiviral Res 2020; 184:104881. [PMID: 32768411 PMCID: PMC7405907 DOI: 10.1016/j.antiviral.2020.104881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
N-linked glycosylation is the most common form of protein glycosylation and is required for the proper folding, trafficking, and/or receptor binding of some host and viral proteins. As viruses lack their own glycosylation machinery, they are dependent on the host's machinery for these processes. Certain iminosugars are known to interfere with the N-linked glycosylation pathway by targeting and inhibiting α-glucosidases I and II in the endoplasmic reticulum (ER). Perturbing ER α-glucosidase function can prevent these enzymes from removing terminal glucose residues on N-linked glycans, interrupting the interaction between viral glycoproteins and host chaperone proteins that is necessary for proper folding of the viral protein. Iminosugars have demonstrated broad-spectrum antiviral activity in vitro and in vivo against multiple viruses. This review discusses the broad activity of iminosugars against Flaviviridae. Iminosugars have shown favorable activity against multiple members of the Flaviviridae family in vitro and in murine models of disease, although the activity and mechanism of inhibition can be virus-specfic. While iminosugars are not currently approved for the treatment of viral infections, their potential use as future host-targeted antiviral (HTAV) therapies continues to be investigated.
Collapse
Affiliation(s)
| | - Chloe Starr
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA
| | | | | | - Kelly L. Warfield
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA,Corresponding author. 400 Professional Drive, Gaithersburg, MD, 20879, USA
| |
Collapse
|
14
|
Frumence E, Haddad JG, Vanwalscappel B, Andries J, Decotter J, Viranaicken W, Gadea G, Desprès P. Immune Reactivity of a 20-mer Peptide Representing the Zika E Glycan Loop Involves the Antigenic Determinants E-152/156/158. Viruses 2020; 12:v12111258. [PMID: 33167511 PMCID: PMC7694461 DOI: 10.3390/v12111258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mosquito-borne Zika virus (ZIKV) causes a severe congenital syndrome and neurological disorders in humans. With the aim to develop a live-attenuated ZIKV strain, we generated a chimeric viral clone ZIKALIVax with African MR766-NIID strain as backbone and the envelope E protein of epidemic Brazilian BeH810915 strain. The MR766-NIID residues E-T152/I156/Y158 were introduced into BeH810915 E protein leading to a nonglycosylated ZIKALIVax. Recently, we reported that the residues E-152/156/158 that are part of ZIKV glycan loop (GL) region might have an impact on the availability of neutralizing antibody epitopes on ZIKV surface. In the present study, we evaluated the antigenic reactivity of a synthetic 20-mer peptide representing the ZIKALIVax GL region. The GL-related peptide was effective for the detection of GL-reactive antibody in mouse anti-ZIKALIVax immune serum. We showed that the residue E-158 influences the antigenic reactivity of GL-related peptide. The ZIKALIVax peptide was effective in generating mouse antibodies with reactivity against a recombinant E domain I that encompasses the GL region. The GL peptide-reactive antibodies revealed that antigenic reactivity of E-domain I may be impacted by both residues E-152 and E-156. In conclusion, we proposed a role for the residues E-152/156/158 as key antigenic determinants of ZIKV glycan loop region.
Collapse
|
15
|
Versiani AF, Martins EMN, Andrade LM, Cox L, Pereira GC, Barbosa-Stancioli EF, Nogueira ML, Ladeira LO, da Fonseca FG. Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections. Sci Rep 2020; 10:11302. [PMID: 32647259 PMCID: PMC7347616 DOI: 10.1038/s41598-020-68357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/22/2020] [Indexed: 01/16/2023] Open
Abstract
The Flaviviridae virus family was named after the Yellow-fever virus, and the latin term flavi means “of golden color”. Dengue, caused by Dengue virus (DENV), is one of the most important infectious diseases worldwide. A sensitive and differential diagnosis is crucial for patient management, especially due to the occurrence of serological cross-reactivity to other co-circulating flaviviruses. This became particularly important with the emergence of Zika virus (ZIKV) in areas were DENV seroprevalence was already high. We developed a sensitive and specific diagnostic test based on gold nanorods (GNR) functionalized with DENV proteins as nanosensors. These were able to detect as little as one picogram of anti-DENV monoclonal antibodies and highly diluted DENV-positive human sera. The nanosensors could differentiate DENV-positive sera from other flavivirus-infected patients, including ZIKV, and were even able to distinguish which DENV serotype infected individual patients. Readouts are obtained in ELISA-plate spectrophotometers without the need of specific devices.
