1
|
Macedo MA, Melgarejo TA, Vasquez-Mayorga M, Cespedes M, Rojas MR, Turini TA, Batuman O, Wintermantel WM, Gilbertson RL. Squash vein yellowing virus from California emerged in the Middle East via intragenic and intergeneric recombination events in the hypervariable potyvirus P1 and ipomovirus P1a genes. J Gen Virol 2024; 105. [PMID: 39418084 DOI: 10.1099/jgv.0.002033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
We present the complete sequence of the genomic RNA of an isolate of squash vein yellowing virus (Ipomovirus cucurbitavenaflavi) from California (SqVYV-CA) and show it is a recombinant virus with a highly divergent 5' UTR and proximal P1a gene. The evolution of SqVYV-CA involved an intrageneric event between unknown potyviruses, related to isolates of papaya ringspot virus (Potyvirus papayanuli) from the Old World, and an intergeneric event between this recombinant potyvirus (minor parent) and an isolate of SqVYV from Israel (SqVYV-IL) (major parent). These events occurred in mixed infections and in the potyvirus P1 and ipomovirus P1a recombination hotspots and resulted in SqVYV-CA having a potyvirus 5' UTR and chimeric P1-P1a gene/protein and the remainder of the genome from SqVYV-IL. The SqVYV-CA chimeric P1-P1a gene is under positive selection, and the protein is intrinsically disordered and may localize to the nucleus via nuclear localization signals in the P1 part. The C-terminal SqVYV-IL P1a part also diverged but retained the conserved serine protease motif. Furthermore, substantial divergence in SqVYV isolates from the Middle East was associated with genetic drift and a long evolutionary history in this region. The finding that the host range and symptomatology in cucurbits of SqVYV-CA is similar to those of SqVYV from Florida and SqVYV-IL, indicated that the recombinant part of the genome had no obvious effect on the virus-host interaction. A divergent part of the P1 sequence of the SqVYV-CA P1-P1a gene was used to develop a primer pair and RT-PCR test for specific detection of SqVYV-CA. This test was used to detect spread of SqVYV-CA to a new production area of California in 2021 and 2022. Together, these results demonstrate (i) a high level of genetic diversity exists among isolates of SqVYV and involved intra- and intergeneric recombination and genetic drift (mutation), (ii) evidence that SqVYV originated in the Middle East and that there were independent introductions into the New World and (iii) the remarkable genetic flexibility of the 5' proximal genes of these viruses.
Collapse
Affiliation(s)
- M A Macedo
- Federal Institution of Brasília, Brasília, Federal District, Brazil
| | - T A Melgarejo
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - M Vasquez-Mayorga
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - M Cespedes
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - M R Rojas
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - T A Turini
- University of California Agriculture and Natural Resources, Fresno, CA, USA
| | - O Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, USA
| | - W M Wintermantel
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - R L Gilbertson
- Department of Plant Pathology, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Adero J, Wokorach G, Stomeo F, Yao N, Machuka E, Njuguna J, Byarugaba DK, Kreuze J, Yencho GC, Otema MA, Yada B, Kitavi M. Next Generation Sequencing and Genetic Analyses Reveal Factors Driving Evolution of Sweetpotato Viruses in Uganda. Pathogens 2024; 13:833. [PMID: 39452705 PMCID: PMC11510311 DOI: 10.3390/pathogens13100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Sweetpotato (Ipomoea batatas L.) is an essential food crop globally, especially for farmers facing resource limitations. Like other crops, sweetpotato cultivation faces significant production challenges due to viral infections. This study aimed to identify and characterize viruses affecting sweetpotato crops in Uganda, mostly those associated with sweetpotato virus disease (SPVD). Infected leaf samples were collected from farmers' fields in multiple districts spanning three regions in Uganda. MiSeq, a next-generation sequencing platform, was used to generate reads from the viral nucleic acid. The results revealed nine viruses infecting sweetpotato crops in Uganda, with most plants infected by multiple viral species. Sweet potato pakakuy and sweet potato symptomless virus_1 are reported in Uganda for the first time. Phylogenetic analyses demonstrated that some viruses have evolved to form new phylogroups, likely due to high mutations and recombination, particularly in the coat protein, P1 protein, cylindrical inclusion, and helper component proteinase regions of the potyvirus. The sweet potato virus C carried more codons under positive diversifying selection than the closely related sweet potato feathery mottle virus, particularly in the P1 gene. This study provides valuable insights into the viral species infecting sweetpotato crops, infection severity, and the evolution of sweet potato viruses in Uganda.
Collapse
Affiliation(s)
- Joanne Adero
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala P.O. Box 7084, Uganda; (M.A.O.); (B.Y.)
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Godfrey Wokorach
- Department of Biology, Faculty of Science, Muni University, Arua P.O. Box 725, Uganda;
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Nasser Yao
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Eunice Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Denis K. Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Jan Kreuze
- International Potato Centre, CIP Headquarters Lima, Avenida La Molina 1895, La Molina Apartado Postal 1558, Lima 15024, Peru;
| | - G. Craig Yencho
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, P.O. Box 7609, Raleigh, NC 27695, USA;
| | - Milton A. Otema
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala P.O. Box 7084, Uganda; (M.A.O.); (B.Y.)
| | - Benard Yada
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala P.O. Box 7084, Uganda; (M.A.O.); (B.Y.)
| | - Mercy Kitavi
- International Potato Centre, SSA Regional Office, Nairobi P.O. Box 25171, Kenya
| |
Collapse
|
3
|
Wei KJ, Jiang AM, Jiang S, Huang YJ, Jiang SY, Su XL, Tettey CK, Wang XQ, Tang W, Cheng DJ. New isolate of sweet potato virus 2 from Ipomoea nil: molecular characterization, codon usage bias, and phylogenetic analysis based on complete genome. Virol J 2024; 21:222. [PMID: 39300471 DOI: 10.1186/s12985-024-02500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Viral diseases of sweet potatoes are causing severe crop losses worldwide. More than 30 viruses have been identified to infect sweet potatoes among which the sweet potato latent virus (SPLV), sweet potato mild speckling virus (SPMSV), sweet potato virus G (SPVG) and sweet potato virus 2 (SPV2) have been recognized as distinct species of the genus Potyvirus in the family Potyviridae. The sweet potato virus 2 (SPV2) is a primary pathogen affecting sweet potato crops. METHODS In this study, we detected an SPV2 isolate (named SPV2-LN) in Ipomoea nil in China. The complete genomic sequence of SPV2-LN was obtained using sequencing of small RNAs, RT-PCR, and RACE amplification. The codon usage, phylogeny, recombination analysis and selective pressure analysis were assessed on the SPV2-LN genome. RESULTS The complete genome of SPV2-LN consisted of 10,606 nt (GenBank No. OR842902), encoding 3425 amino acids. There were 28 codons in the SPV2-LN genome with a relative synonymous codon usage (RSCU) value greater than 1, of which 21 end in A/U. Among the 12 proteins of SPV2, P3 and P3N-PIPO exhibited the highest variability in their amino acid sequences, while P1 was the most conserved, with an amino acid sequence identity of 87-95.3%. The phylogenetic analysis showed that 21 SPV2 isolates were clustered into four groups, and SPV2-LN was clustered together with isolate yu-17-47 (MK778808) in group IV. Recombination analysis indicated no major recombination sites in SPV2-LN. Selective pressure analysis showed dN/dS of the 12 proteins of SPV2 were less than 1, indicating that all were undergoing negative selection, except for P1N-PISPO. CONCLUSION This study identified a sweet potato virus, SPV2-LN, in Ipomoea nil. Sequence identities and genome analysis showed high similarity between our isolate and a Chinese isolate, yu-17-47, isolated from sweet potato. These results will provide a theoretical basis for understanding the genetic evolution and viral spread of SPV2.
Collapse
Affiliation(s)
- Kun-Jiang Wei
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Ai-Ming Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Shuo Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Yang-Jian Huang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Song-Yu Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Xiao-Ling Su
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Carlos Kwesi Tettey
- Department of Molecular Biology and Biotechnology, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Xiao-Qiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China.
| | - De-Jie Cheng
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China.
| |
Collapse
|
4
|
Wang M, Su X, Zhang F, Wang T, Zheng K, Zhang Z. Complete genome sequence of polygonatum kingianum mottle virus infecting Polygonatum kingianum Coll. et Hemsl in Yunnan, China. Arch Virol 2024; 169:39. [PMID: 38300368 DOI: 10.1007/s00705-024-05965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
The complete genome sequence of a putative novel potyvirus, tentatively named "polygonatum kingianum mottle virus" (PKgMV; GenBank accession no. ON428226), infecting Polygonatum kingianum in China, was obtained by next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE). PKgMV exhibits the typical genome organization and characteristics of members of the genus Potyvirus, with a length of 10,002 nucleotides (nt) and a large open reading frame (nt 108 to 9,746) encoding a polyprotein of 3,212 amino acids (aa) (363.68 kDa). Pairwise comparisons revealed that the PKgMV polyprotein shares 50.5-68.6% nt and 43.1-72.2% aa sequence identity with reported members of the genus Potyvirus. Moreover, phylogenetic analysis indicated that PKgMV is closely related to polygonatum kingianum virus 1 (PKgV1; accession no. MK427056). These results suggest that the PKgMV is a novel member of the genus Potyvirus of the family Potyviridae.