Collapse
Affiliation(s)
- Alice F Versiani
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Estefânia M N Martins
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear-CDTN/CNEN, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lidia M Andrade
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Edel F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauricio L Nogueira
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Luiz O Ladeira
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
17
|
Wang L, Wang R, Wang L, Ben H, Yu L, Gao F, Shi X, Yin C, Zhang F, Xiang Y, Zhang L. Structural Basis for Neutralization and Protection by a Zika Virus-Specific Human Antibody. Cell Rep 2020; 26:3360-3368.e5. [PMID: 30893607 DOI: 10.1016/j.celrep.2019.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
We previously reported a human monoclonal antibody, ZK2B10, capable of protection against Zika virus (ZIKV) infection and microcephaly in developing mouse embryos. Here, we report the structural features and mechanism of action of ZK2B10. The crystal structure at a resolution of 2.32 Å revealed that the epitope is located on the lateral ridge of DIII of the envelope glycoprotein. Cryo-EM structure with mature ZIKV showed that the antibody binds to DIIIs around the icosahedral 2-fold, 3-fold, and 5-fold axes, a distinct feature compared to those reported for DIII-specific antibodies. The binding of ZK2B10 to ZIKV has no detectable effect on viral attachment to target cells or on conformational changes of the E glycoprotein in the acidic environment, suggesting that ZK2B10 functions at steps between the formation of the fusion intermediate and membrane fusion. These results provide structural and mechanistic insights into how ZK2B10 mediates protection against ZIKV infection.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haijing Ben
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Andrade DV, Warnes C, Young E, Katzelnick LC, Balmaseda A, de Silva AM, Baric RS, Harris E. Tracking the polyclonal neutralizing antibody response to a dengue virus serotype 1 type-specific epitope across two populations in Asia and the Americas. Sci Rep 2019; 9:16258. [PMID: 31700029 PMCID: PMC6838341 DOI: 10.1038/s41598-019-52511-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/18/2019] [Indexed: 01/22/2023] Open
Abstract
The four dengue virus serotypes (DENV1-4) cause major public health problems worldwide. Highly neutralizing type-specific human monoclonal antibodies (hmAbs) target conformation-dependent epitopes on the DENV envelope protein, including 1F4, a DENV1 type-specific hmAb. Using a recombinant DENV2 virus displaying the DENV1 1F4 epitope (rDENV2/1), we measured the proportion and kinetics of DENV1 neutralizing antibodies targeting the 1F4 epitope in individuals living in Asia and the Americas where different DENV1 genotypes were circulating. Samples from 20 individuals were analyzed 3 and 18 months post-primary DENV1 infection, alongside samples from 4 individuals collected annually for four years post-primary DENV1 infection, from two studies in Nicaragua. We also analyzed convalescent post-primary DENV1 plasma samples from Sri Lankan individuals. We found that neutralizing antibodies recognizing the 1F4 epitope vary in prevalence across both populations and were detected from 20 days to four years post-infection. Additionally, both populations displayed substantial variability, with a range of high to low proportions of DENV1 type-specific neutralizing antibodies recognizing the 1F4 epitope seen across individuals. Thus, the 1F4 epitope is a major but not exclusive target of type-specific neutralizing antibodies post-primary infection with different DENV1 genotypes in Asia and Latin America, and additional epitopes likely contribute to type-specific neutralization of DENV1.
Collapse
Affiliation(s)
- Daniela V Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen Young
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, CA, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, CA, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Yang CC, Hu HS, Lin HM, Wu PS, Wu RH, Tian JN, Wu SH, Tsou LK, Song JS, Chen HW, Chern JH, Chen CT, Yueh A. A novel flavivirus entry inhibitor, BP34610, discovered through high-throughput screening with dengue reporter viruses. Antiviral Res 2019; 172:104636. [PMID: 31654671 DOI: 10.1016/j.antiviral.2019.104636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 10/20/2019] [Indexed: 12/01/2022]
Abstract
Dengue virus (DENV) is a global health problem that affects approximately 3.9 billion people worldwide. Since safety concerns were raised for the only licensed vaccine, Dengvaxia, and since the present treatment is only supportive care, the development of more effective therapeutic anti-DENV agents is urgently needed. In this report, we identified a potential small-molecule inhibitor, BP34610, via cell-based high-throughput screening (HTS) of 12,000 compounds using DENV-2 reporter viruses. BP34610 reduced the virus yields of type 2 DENV-infected cells with a 50% effective concentration (EC50) and selectivity index value of 0.48 ± 0.06 μM and 197, respectively. Without detectable cytotoxicity, the compound inhibited not only all four serotypes of DENV but also Japanese encephalitis virus (JEV). Time-of-addition experiments suggested that BP34610 may act at an early stage of DENV virus infection. Sequencing analyses of several individual clones derived from BP34610-resistant viruses revealed a consensus amino acid substitution (S397P) in the N-terminal stem region of the E protein. Introduction of S397P into the DENV reporter viruses conferred an over 14.8-fold EC90 shift for BP34610. Importantly, the combination of BP34610 with a viral replication inhibitor, ribavirin, displayed synergistic enhancement of anti-DENV-2 activity. Our results identify an effective small-molecule inhibitor, BP34610, which likely targets the DENV E protein. BP34610 could be developed as an anti-flavivirus agent in the future.
Collapse
Affiliation(s)
- Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Han-Shu Hu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Hui-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Pei-Shan Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Ren-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jia-Ni Tian
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC; Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Hsin-Wei Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jyh-Haur Chern
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
20
|
Yang C, Zeng F, Gao X, Zhao S, Li X, Liu S, Li N, Deng C, Zhang B, Gong R. Characterization of two engineered dimeric Zika virus envelope proteins as immunogens for neutralizing antibody selection and vaccine design. J Biol Chem 2019; 294:10638-10648. [PMID: 31138647 DOI: 10.1074/jbc.ra119.007443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
The envelope protein of Zika virus (ZIKV) exists as a dimer on the mature viral surface and is an attractive antiviral target because it mediates viral entry. However, recombinant soluble wild-type ZIKV envelope (wtZE) might preferentially exist as monomer (monZE). Recently, it has been shown that the A264C substitution could promote formation of dimeric ZIKV envelope protein (ZEA264C), requiring further characterization of purified ZEA264C for its potential applications in vaccine development. We also noted that ZEA264C, connected by disulfide bond, might be different from the noncovalent native envelope dimer on the virion surface. Because the antibody Fc fragment exists as dimer and is widely used for fusion protein construction, here we fused wtZE to human immunoglobulin G1 (IgG1) Fc fragment (ZE-Fc) for noncovalent wtZE dimerization. Using a multistep purification procedure, we separated dimeric ZEA264C and ZE-Fc, revealing that they both exhibit typical β-sheet-rich secondary structures and stabilities similar to those of monZE. The binding activities of monZE, ZEA264C, and ZE-Fc to neutralizing antibodies targeting different epitopes indicated that ZEA264C and ZE-Fc could better mimic the native dimeric status, especially in terms of the formation of tertiary and quaternary epitopes. Both ZEA264C and ZE-Fc recognize a ZIKV-sensitive cell line as does monZE, indicating that the two constructs are still functional. Furthermore, a murine immunization assay disclose that ZEA264C and ZE-Fc elicit more neutralizing antibody responses than monZE does. These results suggest that the two immunogen candidates ZEA264C and ZE-Fc have potential utility for neutralizing antibody selection and vaccine design against ZIKV.
Collapse
Affiliation(s)
- Chunpeng Yang
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Fang Zeng
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Xinyu Gao
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Shaojuan Zhao
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Xuan Li
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Sheng Liu
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Na Li
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Chenglin Deng
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Bo Zhang
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Rui Gong
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,
| |
Collapse
|
21
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
22
|
Yang C, Gong R, de Val N. Development of Neutralizing Antibodies against Zika Virus Based on Its Envelope Protein Structure. Virol Sin 2019; 34:168-174. [PMID: 31020573 PMCID: PMC6513807 DOI: 10.1007/s12250-019-00093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
As we know more about Zika virus (ZIKV), as well as its linkage to birth defects (microcephaly) and autoimmune neurological syndromes, we realize the importance of developing an efficient vaccine against it. Zika virus disease has affected many countries and is becoming a major public health concern. To deal with the infection of ZIKV, plenty of experiments have been done on selection of neutralizing antibodies that can target the envelope (E) protein on the surface of the virion. However, the existence of antibody-dependent enhancement (ADE) effect might limit the use of them as therapeutic candidates. In this review, we classify the neutralizing antibodies against ZIKV based on the epitopes and summarize the resolved structural information on antibody/antigen complex from X-ray crystallography and cryo-electron microscopy (cryo-EM), which might be useful for further development of potent neutralizing antibodies and vaccines toward clinical use.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21701, USA.
| |
Collapse
|
23
|
Du S, Liu Y, Liu J, Zhao J, Champagne C, Tong L, Zhang R, Zhang F, Qin CF, Ma P, Chen CH, Liang G, Liu Q, Shi PY, Cazelles B, Wang P, Tian H, Cheng G. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat Commun 2019; 10:1324. [PMID: 30902991 PMCID: PMC6430813 DOI: 10.1038/s41467-019-09256-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/01/2019] [Indexed: 01/26/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that predominantly circulates between humans and Aedes mosquitoes. Clinical studies have shown that Zika viruria in patients persists for an extended period, and results in infectious virions being excreted. Here, we demonstrate that Aedes mosquitoes are permissive to ZIKV infection when breeding in urine or sewage containing low concentrations of ZIKV. Mosquito larvae and pupae, including from field Aedes aegypti can acquire ZIKV from contaminated aquatic systems, resulting in ZIKV infection of adult females. Adult mosquitoes can transmit infectious virions to susceptible type I/II interferon receptor-deficient (ifnagr-/-) C57BL/6 (AG6) mice. Furthermore, ZIKV viruria from infected AG6 mice can causes mosquito infection during the aquatic life stages. Our studies suggest that infectious urine could be a natural ZIKV source, which is potentially transmissible to mosquitoes when breeding in an aquatic environment.
Collapse
Affiliation(s)
- Senyan Du
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, 518055, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China
- School of Life Science, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jianying Liu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jie Zhao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Clara Champagne
- IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, 75005, Paris, France
| | - Liangqin Tong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, 518055, Shenzhen, Guangdong, People's Republic of China
| | - Fuchun Zhang
- Institute of infectious diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510060, Guangzhou, People's Republic of China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, People's Republic of China
| | - Ping Ma
- Department of Clinical Laboratory, Tsinghua University Hospital, 100084, Beijing, People's Republic of China
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan, Republic of China
| | - Guodong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, People's Republic of China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, China CDC, 102206, Beijing, People's Republic of China
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Bernard Cazelles
- IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, 75005, Paris, France
- International Center for Mathematical and Computational Modeling of Complex Systems (UMMISCO), IRD-Sorbone Université, Bondy, 93143, France
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, 100875, Beijing, People's Republic of China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China.
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, People's Republic of China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, 518055, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
The distribution of important sero-complexes of flaviviruses in Malaysia. Trop Anim Health Prod 2019; 51:495-506. [PMID: 30604332 DOI: 10.1007/s11250-018-01786-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022]
Abstract
Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.
Collapse
|
25
|
Herrada CA, Kabir MA, Altamirano R, Asghar W. Advances in Diagnostic Methods for Zika Virus Infection. J Med Device 2018; 12:0408021-4080211. [PMID: 30662580 DOI: 10.1115/1.4041086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
The Zika virus (ZIKV) is one of the most infamous mosquito-borne flavivirus on recent memory due to its potential association with high mortality rates in fetuses, microcephaly and neurological impairments in neonates, and autoimmune disorders. The severity of the disease, as well as its fast spread over several continents, has urged the World Health Organization (WHO) to declare ZIKV a global health concern. In consequence, over the past couple of years, there has been a significant effort for the development of ZIKV diagnostic methods, vaccine development, and prevention strategies. This review focuses on the most recent aspects of ZIKV research which includes the outbreaks, genome structure, multiplication and propagation of the virus, and more importantly, the development of serological and molecular detection tools such as Zika IgM antibody capture enzyme-linked immunosorbent assay (Zika MAC-ELISA), plaque reduction neutralization test (PRNT), reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR), reverse transcription-loop mediated isothermal amplification (RT-LAMP), localized surface plasmon resonance (LSPR) biosensors, nucleic acid sequence-based amplification (NASBA), and recombinase polymerase amplification (RPA). Additionally, we discuss the limitations of currently available diagnostic methods, the potential of newly developed sensing technologies, and also provide insight into future areas of research.