Collapse
Affiliation(s)
- Maosen Wang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, Yunnan, 650205, P. R. China
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, Yunnan, 650205, P. R. China
| | - Fan Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, Yunnan, 650205, P. R. China
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| | - Tiantian Wang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, Yunnan, 650205, P. R. China
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, Yunnan, 650205, P. R. China.
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, Yunnan, 650205, P. R. China.
| |
Collapse
|
5
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
6
|
Zhang K, Gu T, Xu X, Gan H, Qin L, Feng C, He Z. Sugarcane streak mosaic virus P1 protein inhibits unfolded protein response through direct suppression of bZIP60U splicing. PLoS Pathog 2023; 19:e1011738. [PMID: 37883577 PMCID: PMC10697598 DOI: 10.1371/journal.ppat.1011738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/05/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The unfolded protein response (UPR) is a cell-designated strategy that maintains the balance of protein folding in the endoplasmic reticulum (ER). UPR features a network of signal transduction pathways that reprogram the transcription, mRNA translation, and protein post-translational modification to relieve the ER stresses from unfolded/misfolded proteins. Infection with plant viruses can induce the UPR, and activated UPR often promotes plant viral infections in turn. However, the mechanism used by plant viruses to balance UPR and achieve robust infection remain largely unknown. In this study, P1SCSMV was identified as a virus-encoded RNA silencing suppressor (VSR). Heterologous overexpression of P1SCSMV via potato virus X (PVX) was found lead to programmed cell death (PCD) in Nicotiana benthamiana. Furthermore, P1SCSMV was also found to inhibit the PVX infection-triggered UPR by downregulating UPR-related genes and directly induced the distortion and collapse of the ER polygonal meshes on PVX-P1SCSMV infected N. benthamiana. Moreover, self-interaction, VSR activity, UPR inhibition, and cell death phenotype of P1SCSMV were also found to be dependent on its bipartite nuclear localization signal (NLS) (251RKRKLFPRIPLK262). P1SCSMV was found to directly bind to the stem-loop region of NbbZIP60U via its NLS and inhibit the UPR pathways, ultimately resulting in a PCD phenotype in PVX-P1SCSMV infected N. benthamiana leaves. This study also revealed the balancing role of potyviruses encoded P1SCSMV in the UPR pathway to achieve robust viral infection. This may represent a novel virulence strategy for plant viruses.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tianxiao Gu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiaowei Xu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Haifeng Gan
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Lang Qin
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Chenwei Feng
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Zhen He
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
7
|
Kawakubo S, Kim H, Takeshita M, Masuta C. Host-specific adaptation drove the coevolution of leek yellow stripe virus and Allium plants. Microbiol Spectr 2023; 11:e0234023. [PMID: 37706684 PMCID: PMC10581216 DOI: 10.1128/spectrum.02340-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Host adaptation plays a crucial role in virus evolution and is a consequence of long-term interactions between virus and host in a complex arms race between host RNA silencing and viral RNA silencing suppressor (RSS) as counterdefense. Leek yellow stripe virus (LYSV), a potyvirus causing yield loss of garlic, infects several species of Allium plants. The unexpected discovery of an interspecific hybrid of garlic, leek, and great-headed (GH) garlic motivated us to explore the host-adaptive evolution of LYSV. Here, using Bayesian phylogenetic comparative methods and a functional assay of viral RSS activity, we show that the evolutionary context of LYSV has been shaped by the host adaptation of the virus during its coevolution with Allium plants. Our phylogenetic analysis revealed that LYSV isolates from leek and their taxonomic relatives (Allium ampeloprasum complex; AAC) formed a distinct monophyletic clade separate from garlic isolates and are likely to be uniquely adapted to AAC. Our comparative studies on viral accumulation indicated that LYSV accumulated at a low level in leek, whereas LYSVs were abundant in other Allium species such as garlic and its relatives. When RSS activity of the viral P1 and HC-Pro of leek LYSV isolate was analyzed, significant synergism in RSS activity between the two proteins was observed in leek but not in other species, suggesting that viral RSS activity may be important for the viral host-specific adaptation. We thus consider that LYSV may have undergone host-specific evolution at least in leek, which must be driven by speciation of its Allium hosts. IMPORTANCE Potyviruses are the most abundant plant RNA viruses and are extremely diversified in terms of their wide host range. Due to frequent host switching during their evolution, host-specific adaptation of potyviruses may have been shaped by numerous host factors. However, any critical determinants for viral host range remain largely unknown, possibly because of the repeated gain and loss of virus infectivity of plants. Leek yellow stripe virus (LYSV) is a species of the genus Potyvirus, which has a relatively narrow host range, generally limited to hosts in the genus Allium. Our investigations on leek and leek relatives (Allium ampeloprasum complex), which must have been generated through interspecies hybridization, revealed that LYSV accumulation remained low in leek as a result of viral host adaptation in competition with host resistance such as RNA silencing. This study presents LYSV as an ideal model to study the process of host-adaptive evolution and virus-host coevolution.
Collapse
Affiliation(s)
- Shusuke Kawakubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Miyazaki, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Wang F, Yan D, Han K, Gao Z, Ma C, Chen Y, Bao X, Li C. Identification and complete genome sequence of iris potyvirus A, which causes dwarfing and foliar chlorosis with mosaic or mottle disease symptoms on lily (Lilium lancifolium Thunb.) in China. Virus Res 2023; 334:199141. [PMID: 37355176 PMCID: PMC10410506 DOI: 10.1016/j.virusres.2023.199141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Lily plants (Lilium lancifolium Thunb.) exhibiting dwarfing and foliar chlorosis with mosaic or mottle disease symptoms were found in Anhui Province, China. We used high-throughput sequencing of small RNA to survey the virus in the lily cultivation region of Anhui Province. Here, we report the identification and complete genome sequence of the viral agent. It contains 9733 nucleotides, excluding the poly(A) tail, and encodes a polyprotein of 3063 amino acids. The complete polyprotein ORF shows 98.92% amino acid sequence identity with that of iris potyvirus A (GenBank MH898493). Phylogenetic analysis of coat protein sequences placed the viral agent close to members of the genus Potyvirus in the family Potyviridae, and it was therefore provisionally named iris potyvirus A isolate Anhui (IrPVA-Anhui). This is the first complete genome sequence of IrPVA-Anhui from lily plant, for which only a partial sequence from Iris domestica has been reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. Subsequent virus identification was performed using serological assays (ELISA and antibody-based lateral flow assays), molecular methods (RT-PCR), and a pathogenicity test. Virus particles with a length of about 700 nm, similar to viruses in the genus Potyvirus, were observed via transmission electron microscope (TEM). We back-inoculated healthy plants of multiple species to investigate the host range of the virus. It infected the original host, Iris domestica, and Nicotiana benthamiana but not Triticum aestivum, Pisum sativum, Chenopodium amaranticolor, or Datura stramonium. This is the first report of natural IrPVA-Anhui infection of lily plants in China, providing a scientific basis for IrPVA-Anhui control in future lily plantings.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Kelei Han
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Zhengliang Gao
- Wanbei Branch, Anhui Academy of Agricultural Sciences, Fuyang, Anhui 236600, China
| | - Chao Ma
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Ying Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Xianxun Bao
- Science and Technology Industry Department, Anhui Academy of Agricultural Sciences Hefei, Anhui 230031, China
| | - Cheng Li
- Research Management Department, Anhui Academy of Agricultural Sciences Hefei, Anhui 230031, China.
| |
Collapse
|
9
|
Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, Ranson NA, López-Moya JJ. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Commun Biol 2023; 6:433. [PMID: 37076658 PMCID: PMC10115852 DOI: 10.1038/s42003-023-04799-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.
Collapse
Affiliation(s)
- Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire, OX11 0DE, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
10
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
11
|
Santosa AI, Randa-Zelyüt F, Karanfil A, Korkmaz S, Hartono S, Ertunç F. Phylogenetic and diversity analyses revealed that leek yellow stripe virus population consists of three types: S, L, and N. Virus Genes 2023; 59:121-131. [PMID: 36346570 DOI: 10.1007/s11262-022-01956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Phylogenetic and evolutionary analyses were performed on the P1 and CP genes of global isolates to clarify the phylogrouping of leek yellow stripe virus (LYSV, genus Potyvirus), a pathogen affecting Allium spp. worldwide, into different types based on genetic variation and host species. The constructed phylogenetic trees divided the isolates into three major groups: S, L, and N. Low nucleotide (nt) and amino acid (aa) percent identities among the three groups were observed on full ORF (75.4-99.0 and 79.1-99.0), P1 (59.1-98.3 and 36.8-98.3), and CP (76.6-100 and 75.7-100) coding regions. The dN/dS values of P1 and CP confirmed that both genes are under strong negative (purifying) selection pressure. Neutrality tests on Eastern Asian isolates suggested that the ancestors of current LYSV isolates evolved with garlic while they were in Asia before spreading to other world regions through garlic propagative materials. Genetic differentiation and gene flow analysis showed extremely frequent gene flow from S group to L and N groups, and these phylogroups differentiated from each other over time. Host differences, inconsistent serological test results, substantial nt and aa variation, and phylogenetic and diversity analyses in this study supported previous reports that LYSV can be separated into three major evolutionary lineages: S, L, and N types.
Collapse
Affiliation(s)
- Adyatma Irawan Santosa
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, Sleman, Yogyakarta, 55281, Indonesia.
| | - Filiz Randa-Zelyüt
- Department of Plant Protection, Faculty of Agriculture and Natural Sciences, Bilecik Şeyh Edebali University, Gulumbe Campus, 11230, Bilecik, Turkey. .,Biotechnology Application and Research Centre, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Ali Karanfil
- Department of Plant Protection, Faculty of Agriculture, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Savaş Korkmaz
- Department of Plant Protection, Faculty of Agriculture, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Sedyo Hartono
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora No. 1, Sleman, Yogyakarta, 55281, Indonesia
| | - Filiz Ertunç
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, 06110, Ankara, Turkey
| |
Collapse
|
12
|
Warsaba R, Salcedo-Porras N, Flibotte S, Jan E. Expansion of viral genomes with viral protein genome linked copies. Virology 2022; 577:174-184. [PMID: 36395539 DOI: 10.1016/j.virol.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Virus protein-linked genome (VPg) proteins are required for replication. VPgs are duplicated in a subset of RNA viruses however their roles are not fully understood and the extent of viral genomes containing VPg copies has not been investigated in detail. Here, we generated a novel bioinformatics approach to identify VPg sequences in viral genomes using hidden Markov models (HMM) based on alignments of dicistrovirus VPg sequences. From metagenomic datasets of dicistrovirus genomes, we identified 717 dicistrovirus genomes containing VPgs ranging from a single copy to 8 tandem copies. The VPgs are classified into nine distinct types based on their sequence and length. The VPg types but not VPg numbers per viral genome followed specific virus clades, thus suggesting VPgs co-evolved with viral genomes. We also identified VPg duplications in aquamavirus and mosavirus genomes. This study greatly expands the number of viral genomes that contain VPg copies and indicates that duplicated viral sequences are more widespread than anticipated.
Collapse
Affiliation(s)
- Reid Warsaba
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Nicolas Salcedo-Porras
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Lin Q, Yan D, Hua M, Yin Y, Zheng H, Chen J, Yan F, Peng J, He Q, Lu Y. Complete genome sequence of iris potyvirus B infecting Lilium lancifolium in China. Arch Virol 2022; 167:2391-2393. [PMID: 35925395 DOI: 10.1007/s00705-022-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022]
Abstract
The complete genome sequence of a virus from lily (Lilium lancifolium Thunb.) growing in Huoshan County, Anhui Province, China, was determined. The whole genome consists of 9558 nucleotides, excluding the poly(A) tail, and encodes a 3061-amino-acid polyprotein (GenBank number ON365558) typical of potyviruses. This is the first complete genome sequence of iris potyvirus B (IPB), for which only a partial sequence from Iris domestica was reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. The complete polyprotein ORF shares 73.6% nucleotide and 81.6% amino acid sequence identity with that of iris potyvirus A (IPA, GenBank number MH898493). Phylogenetic analysis showed that IPB is related to IPA and clusters in a group with lily yellow mosaic virus (LYMV). This is the first report of IPB infecting lily plants.
Collapse
Affiliation(s)
- Qi Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Mengying Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yueyan Yin
- Institute of Alpine Economic Plants, Yunnan Academy of Agricultural Sciences, Lijiang, 674100, Yunnan, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Qiongji He
- Institute of Alpine Economic Plants, Yunnan Academy of Agricultural Sciences, Lijiang, 674100, Yunnan, China.
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
14
|
Widyasari K, Tran PT, Shin J, Son H, Kim KH. Overexpression of purple acid phosphatase GmPAP2.1 confers resistance to Soybean mosaic virus in a susceptible soybean cultivar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1623-1642. [PMID: 34758072 DOI: 10.1093/jxb/erab496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
A purple acid phosphatase, GmPAP2.1, from the soybean (Glycine max) cultivar L29 may function as a resistance factor acting against specific strains of Soybean mosaic virus (SMV). In this study, we found that overexpression of GmPAP2.1 from L29 conferred SMV resistance to a susceptible cultivar, Lee 74. We determined that GmPAP2.1 interacted with the SMV protein P1 in the chloroplasts, resulting in the up-regulation of the ICS1 gene, which in turn promoted the pathogen-induced salicylic acid (SA) pathway. SA accumulation was elevated in response to the co-expression of GmPAP2.1 and SMV, while transient knockdown of endogenous SA-related genes resulted in systemic infection by SMV strain G5H, suggesting that GmPAP2.1-derived resistance depended on the SA-pathway for the activation of a defense response. Our findings thus suggest that GmPAP2.1 purple acid phosphatase of soybean cultivar L29 functions as an SA-pathway-dependent resistance factor acting against SMV.
Collapse
Affiliation(s)
- Kristin Widyasari
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Phu-Tri Tran
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
15
|
Valli AA, García López R, Ribaya M, Martínez FJ, Gómez DG, García B, Gonzalo I, Gonzalez de Prádena A, Pasin F, Montanuy I, Rodríguez-Gonzalo E, García JA. Maf/ham1-like pyrophosphatases of non-canonical nucleotides are host-specific partners of viral RNA-dependent RNA polymerases. PLoS Pathog 2022; 18:e1010332. [PMID: 35180277 PMCID: PMC8893687 DOI: 10.1371/journal.ppat.1010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/03/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups. Cassava is one the most important staple food around the world in term of caloric intake. The cassava brown streak disease, caused by cassava brown streak virus (CBSV) and Ugandan (U)CBSV–Ipomovirus genus, Potyviridae family-, produces massive losses in cassava production. Curiously, these two viruses, unlike the vast majority of members of the family, encode a Maf1/ham1-like pyrophosphatase (HAM1) of non-canonical nucleotides with unknown relevance and function in viruses. This study aims to fill this gap in our knowledge by using reverse genetics, biochemistry, metabolomics and directed virus evolution. Hence, we found that HAM1 is required for UCBSV to infect cassava, where its pyrophosphatase activity resulted critical, but not to propagate in the model plant Nicotiana benthamiana. In addition, we demonstrated that HAM1 works in partnership with the viral RdRP during infection. Unexpected high levels of ITP/XTP non-canonical nucleotides found in cassava, and the known flexibility of RNA viruses to incorporate additional factors when required, supports the idea that the high concentration of ITP/XTP worked as a selection pressure to promote the acquisition of HAM1 into the virus in order to promote a successful infection.
Collapse
Affiliation(s)
- Adrian A. Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| | | | - María Ribaya
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Diego García Gómez
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Salamanca, Salamanca, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Irene Gonzalo
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Inmaculada Montanuy
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | |
Collapse
|
16
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
17
|
Mumo NN, Ateka EM, Mamati EG, Rimberia FK, Asudi GO, Machuka E, Njuguna JN, Stomeo F, Pelle R. Occurrence of a Novel Strain of Moroccan Watermelon Mosaic Virus Infecting Pumpkins in Kenya. PLANT DISEASE 2022; 106:39-45. [PMID: 34279983 DOI: 10.1094/pdis-02-21-0359-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Naomi Nzilani Mumo
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Elijah Miinda Ateka
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Edward George Mamati
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fredah K Rimberia
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Ochieng' Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Eunice Machuka
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Joyce Njoki Njuguna
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Roger Pelle
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
18
|
García B, Bedoya L, García JA, Rodamilans B. An Importin-β-like Protein from Nicotiana benthamiana Interacts with the RNA Silencing Suppressor P1b of the Cucumber Vein Yellowing Virus, Modulating Its Activity. Viruses 2021; 13:2406. [PMID: 34960675 PMCID: PMC8706682 DOI: 10.3390/v13122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
During a plant viral infection, host-pathogen interactions are critical for successful replication and propagation of the virus through the plant. RNA silencing suppressors (RSSs) are key players of this interplay, and they often interact with different host proteins, developing multiple functions. In the Potyviridae family, viruses produce two main RSSs, HCPro and type B P1 proteins. We focused our efforts on the less known P1b of cucumber vein yellowing virus (CVYV), a type B P1 protein, to try to identify possible factors that could play a relevant role during viral infection. We used a chimeric expression system based on plum pox virus (PPV) encoding a tagged CVYV P1b in place of the canonical HCPro. We used that tag to purify P1b in Nicotiana-benthamiana-infected plants and identified by mass spectrometry an importin-β-like protein similar to importin 7 of Arabidopsis thaliana. We further confirmed the interaction by bimolecular fluorescence complementation assays and defined its nuclear localization in the cell. Further analyses showed a possible role of this N. benthamiana homolog of Importin 7 as a modulator of the RNA silencing suppression activity of P1b.