Collapse
Affiliation(s)
- Carlos A Herrada
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Md Alamgir Kabir
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Rommel Altamirano
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
26
|
Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus Receptors: Diversity, Identity, and Cell Entry. Front Immunol 2018; 9:2180. [PMID: 30319635 PMCID: PMC6168832 DOI: 10.3389/fimmu.2018.02180] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses are emerging and re-emerging arthropod-borne pathogens responsible for significant mortality and morbidity worldwide. The genus comprises more than seventy small, positive-sense, single-stranded RNA viruses, which are responsible for a spectrum of human and animal diseases ranging in symptoms from mild, influenza-like infection to fatal encephalitis and haemorrhagic fever. Despite genomic and structural similarities across the genus, infections by different flaviviruses result in disparate clinical presentations. This review focusses on two haemorrhagic flaviviruses, dengue virus and yellow fever virus, and two neurotropic flaviviruses, Japanese encephalitis virus and Zika virus. We review current knowledge on host-pathogen interactions, virus entry strategies and tropism.
Collapse
Affiliation(s)
- Mathilde Laureti
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Divya Narayanan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Julio Rodriguez-Andres
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Klitting R, Fischer C, Drexler JF, Gould EA, Roiz D, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (II). Genes (Basel) 2018; 9:E425. [PMID: 30134625 PMCID: PMC6162518 DOI: 10.3390/genes9090425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization's initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - David Roiz
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| |
Collapse
|
28
|
Structural Transition and Antibody Binding of EBOV GP and ZIKV E Proteins from Pre-Fusion to Fusion-Initiation State. Biomolecules 2018; 8:biom8020025. [PMID: 29748487 PMCID: PMC6022868 DOI: 10.3390/biom8020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Membrane fusion proteins are responsible for viral entry into host cells—a crucial first step in viral infection. These proteins undergo large conformational changes from pre-fusion to fusion-initiation structures, and, despite differences in viral genomes and disease etiology, many fusion proteins are arranged as trimers. Structural information for both pre-fusion and fusion-initiation states is critical for understanding virus neutralization by the host immune system. In the case of Ebola virus glycoprotein (EBOV GP) and Zika virus envelope protein (ZIKV E), pre-fusion state structures have been identified experimentally, but only partial structures of fusion-initiation states have been described. While the fusion-initiation structure is in an energetically unfavorable state that is difficult to solve experimentally, the existing structural information combined with computational approaches enabled the modeling of fusion-initiation state structures of both proteins. These structural models provide an improved understanding of four different neutralizing antibodies in the prevention of viral host entry.
Collapse
|
29
|
Persaud M, Martinez-Lopez A, Buffone C, Porcelli SA, Diaz-Griffero F. Infection by Zika viruses requires the transmembrane protein AXL, endocytosis and low pH. Virology 2018; 518:301-312. [PMID: 29574335 DOI: 10.1016/j.virol.2018.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
The recent Zika virus (ZIKV) outbreak in Brazil has suggested associations of this virus infection with neurological disorders, including microcephaly in newborn infants and Guillian-Barré syndrome in adults. Previous reports have shown that AXL, a transmembrane receptor tyrosine kinase protein, is essential for ZIKV infection of mammalian cells, but this remains controversial. Here, we have assessed the involvement of AXL in the ability of ZIKV to infect mammalian cells, and also the requirement for endocytosis and acidic pH. We demonstrated that AXL is essential for ZIKV infection of human fibroblast cell line HT1080 as the targeted deletion of the gene for AXL in HT1080 cells made them no longer susceptible to ZIKV infection. Our results also showed that infection was prevented by lysosomotropic agents such as ammonium chloride, chloroquine and bafilomycin A1, which neutralize the normally acidic pH of endosomal compartments. Infection by ZIKV was also blocked by chlorpromazine, indicating a requirement for clathrin-mediated endocytosis. Taken together, our findings suggest that AXL most likely serves as an attachment factor for ZIKV on the cell surface, and that productive infection requires endocytosis and delivery of the virus to acidified intracellular compartments.
Collapse
Affiliation(s)
- Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Hasan SS, Sevvana M, Kuhn RJ, Rossmann MG. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol 2018; 25:13-20. [PMID: 29323278 DOI: 10.1038/s41594-017-0010-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/11/2017] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is an enveloped, icosahedral flavivirus that has structural and functional similarities to other human flavivirus pathogens such as dengue (DENV), West Nile (WNV) and Japanese encephalitis (JEV) viruses. ZIKV infections have been linked to fetal microcephaly and the paralytic Guillain-Barré syndrome. This review provides a comparative structural analysis of the assembly, maturation and host-cell entry of ZIKV with other flaviviruses, especially DENV. We also discuss the mechanisms of neutralization by antibodies.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Tottey S, Shoji Y, Jones RM, Chichester JA, Green BJ, Musiychuk K, Si H, Manceva SD, Rhee A, Shamloul M, Norikane J, Guimarães RC, Caride E, Silva ANMR, Simões M, Neves PCC, Marchevsky R, Freire MS, Streatfield SJ, Yusibov V. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models. Am J Trop Med Hyg 2017; 98:420-431. [PMID: 29231157 DOI: 10.4269/ajtmh.16-0293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana. However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Huaxin Si
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosane C Guimarães
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Elena Caride
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Andrea N M R Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marisol Simões
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia C C Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Marchevsky
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos S Freire
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
32
|
Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses. Front Med 2017; 11:449-461. [PMID: 29170916 PMCID: PMC7089273 DOI: 10.1007/s11684-017-0589-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023]
Abstract
In recent years, unexpected outbreaks of infectious diseases caused by emerging and re-emerging viruses have become more frequent, which is possibly due to environmental changes. These outbreaks result in the loss of life and economic hardship. Vaccines and therapeutics should be developed for the prevention and treatment of infectious diseases. In this review, we summarize and discuss the latest progress in the development of small-molecule viral inhibitors against highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, Ebola virus, and Zika virus. These viruses can interfere with the specific steps of viral life cycle by blocking the binding between virus and host cells, disrupting viral endocytosis, disturbing membrane fusion, and interrupting viral RNA replication and translation, thereby demonstrating potent therapeutic effect against various emerging and re-emerging viruses. We also discuss some general strategies for developing small-molecule viral inhibitors.