Collapse
Affiliation(s)
| | | | | | - Bernardo Rodamilans
- Centro Nacional de Biotecnología CNB, Consejo Superior de Investigaciones Científicas CSIC, 28049 Madrid, Spain; (B.G.); (L.B.); (J.A.G.)
| |
Collapse
|
19
|
Peng B, Liu L, Wu H, Kang B, Fei Z, Gu Q. Interspecific Recombination Between Zucchini Tigre Mosaic Virus and Papaya Ringspot Virus Infecting Cucurbits in China. Front Microbiol 2021; 12:773992. [PMID: 34803995 PMCID: PMC8595935 DOI: 10.3389/fmicb.2021.773992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recombination drives evolution of single-stranded RNA viruses and contributes to virus adaptation to new hosts and environmental conditions. Intraspecific recombinants are common in potyviruses, the largest family of single-stranded RNA viruses, whereas interspecific recombinants are rare. Here, we report an interspecific recombination event between papaya ringspot potyvirus (PRSV) and zucchini tigre mosaic potyvirus (ZTMV), two potyviruses infecting cucurbit crops and sharing similar biological characteristics and close phylogenetic relationship. The PRSV-ZTMV recombinants were detected through small RNA sequencing of viruses infecting cucurbit samples from Guangxi and Henan provinces of China. The complete nucleotide (nt) sequences of the interspecific recombinant viruses were determined using overlapping RT-PCR. Multiple sequence alignment, recombination detection analysis and phylogenetic analysis confirmed the interspecific recombination event, and revealed an additional intraspecific recombination event among ZTMV populations in China. The symptoms and host ranges of two interspecific recombinant isolates, KF8 and CX1, were determined through experimental characterization using cDNA infectious clones. Surveys in 2017 and 2018 indicated that the incidences of the interspecific recombinant virus were 16 and 19.4%, respectively, in cucurbits in Kaifeng of Henan province. The identified interspecific recombinant virus between PRSV and ZTMV and the novel recombination pattern with the recombination site in HC-pro in potyvirid provide insights into the prevalence and evolution of ZTMV and PRSV in cucurbits.
Collapse
Affiliation(s)
- Bin Peng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, China
| | - Liming Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, China
| | - Huijie Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, China
| | - Baoshan Kang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, United States
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, China
| |
Collapse
|
20
|
Zhang W, Sun X, Wei X, Gao Y, Song J, Bai Y. Geography-Driven Evolution of Potato Virus A Revealed by Genetic Diversity Analysis of the Complete Genome. Front Microbiol 2021; 12:738646. [PMID: 34659170 PMCID: PMC8517508 DOI: 10.3389/fmicb.2021.738646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Potato virus A (PVA), a member of the genus Potyvirus, is an important potato pathogen that causes 30%-40% yield reduction to global potato production. Knowledge on the genetic structure and the evolutionary forces shaping the structure of this pathogen is limited but vital in developing effective management strategies. In this study, we investigated the population structure and molecular evolution of PVA by analyzing novel complete genomic sequences from Chinese isolates combined with available sequences from Europe, South America, Oceania, and North America. High nucleotide diversity was discovered among the populations studied. Pairwise F ST values between geographical populations of PVA ranged from 0.22 to 0.46, indicating a significant spatial structure for this pathogen. Although purifying selection was detected at the majority of polymorphic sites, significant positive selection was identified in the P1, NIa, and NIb proteins, pointing to adaptive evolution of PVA. Further phylogeny-trait association analysis showed that the clustering of PVA isolates was significantly correlated with geographic regions, suggesting that geography-driven adaptation may be an important determinant of PVA diversification.
Collapse
Affiliation(s)
- Wei Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xuhong Sun
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xuyan Wei
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanling Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jiling Song
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanju Bai
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
21
|
Entezari A, Mehrvar M, Zakiaghl M. Identification of garlic-infecting leek yellow stripe virus through deep-sequencing analyses from Iran. Virusdisease 2021; 32:595-600. [PMID: 34631984 DOI: 10.1007/s13337-021-00733-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022] Open
Abstract
In the study presented here, the first complete genome sequence of Leek yellow stripe virus (LYSV) designated as isolate LYSV-AE65 from Southwest of Iran, was reported. The small RNA deep sequencing analysis showed that, the Iranian isolate has a full RNA genome of 10,142 nucleotide in length (Except for poly (A) tail) and it was shared 77.91-92.16% nucleotide (nt) and 83.62-96.35% amino acid (aa) sequences identities with other known LYSV isolates. The coat protein (CP) region showed 80.21-95.24% nucleotide identity to those of other isolates, while high degrees of nucleotide sequence identity with G77-LYSV isolate (MN059504) from China. Phylogenetic analysis based on full genome sequence of LYSV-AE65, showed the closest relationship with LYSV isolates from China, Australia, Spain and Mexico. Also, phylogenetic analysis of the 5´-untranslated region (UTR)-P1 gene sequences of 44 isolates, confirmed the formation of two main groups, N-type and S-type, in agreement with the previous studies. Isolate LYSV-AE65 was similar to the members of clade S and has two large deletions in P1 gene. Recombination analysis demonstrated that LYSV-AE65 was a recombinant with most part of its genome was derived from already reported LYSV isolates infecting allium species. To the best of our knowledge, this is the first report of complete genome sequencing of LYSV isolate infecting garlic through small RNA deep sequencing method in Iran. Supplementary Information The online version contains supplementary material available at (10.1007/s13337-021-00733-z).
Collapse
Affiliation(s)
- Azadeh Entezari
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zakiaghl
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Lu G, Wang Z, Xu F, Pan YB, Grisham MP, Xu L. Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms 2021; 9:microorganisms9091984. [PMID: 34576879 PMCID: PMC8468687 DOI: 10.3390/microorganisms9091984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023] Open
Abstract
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Guilong Lu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Michael P. Grisham
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
- Correspondence:
| |
Collapse
|
23
|
Yin H, Dong Z, Wang X, Lu S, Xia F, Abuduwaili A, Bi Y, Li Y. Metagenomic Analysis of Marigold: Mixed Infection Including Two New Viruses. Viruses 2021; 13:1254. [PMID: 34203118 PMCID: PMC8310094 DOI: 10.3390/v13071254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Marigold plants with symptoms of mosaic, crinkle, leaf curl and necrosis were observed and small RNA and ribo-depleted total RNA deep sequencing were conducted to identify the associated viruses. Broad bean wilt virus 2, cucumber mosaic virus, turnip mosaic virus, a new potyvirus tentatively named marigold mosaic virus (MMV) and a new partitivirus named as marigold cryptic virus (MCV) were finally identified. Complete genome sequence analysis showed MMV was 9811 nt in length, encoding a large polyprotein with highest aa sequence identity (57%) with the putative potyvirus polygonatumkingianum virus 1. Phylogenetic analysis with the definite potyviruses based on the polyprotein sequence showed MMV clustered closest to plum pox virus. The complete genome of MCV comprised of dsRNA1 (1583 bp) and dsRNA2 (1459 bp), encoding the RNA-dependent RNA polymerase (RdRp), and coat protein (CP), respectively. MCV RdRp shared the highest (75.7%) aa sequence identity with the unclassified partitivirus ambrosia cryptic virus 2, and 59.0%, 57.1%, 56.1%, 54.5% and 33.7% with the corresponding region of the definite delta-partitiviruses, pepper cryptic virus 2, beet cryptic virus 3, beet cryptic virus 2, pepper cryptic virus 1 and fig cryptic virus, respectively. Phylogenetic analysis based on the RdRp aa sequence showed MCV clustered into the delta-partitivirus group. These findings enriched our knowledge of viruses infecting marigold, but the association of the observed symptom and the identified viruses and the biological characterization of the new viruses should be further investigated.
Collapse
Affiliation(s)
- Hang Yin
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Zheng Dong
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Xulong Wang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Shuhao Lu
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Fei Xia
- Beijing Institute of Landscape Architecture, Beijing 100102, China;
| | - Annihaer Abuduwaili
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Bi
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| | - Yongqiang Li
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China; (H.Y.); (Z.D.); (X.W.); (S.L.); (A.A.); (Y.B.)