Collapse
|
33
|
Sittivicharpinyo T, Wonnapinij P, Surat W. Phylogenetic analyses of DENV-3 isolated from field-caught mosquitoes in Thailand. Virus Res 2017; 244:27-35. [PMID: 29126872 DOI: 10.1016/j.virusres.2017.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
Dengue virus serotype 3 (DENV-3) can cause all forms of dengue diseases and is a predominant serotype in many countries. This serotype is classified into five genotypes: I-V. Genotypes I-III have widely spread throughout the world, whereas genotypes IV and V are rare. Despite the impact on the spread of dengue diseases, only a few studies have reported the characteristics of DENV present in mosquito vectors. Hence, this study aimed to identify DENV-3 genotypes and reveal genetic variation of this virus presented in field-caught mosquitoes collected from endemic areas in Thailand during 2011-2015. First, we examined the effectiveness of the E gene sequence on DENV-3 genotyping, with results supporting the use of this gene for genotype identification. Then, we sequenced this gene in ten DENV-3 strains isolated from mosquitoes. The results showed that eight and two samples were genotypes III and V, respectively, and that they are closely related to DENV-3 isolated from Southeast and East Asian samples. The translated E gene sequences showed 25 unique amino acid (AA) residues located at 23 positions. Eight out of 25 residues have different chemical properties compared to the conserved AAs that are distributed across the three domains functioning in virus-host interaction. Hence, our study reports the first DENV-3 genotype V in Thailand, with these viruses potentially influencing both the disease severity and epidemic potential of DENV-3.
Collapse
Affiliation(s)
- Thikhumporn Sittivicharpinyo
- Evolutionary Genetics and Computational Biology Research Unit, Department of Genetics, Faculty of Science, Kasetsart University, Thailand
| | - Passorn Wonnapinij
- Evolutionary Genetics and Computational Biology Research Unit, Department of Genetics, Faculty of Science, Kasetsart University, Thailand; Centre for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University (CASTNAR, NRU-KU), Thailand
| | - Wunrada Surat
- Evolutionary Genetics and Computational Biology Research Unit, Department of Genetics, Faculty of Science, Kasetsart University, Thailand; Centre for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University (CASTNAR, NRU-KU), Thailand.
| |
Collapse
|
34
|
New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 2017; 31:1009-1019. [DOI: 10.1007/s10822-017-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
35
|
Landry SJ, Moss DL, Cui D, Ferrie RP, Fullerton ML, Wells EA, Yang L, Zhou N, Dougherty T, Mettu RR. Structural Basis for CD4+ T Cell Epitope Dominance in Arbo-Flavivirus Envelope Proteins: A Meta-Analysis. Viral Immunol 2017; 30:479-489. [PMID: 28614011 DOI: 10.1089/vim.2017.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A meta-analysis of CD4+ T cell epitope maps reveals clusters and gaps in envelope-protein (E protein) immunogenicity that can be explained by the likelihood of epitope processing, as determined by E protein three-dimensional structures. Differential processing may be at least partially responsible for variations in disease severity among arbo-flaviruses and points to structural features that modulate protection from disease.
Collapse
Affiliation(s)
- Samuel J Landry
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Daniel L Moss
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Da Cui
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Ryan P Ferrie
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Mitchell L Fullerton
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Evan A Wells
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lu Yang
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Nini Zhou
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Thomas Dougherty
- 1 Department of Biochemistry, Tulane University School of Medicine , New Orleans, Louisiana
| | - Ramgopal R Mettu
- 2 Department of Computer Science, Tulane University , New Orleans, Louisiana
| |
Collapse
|
36
|
Chen TH, Hu CC, Liao JT, Lee YL, Huang YW, Lin NS, Lin YL, Hsu YH. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector. Front Microbiol 2017; 8:788. [PMID: 28515719 PMCID: PMC5413549 DOI: 10.3389/fmicb.2017.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Jia-Teh Liao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan.,Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
37
|
Study of the mechanism of protonated histidine-induced conformational changes in the Zika virus dimeric envelope protein using accelerated molecular dynamic simulations. J Mol Graph Model 2017; 74:203-214. [PMID: 28445832 DOI: 10.1016/j.jmgm.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022]
Abstract
The Zika virus has drawn worldwide attention because of the epidemic diseases it causes. It is a flavivirus that has an icosahedral protein shell constituted by an envelope glycoprotein (E-protein) and membrane protein (M-protein) in the mature virion. The multistep process of membrane fusion to infect the host cell is pH-induced. To understand the mechanism of the conformational changes in the (E-M)2 protein homodimer embedded in the membrane, two 200-ns accelerated dynamic simulations were performed under different pH conditions. The low pH condition weakens the interactions and correlations in both E-protein monomers and in the E-M heterodimer. The highly conserved residues, His249, His288, His323 and His446, are protonated under low pH conditions and play key roles in driving the fusion process. The analysis and discussion in this study may provide some insight into the molecular mechanism of Zika virus infection.
Collapse
|
38
|
Soto-Acosta R, Bautista-Carbajal P, Cervantes-Salazar M, Angel-Ambrocio AH, del Angel RM. DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: A potential antiviral target. PLoS Pathog 2017; 13:e1006257. [PMID: 28384260 PMCID: PMC5383345 DOI: 10.1371/journal.ppat.1006257] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Dengue is the most common mosquito-borne viral disease in humans. Changes of lipid-related metabolites in endoplasmic reticulum of dengue virus (DENV) infected cells have been associated with replicative complexes formation. Previously, we reported that DENV infection inhibits HMGCR phosphorylation generating a cholesterol-enriched cellular environment in order to favor viral replication. In this work, using enzymatic assays, ELISA, and WB we found a significant higher activity of HMGCR in DENV infected cells, associated with the inactivation of AMPK. AMPK activation by metformin declined the HMGCR activity suggesting that AMPK inactivation mediates the enhanced activity of HMGCR. A reduction on AMPK phosphorylation activity was observed in DENV infected cells at 12 and 24 hpi. HMGCR and cholesterol co-localized with viral proteins NS3, NS4A and E, suggesting a role for HMGCR and AMPK activity in the formation of DENV replicative complexes. Furthermore, metformin and lovastatin (HMGCR inhibitor) altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. In agreement, metformin prompted a significant dose-dependent antiviral effect in DENV infected cells, while compound C (AMPK inhibitor) augmented the viral genome copies and the percentage of infected cells. The PP2A activity, the main modulating phosphatase of HMGCR, was not affected by DENV infection. These data demonstrate that the elevated activity of HMGCR observed in DENV infected cells is mediated through AMPK inhibition and not by increase in PP2A activity. Interestingly, the inhibition of this phosphatase showed an antiviral effect in an HMGCR-independent manner. These results suggest that DENV infection increases HMGCR activity through AMPK inactivation leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies new potential antiviral targets for DENV replication. DENV replicative complexes formation is associated with changes of lipid-related metabolites in endoplasmic reticulum, such as an increase in cholesterol synthesis. This increase correlates with a significant augment in the activity of HMGCoA reductase (the limiting enzyme in cholesterol synthesis), favoring a cholesterol-enriched cellular environment. The augment in the activity of the HMGCR observed in infected cells is caused by a decrease in the phosphorylation level of the HMGCR, associated with the inactivation of AMPK. In agreement, AMPK activation by metformin reduces HMGCR activity and affects viral replication. The role HMGCR and AMPK activity in DENV replicative complexes formation was confirmed by the co-localization of HMGCR and cholesterol with the viral proteins NS3, NS4A and E. Furthermore, metformin and lovastatin (HMGCR inhibitor) treatments altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. The results show that during DENV infection, an increase in the HMGCR activity occurs through AMPK inactivation, leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies potential new antiviral targets for DENV replication.
Collapse
Affiliation(s)
- Rubén Soto-Acosta
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., México
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | | | | | | | - Rosa M. del Angel
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., México
- * E-mail:
| |
Collapse
|
39
|
Dubey KD, Tiwari G, Ojha RP. Targeting domain-III hinging of dengue envelope (DENV-2) protein by MD simulations, docking and free energy calculations. J Mol Model 2017; 23:102. [PMID: 28255859 DOI: 10.1007/s00894-017-3259-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
The entry of the dengue virus is mediated by the conformational change in the envelope protein due to change in the endosomal pH. The structural study reveals that domain-III of the dengue envelope protein (DENV) shows the largest shift in its position during the entry of the virus. Therefore, targeting the hinge region of the domain-III may block the conformational changes in the DENV. In the present work, we have targeted the domain I/III hinge region using four known ligands used for the dengue envelope protein (serotype-2) and have intended to explore the specificity of one ligand R1 (5-(3-chlorophenyl)-N-(2-phenyl-2H-benzo[d][1,2,3]triazol-6-yl)furan-2-carboxamide) that succeeded the dengue inhibition by the molecular dynamics (MD) simulations in conjunction of the molecular docking and the binding free energy calculations. The residue interactions map shows Lys 296 of domain-III of the DENV-2, which might be responsible for binding small molecules between domain I/III interface, as an important residue conserved in all the dengue serotypes.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Biophysics Unit, Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India.
| | - Gargi Tiwari
- Biophysics Unit, Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| | - Rajendra Prasad Ojha
- Biophysics Unit, Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
40
|
Molecular epidemiology and evolutionary analysis of dengue virus type 2, circulating in Delhi, India. Virusdisease 2016; 27:400-404. [PMID: 28004020 DOI: 10.1007/s13337-016-0346-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022] Open
Abstract
Dengue virus type 2 (DENV-2) has been associated with severe dengue outbreaks in many countries including India. Its predominance was recorded nearly after a decade in the capital city, Delhi in 2013. The present study characterizes DENV-2 circulated during 2013-2014. Analysis based on envelope (E) gene showed the presence of two clades (I and II) of DENV-2, within the Cosmopolitan genotype. Analysis of time of most recent common ancestor revealed the existence of clade I for more than a decade (95 % HPD 13-16 years) however, clade II showed comparatively recent emergence (95 % HPD 5-13 years). Presence of different clades is of high significance as this may result in increased virus transmission and major outbreaks. Further, the presence of a unique amino acid substitution, Q325H was also observed in an isolate; 14/D2/Del/2013 (KT717981). This substitution falls in immune epitope (epitope id: 150268) and may have important role in host immune response.