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
24
|
P1 of Sweet Potato Feathery Mottle Virus Shows Strong Adaptation Capacity, Replacing P1-HCPro in a Chimeric Plum Pox Virus. J Virol 2021; 95:e0015021. [PMID: 33952634 DOI: 10.1128/jvi.00150-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Potyviridae is the largest family of plant RNA viruses. Their genomes are expressed through long polyproteins that are usually headed by the leader endopeptidase P1. This protein can be classified as type A or type B based on host proteolytic requirements and RNA silencing suppression (RSS) capacity. The main Potyviridae genus is Potyvirus, and a group of potyviruses infecting sweet potato presents an enlarged P1 protein with a polymerase slippage motif that produces an extra product termed P1N-PISPO. These two proteins display some RSS activity and are expressed followed by HCPro, which appears to be the main RNA silencing suppressor in these viruses. Here, we studied the behavior of the P1 protein of Sweet potato feathery mottle virus (SPFMV) using a viral system based on a canonical potyvirus, Plum pox virus (PPV), and discovered that this protein is able to replace both PPV P1 and HCPro. We also found that P1N-PISPO, produced after polymerase slippage, provides extra RNA silencing suppression capacity to SPFMV P1 in this viral context. In addition, the results showed that presence of two type A P1 proteins was detrimental for viral viability. The ample recombination spectrum that we found in the recovered viruses supports the strong adaptation capacity of P1 proteins and signals the N-terminal part of SPFMV P1 as essential for RSS activity. Further analyses provided data to add extra layers to the evolutionary history of sweet potato-infecting potyvirids. IMPORTANCE Plant viruses represent a major challenge for agriculture worldwide and Potyviridae, being the largest family of plant RNA viruses, is one of the primary players. P1, the leader endopeptidase, is a multifunctional protein that contributes to the successful spread of these viruses over a wide host range. Understanding how P1 proteins work, their dynamic interplay during viral infection, and their evolutionary path is critical for the development of strategic tools to fight the multiple diseases these viruses cause. We focused our efforts on the P1 protein of Sweet potato feathery mottle virus, which is coresponsible for the most devastating disease in sweet potato. The significance of our research is in understanding the capacity of this protein to perform several independent functions, using this knowledge to learn more about P1 proteins in general and the potyvirids infecting this host.
Collapse
|
25
|
Kenesi E, Lopez-Moya JJ, Orosz L, Burgyán J, Lakatos L. Argonaute 2 Controls Antiviral Activity against Sweet Potato Mild Mottle Virus in Nicotiana benthamiana. PLANTS 2021; 10:plants10050867. [PMID: 33925878 PMCID: PMC8145795 DOI: 10.3390/plants10050867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/04/2022]
Abstract
RNA silencing is a sequence specific post-transcriptional mechanism regulating important biological processes including antiviral defense in plants. Argonaute (AGO) proteins, the catalytic subunits of the silencing complexes, are loaded with small RNAs to execute the sequence specific RNA cleavage or translational inhibition. Plants encode several AGO proteins and a few of them, especially AGO1 and AGO2, have been shown to be required for antiviral silencing. Previously, we have shown that the P1 protein of the sweet potato mild mottle virus (SPMMV) suppresses the primary RNA silencing response by inhibiting AGO1. To analyze the role of AGO2 in antiviral defense against the SPMMV, we performed a comparative study using a wild type and ago2−/− mutant Nicotiana benthamiana. Here we show that the AGO2 of N. benthamiana attenuates the symptoms of SPMMV infection. Upon SPMMV infection the levels of AGO2 mRNA and protein are greatly increased. Moreover, we found that AGO2 proteins are loaded with SPMMV derived viral small RNAs as well as with miRNAs. Our results indicate that AGO2 protein takes over the place of AGO1 to confer antiviral silencing. Finally, we provide a plausible explanation for the AGO2 mediated recovery of an SPMMV-infected sweet potato.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Biological Research Center Szeged, Institute of Plant Biology, Photo- and Chronobiology Group Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary;
| | - Juan-Jose Lopez-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
- Correspondence: (J.-J.L.-M.); (L.L.)
| | - László Orosz
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720 Szeged, Hungary;
| | - József Burgyán
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, H-2100 Gödöllő, Hungary;
| | - Lóránt Lakatos
- Biological Research Center Szeged, Institute of Plant Biology, Photo- and Chronobiology Group Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary;
- Correspondence: (J.-J.L.-M.); (L.L.)
| |
Collapse
|
26
|
Domingo-Calap ML, Chase O, Estapé M, Moreno AB, López-Moya JJ. The P1 Protein of Watermelon mosaic virus Compromises the Activity as RNA Silencing Suppressor of the P25 Protein of Cucurbit yellow stunting disorder virus. Front Microbiol 2021; 12:645530. [PMID: 33828542 PMCID: PMC8019732 DOI: 10.3389/fmicb.2021.645530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Instituto Valencia de Investigaciones Agrarias, IVIA, Valencia, Spain
| | - Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mariona Estapé
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Universitair Medisch Centrum, UMC, Utrecht, Netherlands
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
27
|
Wang D, Cui L, Zhang L, Ma Z, Niu Y. Complete Genome Sequencing and Infectious cDNA Clone Construction of Soybean Mosaic Virus Isolated from Shanxi. THE PLANT PATHOLOGY JOURNAL 2021; 37:162-172. [PMID: 33866758 PMCID: PMC8053849 DOI: 10.5423/ppj.oa.11.2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the crossfamily infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.
Collapse
Affiliation(s)
- Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801,
China
| | - Liyan Cui
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801,
China
| | - Li Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801,
China
| | - Zhennan Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801,
China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801,
China
| |
Collapse
|
28
|
Ágoston J, Almási A, Salánki K, Palkovics L. Genetic Diversity of Potyviruses Associated with Tulip Breaking Syndrome. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1807. [PMID: 33352796 PMCID: PMC7766433 DOI: 10.3390/plants9121807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Tulip breaking is economically the most important viral disease of modern-day tulip growing. It is characterized by irregular flame and feather-like patterns in the flowers and mosaic on the foliage. Thirty-two leaf samples were collected from cultivated tulip plants showing tulip breaking syndrome from Hungary in 2017 and 2018. Virus identification was performed by serological (ELISA) and molecular (RT-PCR) methods. All samples proved to be infected with a potyvirus and evidence was provided that three potyvirus species could be identified in the samples: Lily mottle virus (LMoV), Tulip breaking virus (TBV) and Rembrandt tulip-breaking virus (ReTBV). Recombination prediction accomplished with Recombination Detection Program (RDP) v4.98 revealed potential intraspecies recombination in the case of TBV and LMoV. Phylogenetic analyses of the coat protein (CP) regions proved the monophyletic origin of these viruses and verified them as three different species according to current International Committee on Taxonomy of Viruses (ICTV) species demarcation criteria. Based on these results, we analyzed taxonomic relations concerning potyviruses associated with tulip breaking syndrome. We propose the elevation of ReTBV to species level, and emergence of two new subgroups in ReTBV.
Collapse
Affiliation(s)
- János Ágoston
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary;
- Department of Agriculture, Faculty of Horticulture and Rural Development, John von Neumann University, 6000 Kecskemét, Hungary
| | - Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; (A.A.); (K.S.)
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; (A.A.); (K.S.)
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary;
| |
Collapse
|
29
|
Patil AB, Dalvi VS, Azeez A, Krishna B, Mishra AA, Sane PV. Cloning, expression and characterization of P1 and NIa proteases from banana bract mosaic virus (BBrMV). Protein Expr Purif 2020; 180:105811. [PMID: 33347949 DOI: 10.1016/j.pep.2020.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Banana bract mosaic virus (BBrMV) causes the banana bract mosaic disease in banana. It belongs to the genus Potyvirus within the family Potyviridae. To the best of our knowledge apart from BBrMV coat protein gene, there are no reports on cloning, expression and characterization of any other genes from BBrMV. In this study, the BBrMV P1 and NIa protease genes were amplified from BBrMV infected banana plant cultivar Nendran and were cloned into the protein expression vector pET28b. Recombinant plasmids were transferred to BL21-CodonPlus (DE3)-RP cells and the IPTG (Isopropyl β-d-1-thiogalactopyranoside) induced BBrMV P1 and NIa proteins with molecular weights of 42 and 32 KDa respectively were purified on Ni-NTA resin column under denaturing conditions using 8 M urea. BBrMV P1 and NIa purified proteins were detected by Western blot using anti-histidine antibody. The activity of both P1 and NIa proteases in native form was analyzed through in-gel zymographic assay. The activities of both the proteases were strongly inhibited by PMSF, suggesting that both the proteases are the serine type proteases. Interestingly both the proteases showed a temperature optimum of 50 °C while the pH optimum was 8. Both proteases lost their activity when incubated at 70 °C for 1 h. This is the first report of expression, purification and characterization of BBrMV P1 and NIa proteases.