Collapse
|
41
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
42
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
43
|
Vadakkan KI. Rapid chain generation of interpostsynaptic functional LINKs can trigger seizure generation: Evidence for potential interconnections from pathology to behavior. Epilepsy Behav 2016; 59:28-41. [PMID: 27085478 DOI: 10.1016/j.yebeh.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
The experimental finding that a paroxysmal depolarizing shift (PDS), an electrophysiological correlate of seizure activity, is a giant excitatory postsynaptic potential (EPSP) necessitates a mechanism for spatially summating several EPSPs at the level of the postsynaptic terminals (dendritic spines). In this context, we will examine reversible interpostsynaptic functional LINKs (IPLs), a proposed mechanism for inducing first-person virtual internal sensations of higher brain functions concurrent with triggering behavioral motor activity for possible pathological changes that may contribute to seizures. Pathological conditions can trigger a rapid chain generation and propagation of different forms of IPLs leading to seizure generation. A large number of observations made at different levels during both ictal and interictal periods are explained by this mechanism, including the tonic and clonic motor activity, different types of hallucinations, loss of consciousness, gradual worsening of cognitive abilities, a relationship with kindling (which uses an augmented stimulation protocol than that used for inducing long-term potentiation (LTP), which is an electrophysiological correlate of behavioral makers of internal sensation of memory), effect of a ketogenic diet on seizure prevention, dendritic spine loss in seizure disorders, neurodegenerative changes, and associated behavioral changes. The interconnectable nature of these findings is explained as loss of function states of a proposed normal functioning of the nervous system.
Collapse
|
44
|
Bonaldo MC, Ribeiro IP, Lima NS, dos Santos AAC, Menezes LSR, da Cruz SOD, de Mello IS, Furtado ND, de Moura EE, Damasceno L, da Silva KAB, de Castro MG, Gerber AL, de Almeida LGP, Lourenço-de-Oliveira R, Vasconcelos ATR, Brasil P. Isolation of Infective Zika Virus from Urine and Saliva of Patients in Brazil. PLoS Negl Trop Dis 2016; 10:e0004816. [PMID: 27341420 PMCID: PMC4920388 DOI: 10.1371/journal.pntd.0004816] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emergent threat provoking a worldwide explosive outbreak. Since January 2015, 41 countries reported autochthonous cases. In Brazil, an increase in Guillain-Barré syndrome and microcephaly cases was linked to ZIKV infections. A recent report describing low experimental transmission efficiency of its main putative vector, Ae. aegypti, in conjunction with apparent sexual transmission notifications, prompted the investigation of other potential sources of viral dissemination. Urine and saliva have been previously established as useful tools in ZIKV diagnosis. Here, we described the presence and isolation of infectious ZIKV particles from saliva and urine of acute phase patients in the Rio de Janeiro state, Brazil. METHODOLOGY/PRINCIPAL FINDINGS Nine urine and five saliva samples from nine patients from Rio de Janeiro presenting rash and other typical Zika acute phase symptoms were inoculated in Vero cell culture and submitted to specific ZIKV RNA detection and quantification through, respectively, NAT-Zika, RT-PCR and RT-qPCR. Two ZIKV isolates were achieved, one from urine and one from saliva specimens. ZIKV nucleic acid was identified by all methods in four patients. Whenever both urine and saliva samples were available from the same patient, urine viral loads were higher, corroborating the general sense that it is a better source for ZIKV molecular diagnostic. In spite of this, from the two isolated strains, each from one patient, only one derived from urine, suggesting that other factors, like the acidic nature of this fluid, might interfere with virion infectivity. The complete genome of both ZIKV isolates was obtained. Phylogenetic analysis revealed similarity with strains previously isolated during the South America outbreak. CONCLUSIONS/SIGNIFICANCE The detection of infectious ZIKV particles in urine and saliva of patients during the acute phase may represent a critical factor in the spread of virus. The epidemiological relevance of this finding, regarding the contribution of alternative non-vectorial ZIKV transmission routes, needs further investigation.
Collapse
Affiliation(s)
- Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ieda P. Ribeiro
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Noemia S. Lima
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alexandre A. C. dos Santos
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Lidiane S. R. Menezes
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Stephanie O. D. da Cruz
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Iasmim S. de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Nathália D. Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Elaine E. de Moura
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luana Damasceno
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Kely A. B. da Silva
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcia G. de Castro
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Alexandra L. Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Patrícia Brasil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Kim SH, Kim YN, Truong TT, Thu Thuy NT, Mai LQ, Jang YS. Development of a monoclonal antibody specific to envelope domain III with broad-spectrum detection of all four dengue virus serotypes. Biochem Biophys Res Commun 2016; 473:894-898. [PMID: 27059141 DOI: 10.1016/j.bbrc.2016.03.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that annually infects more than 390 million people in 100 different countries. Symptoms of the viral infection include a relatively weak dengue fever to severe dengue hemorrhagic fever/dengue shock syndrome, which are mortal infectious diseases. As of yet, there is no commercially available vaccine or therapeutic for DENV. Currently, passive immunotherapy using DENV-specific antibody (Ab) is a considered strategy to treat DENV infection. Here, we developed a monoclonal Ab (mAb), EDIIImAb-61, specific to the DENV domain III of the envelope glycoprotein (EDIII) with broad-spectrum detection ability to all four DENV serotypes (DENV-1∼4) to use as a therapeutic Ab. Although EDIII contains non-immunodominant epitopes compared to domains I and II, domain III plays a critical role in host receptor binding. EDIIImAb-61 exhibited cross-reactive binding affinity to all four DENV serotypes that had been isolated from infected humans. To further characterize EDIIImAb-61 and prepare genes for large-scale production using a heterologous expression system, the sequence of the complementarity determining regions was analyzed after cloning the full-length cDNA genes encoding the heavy and light chain of the mAb. Finally, we produced Ab from CHO-K1 cells transfected with the cloned EDIIImAb-61 heavy and light chain genes and confirmed the binding ability of the Ab. Collectively, we conclude that EDIIImAb-61 itself and the recombinant Ab produced using the cloned heavy and light chain gene of EDIIImAb-61 is a candidate for passive immunotherapy against DENV infection.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonju 54896, South Korea
| | - Yu Na Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonju 54896, South Korea
| | - Thang Thua Truong
- Canadian Food Inspection Agency, National Center for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | | | - Le Quynh Mai
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonju 54896, South Korea.
| |
Collapse
|
46
|
Molecular Docking and Molecular Dynamics Simulation Studies to Predict Flavonoid Binding on the Surface of DENV2 E Protein. Interdiscip Sci 2016; 9:499-511. [PMID: 26969331 DOI: 10.1007/s12539-016-0157-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus-host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein-flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.