Collapse
Affiliation(s)
- Atul B Patil
- Plant Virology Lab, Jain R&D, Jain Hills, Jain Irrigation Systems Limited, Shirsoli Road, Post Box No # 72, Jalgaon, 425001, Maharashtra State, India.
| | - Vijayendra S Dalvi
- Plant Virology Lab, Jain R&D, Jain Hills, Jain Irrigation Systems Limited, Shirsoli Road, Post Box No # 72, Jalgaon, 425001, Maharashtra State, India.
| | - Abdul Azeez
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, 906-487-1885, USA.
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D, Jain Hills, Jain Irrigation Systems Limited, Shirsoli Road, Post Box No# 72, Jalgaon, 425001, Maharashtra State, India.
| | - Akhilesh A Mishra
- Plant Virology Lab, Jain R&D, Jain Hills, Jain Irrigation Systems Limited, Shirsoli Road, Post Box No # 72, Jalgaon, 425001, Maharashtra State, India.
| | - Prafullachandra V Sane
- Plant Virology Lab, Jain R&D, Jain Hills, Jain Irrigation Systems Limited, Shirsoli Road, Post Box No # 72, Jalgaon, 425001, Maharashtra State, India.
| |
Collapse
|
30
|
A Newly Identified Virus in the Family Potyviridae Encodes Two Leader Cysteine Proteases in Tandem That Evolved Contrasting RNA Silencing Suppression Functions. J Virol 2020; 95:JVI.01414-20. [PMID: 33055249 DOI: 10.1128/jvi.01414-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.
Collapse
|
31
|
Adeyemi OO, Ward JC, Snowden JS, Herod MR, Rowlands DJ, Stonehouse NJ. Functional advantages of triplication of the 3B coding region of the FMDV genome. FASEB J 2020; 35:e21215. [PMID: 33230899 PMCID: PMC7894486 DOI: 10.1096/fj.202001473rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/11/2022]
Abstract
For gene duplication to be maintained, particularly in the small genomes of RNA viruses, this should offer some advantages. We have investigated the functions of a small protein termed VPg or 3B, which acts as a primer in the replication of foot-and-mouth disease virus (FMDV). Many related picornaviruses encode a single copy but uniquely the FMDV genome includes three (nonidentical) copies of the 3B coding region. Using sub-genomic replicons incorporating nonfunctional 3Bs and 3B fusion products in competition and complementation assays, we investigated the contributions of individual 3Bs to replication and the structural requirements for functionality. We showed that a free N-terminus is required for 3B to function as a primer and although a single 3B can support genome replication, additional copies provide a competitive advantage. However, a fourth copy confers no further advantage. Furthermore, we find that a minimum of two 3Bs is necessary for trans replication of FMDV replicons, which is unlike other picornaviruses where a single 3B can be used for both cis and trans replication. Our data are consistent with a model in which 3B copy number expansion within the FMDV genome has allowed evolution of separate cis and trans acting functions, providing selective pressure to maintain multiple copies of 3B.
Collapse
Affiliation(s)
- Oluwapelumi O Adeyemi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.,Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Joseph S Snowden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
32
|
Mwatuni FM, Nyende AB, Njuguna J, Xiong Z, Machuka E, Stomeo F. Occurrence, genetic diversity, and recombination of maize lethal necrosis disease-causing viruses in Kenya. Virus Res 2020; 286:198081. [PMID: 32663481 PMCID: PMC7450272 DOI: 10.1016/j.virusres.2020.198081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.
Collapse
Affiliation(s)
- Francis M Mwatuni
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041 - 00621, Nairobi, Kenya; Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00100, Nairobi, Kenya; Kenya Plant Health Inspectorate Service(KEPHIS), P.O. Box 49592-00100, Nairobi, Kenya.
| | - Aggrey Bernard Nyende
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00100, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Eunice Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA - ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
33
|
Xie L, Gao F, Shen J, Zhang X, Zheng S, Zhang L, Li T. Molecular characterization of two recombinant isolates of telosma mosaic virus infecting Passiflora edulis from Fujian Province in China. PeerJ 2020; 8:e8576. [PMID: 32123643 PMCID: PMC7039140 DOI: 10.7717/peerj.8576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Telosma mosaic virus (TeMV) is an important plant virus causing considerable economic losses to passion fruit (Passiflora edulis) production worldwide, including China. In this study, the complete genome sequence (excluding the poly (A) tail) of two TeMV isolates, Fuzhou and Wuyishan, were determined to be 10,050 and 10,057 nucleotides, respectively. Sequence analysis indicated that Fuzhou and Wuyishan isolates share 78-98% nucleotide and 83-99% amino acid sequence identities with two TeMV isolates of Hanoi and GX, and a proposed new potyvirus, tentatively named PasFru. Phylogenetic analysis indicated that these TeMV isolates and PasFru were clustered into a monophyletic clade with high confidences. This indicated that PasFru and the four TeMV isolates should be considered as one potyvirus species. Two recombination breakpoints were identified within the CI and NIb genes of the Fuzhou isolate, and also within the P1 gene of the Wuyishan isolate. To the best of our knowledge, this is the first report of TeMV recombinants worldwide.
Collapse
Affiliation(s)
- Lixue Xie
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Fangluan Gao
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianguo Shen
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District, Fuzhou, China
| | - Xiaoyan Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shan Zheng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Lijie Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tao Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
34
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
35
|
Wang Y, Xu W, Abe J, Nakahara KS, Hajimorad MR. Precise Exchange of the Helper-Component Proteinase Cistron Between Soybean mosaic virus and Clover yellow vein virus: Impact on Virus Viability and Host Range Specificity. PHYTOPATHOLOGY 2020; 110:206-214. [PMID: 31509476 DOI: 10.1094/phyto-06-19-0193-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean mosaic virus and Clover yellow vein virus are two definite species of the genus Potyvirus within the family Potyviridae. Soybean mosaic virus-N (SMV-N) is well adapted to cultivated soybean (Glycine max) genotypes and wild soybean (G. soja), whereas it remains undetectable in inoculated broad bean (Vicia faba). In contrast, clover yellow vein virus No. 30 (ClYVV-No. 30) is capable of systemic infection in broad bean and wild soybean; however, it infects cultivated soybean genotypes only locally. In this study, SMV-N was shown to also infect broad bean locally; hence, broad bean is a host for SMV-N. Based on these observations, it was hypothesized that lack of systemic infection by SMV-N in broad bean and by ClYVV-No. 30 in cultivated soybean is attributable to the incompatibility of multifunctional helper-component proteinase (HC-Pro) in these hosts. The logic of selecting the HC-Pro cistron as a target is based on its established function in systemic movement and being a relevant factor in host range specificity of potyviruses. To test this hypothesis, chimeras were constructed with precise exchanges of HC-Pro cistrons between SMV-N and ClYVV-No. 30. Upon inoculation, both chimeras were viable in infection, but host range specificity of the recombinant viruses did not differ from those of the parental viruses. These observations suggest that (i) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are functionally compatible in infection despite 55.6 and 48.9% nucleotide and amino acid sequence identity, respectively, and (ii) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are not the determinants of host specificity on cultivated soybean or broad beans, respectively.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - W Xu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
36
|
Zu H, Zhang H, Yao M, Zhang J, Di H, Zhang L, Dong L, Wang Z, Zhou Y. Molecular characteristics of segment 5, a unique fragment encoding two partially overlapping ORFs in the genome of rice black-streaked dwarf virus. PLoS One 2019; 14:e0224569. [PMID: 31697693 PMCID: PMC6837423 DOI: 10.1371/journal.pone.0224569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023] Open
Abstract
Rice black-streaked dwarf virus (RBSDV), a ds-RNA virus in Fijivirus genus with family Reoviridae, which is transmitted by the small brown planthopper, is responsible for incidence of maize rough dwarf disease (MRDD) and rice black-streaked dwarf disease (RBSDD). To understand the variation and evolution of S5, a unique fragment in the genome of RBSDV which encodes two partially overlapping ORFs (ORF5-1 and ORF5-2), we analyzed 127 sequences from maize and rice exhibiting symptoms of dwarfism. The nucleotide diversity of both ORF5-1 (π = 0.039) and ORF5-2 (π = 0.027) was higher than that of the overlapping region (π = 0.011) (P < 0.05). ORF5-2 was under the greatest selection pressure based on codon bias analysis, and its activation was possibly influenced by the overlapping region. The recombinant fragments of three recombinant events (14NM23, 14BM20, and 14NM17) cross the overlapping region. Based on neighbor-joining tree analysis, the overlapping region could represent the evolutionary basis of the full-length S5, which was classified into three main groups. RBSDV populations were expanding and haplotype diversity resulted mainly from the overlapping region. The genetic differentiation of combinations (T127-B35, T127-J34, A58-B35, A58-J34, and B35-J34) reached significant or extremely significant levels. Gene flow was most frequent between subpopulations A58 and B35, with the smallest |Fst| (0.02930). We investigated interactions between 13 RBSDV proteins by two-hybrid screening assays and identified interactions between P5-1/P6, P6/P9-1, and P3/P6. We also observed self-interactive effects of P3, P6, P7-1, and P10. In short, we have proven that RBSDV populations were expanding and the overlapping region plays an important role in the genetic variation and evolution of RBSDV S5. Our results enable ongoing research into the evolutionary history of RBSDV-S5 with two partly overlapping ORFs.