Collapse
|
47
|
Talarico LB, Damonte EB. Characterization of in vitro dengue virus resistance to carrageenan. J Med Virol 2016; 88:1120-9. [DOI: 10.1002/jmv.24457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Laura B. Talarico
- Laboratory of Virology; Faculty of Sciences; Department of Biological Chemistry; University of Buenos Aires; Buenos Aires Argentina
| | - Elsa B. Damonte
- Laboratory of Virology; Faculty of Sciences; Department of Biological Chemistry; University of Buenos Aires; Buenos Aires Argentina
- IQUIBICEN-National Research Council (CONICET); Ciudad Universitaria; Buenos Aires Argentina
| |
Collapse
|
48
|
Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park AM, Hasanovic F, Yanagihara R, Nagata S. Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology. ACTA MEDICA KINKI UNIVERSITY 2016; 41:37-52. [PMID: 28428682 DOI: pmid/28428682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Flavivirus, family Flaviviridae, which includes many human and animal pathogens, such as dengue virus (DENV), West Nile virus, and Japanese encephalitis virus. In the original as well as subsequent experimental and clinical reports, ZIKV seems to have moderate neurotropism (in animal models) and neurovirulence (in human fetuses), but no neuroinvasiveness (in human adults). Intrauterine ZIKV infection (viral pathology) has been linked to an increased incidence of microcephaly, while increased Guillain-Barré syndrome (GBS) following ZIKV infection is likely immune-mediated (immunopathology). Clinically, in ZIKV infection, antibodies against other flaviviruses, such as DENV, have been detected; these antibodies can cross-react with ZIKV without ZIKV neutralization. In theory, such non-neutralizing antibodies are generated at the expense of decreased production of neutralizing antibodies ("antigenic sin"), leading to poor viral clearance, while the non-neutralizing antibodies can also enhance viral replication in Fc receptor (FcR)-bearing cells via antibody-dependent enhancement (ADE). Here, we propose three potential roles of the antibody-mediated pathogenesis of ZIKV infection: 1) cross-reactive antibodies that recognize ZIKV and neural antigens cause GBS; 2) ZIKV-antibody complex is transported transplacentally via neonatal FcR (FcRn), resulting in fetal infection; and 3) ZIKV-antibody complex is taken up at peripheral nerve endings and transported to neurons in the central nervous system (CNS), by which the virus can enter the CNS without crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Faris Hasanovic
- Department of Pathology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
49
|
Yamaji H, Konishi E. Production of Japanese Encephalitis Virus-Like Particles Using Insect Cell Expression Systems. Methods Mol Biol 2016; 1404:365-375. [PMID: 27076311 DOI: 10.1007/978-1-4939-3389-1_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Virus-like particles (VLPs) can be produced via the expression of virus surface proteins that self-assemble into particulate structures in recombinant protein expression systems. Expression of the DNA fragment encoding the Japanese encephalitis (JE) virus prM signal peptide, the precursor (prM) of the viral membrane protein (M), and the envelope glycoprotein (E) allows the production of a secretory form of VLPs. Expression systems that use lepidopteran insect cells, such as the baculovirus-insect cell system and stably transformed insect cells, can be used for the efficient production of JE VLPs. This chapter describes the production of JE VLPs from stably transformed lepidopteran insect cells.
Collapse
Affiliation(s)
- Hideki Yamaji
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.,BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
50
|
McLean BJ, Hobson-Peters J, Webb CE, Watterson D, Prow NA, Nguyen HD, Hall-Mendelin S, Warrilow D, Johansen CA, Jansen CC, van den Hurk AF, Beebe NW, Schnettler E, Barnard RT, Hall RA. A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology 2015; 486:272-83. [PMID: 26519596 DOI: 10.1016/j.virol.2015.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 01/16/2023]
Abstract
To date, insect-specific flaviviruses (ISFs) have only been isolated from mosquitoes and increasing evidence suggests that ISFs may affect the transmission of pathogenic flaviviruses. To investigate the diversity and prevalence of ISFs in Australian mosquitoes, samples from various regions were screened for flaviviruses by ELISA and RT-PCR. Thirty-eight pools of Aedes vigilax from Sydney in 2007 yielded isolates of a novel flavivirus, named Parramatta River virus (PaRV). Sequencing of the viral RNA genome revealed it was closely related to Hanko virus with 62.3% nucleotide identity over the open reading frame. PaRV failed to grow in vertebrate cells, with only Aedes-derived mosquito cell lines permissive to replication, suggesting a narrow host range. 2014 collections revealed that PaRV had persisted in A. vigilax populations in Sydney, with 88% of pools positive. Further investigations into its mode of transmission and potential to influence vector competence of A. vigilax for pathogenic viruses are warranted.
Collapse
Affiliation(s)
- Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Cameron E Webb
- Medical Entomology, Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, NSW, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Hong Duyen Nguyen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Sonja Hall-Mendelin
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - David Warrilow
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Western Australia, Australia.
| | - Cassie C Jansen
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - Andrew F van den Hurk
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, Queensland, Australia; CSIRO Biosecurity Flagship, Dutton Park, Queensland, Australia.
| | - Esther Schnettler
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| |
Collapse
|