Collapse
Affiliation(s)
- Hongyue Zu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Hong Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Minhao Yao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Jiayue Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
- * E-mail: (YZ); (ZHW)
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China
- * E-mail: (YZ); (ZHW)
| |
Collapse
|
37
|
Mosquera-Yuqui F, Garrido P, Flores FJ. Molecular characterization and complete genome of alstroemeria mosaic virus (AlMV). Virus Genes 2019; 56:87-93. [PMID: 31696416 DOI: 10.1007/s11262-019-01712-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Abstract
Even though alstroemeria mosaic virus (AlMV) is one of the most important viruses affecting alstroemeria plants, its genome is only partially available in public sequence databases. High throughput sequencing (HTS) of RNA from alstroemeria plants with symptoms of mosaic and streaking, collected in Lasso-Ecuador, indicated the presence of AlMV and lily symptomless virus. In this study, we aimed to assemble and characterize the complete genome sequence of AlMV. Reads from Illumina sequencing of ribosomal RNA-depleted total RNA were assembled into contigs that were mapped to the sunflower chlorotic mottle virus genome, revealing the 9774 [corrected] bp complete genome sequence of AlMV. Multiple sequence alignment of the AlMV polyprotein with close homologs allowed the identification of ten mature proteins P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, NIa-Pro, NIb and CP. Furthermore, several potyvirus motifs were identified in the AlMV polyprotein including those related to potyvirus aphid transmission 334KMTC337, 592PTK594 and 2800DAG2802. Phylogenetic analysis based in the polyprotein showed that AlMV belongs to the potato virus Y clade and its closest relative is sunflower ring blotch virus. This study describes the first complete genome of AlMV and its placement within the genus Potyvirus, providing valuable information for future studies on this economically important virus.
Collapse
Affiliation(s)
- Francisco Mosquera-Yuqui
- Departamento de Ciencias de La Vida y La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador.
| | - Patricia Garrido
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de La Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Francisco J Flores
- Departamento de Ciencias de La Vida y La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador.,Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de La Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Ecuador
| |
Collapse
|
38
|
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses, encompassing over 30% of known plant viruses. The family is closely related to animal picornaviruses such as enteroviruses and belongs to the picorna-like supergroup. Like all other picorna-like viruses, potyvirids employ polyprotein processing as a gene expression strategy and have single-stranded, positive-sense RNA genomes, most of which are monopartite with a long open reading frame. The potyvirid polyproteins are highly conserved in the central and carboxy-terminal regions. In contrast, the N-terminal region is hypervariable and contains position-specific mutations resulting from transcriptional slippage during viral replication, leading to translational frameshift to produce additional viral proteins essential for viral infection. Some potyvirids even lack one of the N-terminal proteins P1 or helper component-protease and have a genus-specific or species-specific protein instead. This review summarizes current knowledge about the conserved and divergent features of potyvirid genomes and biological relevance and discusses future research directions.
Collapse
Affiliation(s)
- Hongguang Cui
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Haikou, Hainan 570228, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| |
Collapse
|
39
|
Komorowska B, Hasiów-Jaroszewska B, Elena SF. Evolving by deleting: patterns of molecular evolution of Apple stem pitting virus isolates from Poland. J Gen Virol 2019; 100:1442-1456. [PMID: 31424379 DOI: 10.1099/jgv.0.001290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, 267 coat protein gene (CP) sequences from 48 Polish isolates of Apple stem pitting virus (ASPV) were determined. The genetic structure of the virus population was analysed and possible mechanisms of molecular evolution explored. We found evidence of recombination within the ASPV population and the presence of 17 ASPV molecular variants that differ in the length, number and arrangement of deletions in the CP. Population genetic analyses showed significant variation among isolates from pear and apple trees, between isolates from the same host species and, more interestingly, within isolates, supporting the existence of significant levels of variability within individual hosts, as expected by a quasispecies population structure. In addition, different tests support that selection might have been an important force driving diversification within isolates: positive selection was found acting upon certain amino acids. Phylogenetic analyses also showed that isolates did not classify according to the host species (pear or apple trees) but according to the pattern of deletions, suggesting a possible role for deletions during clade diversification.
Collapse
Affiliation(s)
- Beata Komorowska
- Research Institute of Horticulture, Department of Phytopathology, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wł. Węgorka 20, 60-318 Poznań, Poland
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
40
|
Amisse JJG, Ndunguru J, Tairo F, Ateka E, Boykin LM, Kehoe MA, Cossa N, Rey C, Sseruwagi P. Analyses of seven new whole genome sequences of cassava brown streak viruses in Mozambique reveals two distinct clades: evidence for new species. PLANT PATHOLOGY 2019; 68:1007-1018. [PMID: 31217639 PMCID: PMC6563196 DOI: 10.1111/ppa.13001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) is a major constraint to cassava production in Mozambique. Full genome sequences of CBSD-associated virus isolates contribute to the understanding of genetic diversity and the development of new diagnostic primers that can be used for early detection of the viruses for sustainable disease management. This study determined seven new whole CBSV genomes from total RNA isolated from cassava leaves with CBSD symptoms collected from Nampula and Zambezia in Mozambique. Phylogenetic analyses of the new genomes with published CBSV and UCBSV sequences in GenBank grouped the CBSV isolates from Mozambique into two distinct clades together with CBSV isolates from Tanzania. Clade 1 and 2 isolates shared low nucleotide (79.1-80.4%) and amino acid (86.5-88.2%) sequence identity. Further, comparisons within the seven new CBSV isolates, and between them and the single published complete CBSV sequence (CBSV_MO_83_FN434436) from Mozambique, revealed nucleotide sequence identities of 79.3-100% and 79.3-98%, respectively, and amino acid identities of 86.7-100% and 86.7-98.8%. In addition, using RDP4, a recombination analysis comprising all CBSV and UCBSV genome sequences from GenBank detect 11 recombination events. Using several comprehensive evolutionary models and statistical programs, it was confirmed that CBSV and UCBSV are distinct virus species, with an additional probable new species (clade 2).
Collapse
Affiliation(s)
- J. J. G. Amisse
- Mozambique Agricultural Research InstitutePosto Agronómico de Nampula, PO Box 622, Rua de corrane, km 7NampulaMozambique
- Jomo Kenyatta University of Agriculture and TechnologyPO Box 62000, City SquareNairobiThikaKenya
| | - J. Ndunguru
- Tanzania Agricultural Research Institute – MikocheniPO Box 6226Dar es SalaamTanzania
| | - F. Tairo
- Tanzania Agricultural Research Institute – MikocheniPO Box 6226Dar es SalaamTanzania
| | - E. Ateka
- Jomo Kenyatta University of Agriculture and TechnologyPO Box 62000, City SquareNairobiThikaKenya
| | - L. M. Boykin
- The University of Western AustraliaARC Centre of Excellence in Plant Energy Biology and School of Molecular SciencesCrawley6009Australia
| | - M. A. Kehoe
- Department of Primary Industries and Regional Development Diagnostic Laboratory ServiceLocked Bag 4Bentley Delivery CentreSouth Perth6983Australia
| | - N. Cossa
- Mozambique Agricultural Research InstitutePosto Agronómico de Nampula, PO Box 622, Rua de corrane, km 7NampulaMozambique
| | - C. Rey
- School of Molecular and Cell BiologyUniversity of the Witwatersrand1 Jan Smuts Ave, BraamfonteinJohannesburg2000South Africa
| | - P. Sseruwagi
- Tanzania Agricultural Research Institute – MikocheniPO Box 6226Dar es SalaamTanzania
| |
Collapse
|
41
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Zucchini yellow mosaic virus Genomic Sequences from Papua New Guinea: Lack of Genetic Connectivity with Northern Australian or East Timorese Genomes, and New Recombination Findings. PLANT DISEASE 2019; 103:1326-1336. [PMID: 30995424 DOI: 10.1094/pdis-09-18-1666-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV's major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A's minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV's P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, and
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, and
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
- 4 Commonwealth Scientific and Industrial Research Organisation Land and Water, Floreat Park, WA 6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, and
- 5 The National Agricultural Research Institute, PO Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, PO Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
- 7 Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
42
|
Yang K, Shen W, Li Y, Li Z, Miao W, Wang A, Cui H. Areca Palm Necrotic Ringspot Virus, Classified Within a Recently Proposed Genus Arepavirus of the Family Potyviridae, Is Associated With Necrotic Ringspot Disease in Areca Palm. PHYTOPATHOLOGY 2019; 109:887-894. [PMID: 30133353 DOI: 10.1094/phyto-06-18-0200-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Areca palm (Areca catechu), one of the two most important commercial crops in Hainan, China, has been severely damaged by a variety of pathogens and insects. Here, we report a new disease, tentatively referred to as areca palm necrotic ringspot disease (ANRSD), which is highly epidemic in the main growing regions in Hainan. Transmission electron microscopy observation and small RNA deep sequencing revealed the existence of a viral agent of the family Potyviridae in a diseased areca palm plant (XC1). The virus was tentatively named areca palm necrotic ringspot virus (ANRSV). Subsequently, the positive-sense single-stranded genome of ANRSV isolate XC1 was completely determined. The genome annotation revealed the existence of two cysteine proteinases in tandem (HC-Pro1 and HC-Pro2) in the genomic 5' terminus of ANRSV. Sequence comparison and phylogenetic analysis suggested the taxonomic classification of ANRSV into the recently proposed genus Arepavirus in the family Potyviridae. Given the close relationship of ANRSV with another newly reported arepavirus (areca palm necrotic spindle-spot virus), the exact taxonomic status of ANRSV needs to be further investigated. In this study, a reverse transcription polymerase chain reaction assay for ANRSV-specific detection was developed and a close association between ANRSV and ANRSD was found.
Collapse
Affiliation(s)
- Ke Yang
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Wentao Shen
- 2 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ye Li
- 3 Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; and
| | - Zengping Li
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Weiguo Miao
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Aiming Wang
- 4 London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Hongguang Cui
- 1 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
43
|
Wang Z, Yu C, Peng Y, Ding C, Li Q, Wang D, Yuan X. Close evolutionary relationship between rice black-streaked dwarf virus and southern rice black-streaked dwarf virus based on analysis of their bicistronic RNAs. Virol J 2019; 16:53. [PMID: 31029143 PMCID: PMC6486993 DOI: 10.1186/s12985-019-1163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background Rice black-streaked dwarf virus (RBSDV) and Southern rice black-streaked dwarf virus (SRBSDV) seriously interfered in the production of rice and maize in China. These two viruses are members of the genus Fijivirus in the family Reoviridae and can cause similar dwarf symptoms in rice. Although some studies have reported the phylogenetic analysis on RBSDV or SRBSDV, the evolutionary relationship between these viruses is scarce. Methods In this study, we analyzed the evolutionary relationships between RBSDV and SRBSDV based on the data from the analysis of codon usage, RNA recombination and phylogenetic relationship, selection pressure and genetic characteristics of the bicistronic RNAs (S5, S7 and S9). Results RBSDV and SRBSDV showed similar patterns of codon preference: open reading frames (ORFs) in S7 and S5 had with higher and lower codon usage bias, respectively. Some isolates from RBSDV and SRBSDV formed a clade in the phylogenetic tree of S7 and S9. In addition, some recombination events in S9 occurred between RBSDV and SRBSDV. Conclusions Our results suggest close evolutionary relationships between RBSDV and SRBSDV. Selection pressure, gene flow, and neutrality tests also supported the evolutionary relationships. Electronic supplementary material The online version of this article (10.1186/s12985-019-1163-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zenghui Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, People's Republic of China.,College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Chengming Yu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yuanhao Peng
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, People's Republic of China
| | - Chengshi Ding
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, People's Republic of China
| | - Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, People's Republic of China
| | - Deya Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, People's Republic of China.
| | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
44
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Genetic Connectivity Between Papaya Ringspot Virus Genomes from Papua New Guinea and Northern Australia, and New Recombination Insights. PLANT DISEASE 2019; 103:737-747. [PMID: 30856073 DOI: 10.1094/pdis-07-18-1136-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of papaya ringspot virus (PRSV) were obtained from plants of pumpkin (Cucurbita spp.) or cucumber (Cucumis sativus) showing mosaic symptoms growing at Zage in Goroka District in the Eastern Highland Province of Papua New Guinea (PNG) or Bagl in the Mount Hagen District, Western Highlands Province. The samples were sent to Australia on FTA cards where they were subjected to High Throughput Sequencing (HTS). When the coding regions of the six new PRSV genomic sequences obtained via HTS were compared with those of 54 other complete PRSV sequences from other parts of the world, all six grouped together with the 12 northern Australian sequences within major phylogroup B minor phylogroup I, the Australian sequences coming from three widely dispersed locations spanning the north of the continent. Notably, none of the PNG isolates grouped with genomic sequences from the nearby country of East Timor in phylogroup A. The closest genetic match between Australian and PNG sequences was a nucleotide (nt) sequence identity of 96.9%, whereas between PNG and East Timorese isolates it was only 83.1%. These phylogenetic and nt identity findings demonstrate genetic connectivity between PRSV populations from PNG and Australia. Recombination analysis of the 60 PRSV sequences available revealed evidence of 26 recombination events within 18 isolates, only four of which were within major phylogroup B and none of which were from PNG or Australia. Within the recombinant genomes, the P1, Cl, NIa-Pro, NIb, 6K2, and 5'UTR regions contained the highest numbers of recombination breakpoints. After removal of nonrecombinant sequences, four minor phylogroups were lost (IV, VII, VIII, XV), only one of which was in phylogroup B. When genome regions from which recombinationally derived tracts of sequence were removed from recombinants prior to alignment with nonrecombinant genomes, seven previous minor phylogroups within major phylogroup A, and two within major phylogroup B, merged either partially or entirely forming four merged minor phylogroups. The genetic connectivity between PNG and northern Australian isolates and absence of detectable recombination within either group suggests that PRSV isolates from East Timor, rather than PNG, might pose a biosecurity threat to northern Australian agriculture should they prove more virulent than those already present.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 4 CSIRO Land and Water, Floreat Park, WA6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 5 The National Agriculture Research Institute, P.O. Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, P.O. Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 7 Department of Primary Industries and Rural Development Food Western Australia, South Perth, WA, Australia
| |
Collapse
|
45
|
Zhang L, Shang J, Jia Q, Li K, Yang H, Liu H, Tang Z, Chang X, Zhang M, Wang W, Yang W. Genetic evolutionary analysis of soybean mosaic virus populations from three geographic locations in China based on the P1 and CP genes. Arch Virol 2019; 164:1037-1048. [PMID: 30747339 DOI: 10.1007/s00705-019-04165-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Soybean mosaic virus (SMV) is one of the major pathogens causing serious soybean losses. Little is known about the genetic structure and evolutionary biology of the SMV population in southwestern China. In this study, 29 SMV isolates were obtained from Sichuan Province, and the genomic regions encoding the first protein (P1) and coat protein (CP) were sequenced. Combined with SMV isolates from the southeastern and northeastern regions of China, the genetic and molecular evolution of SMV was studied. Recombination analysis revealed that intraspecific and interspecific recombination had occurred in the SMV population. A phylogenetic tree based on the P1 gene reflected the geographic origin of the non-interspecific recombinant SMV (SMV-NI), while a tree based on the CP gene did not. Though frequent gene flow of the SMV-NI populations was found between the southeastern and northeastern populations, the southwestern population was relatively independent. Genetic differentiation was significant between the SMV interspecific recombinant (SMV-RI) and the non-interspecific recombinant (SMV-NI) populations. It was interesting to note that there was an almost identical recombination breakpoint in SMV-RI and Watermelon mosaic virus (WMV). Population dynamics showed that SMV-RI might be in an expanding state, while the SMV-NI population is relatively stable.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Jia
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Hui Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Liu
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqin Tang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenming Wang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
46
|
Chisholm PJ, Busch JW, Crowder DW. Effects of life history and ecology on virus evolutionary potential. Virus Res 2019; 265:1-9. [PMID: 30831177 DOI: 10.1016/j.virusres.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
The life history traits of viruses pose many consequences for viral population structure. In turn, population structure may influence the evolutionary trajectory of a virus. Here we review factors that affect the evolutionary potential of viruses, including rates of mutation and recombination, bottlenecks, selection pressure, and ecological factors such as the requirement for hosts and vectors. Mutation, while supplying a pool of raw genetic material, also results in the generation of numerous unfit mutants. The infection of multiple host species may expand a virus' ecological niche, although it may come at a cost to genetic diversity. Vector-borne viruses often experience a diminished frequency of positive selection and exhibit little diversity, and resistance against vector-borne viruses may thus be more durable than against non-vectored viruses. Evidence indicates that adaptation to a vector is more evolutionarily difficult than adaptation to a host. Overall, a better understanding of how various factors influence viral dynamics in both plant and animal pathosystems will lead to more effective anti-viral treatments and countermeasures.
Collapse
Affiliation(s)
- Paul J Chisholm
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA.
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| |
Collapse
|
47
|
Wainaina JM, Kubatko L, Harvey J, Ateka E, Makori T, Karanja D, Boykin LM, Kehoe MA. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. PeerJ 2019; 7:e6297. [PMID: 30783563 PMCID: PMC6377593 DOI: 10.7717/peerj.6297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea. Eleven near-complete genomes of BCMNV and two for CABMV were obtained from western Kenya. Bayesian phylogenomic analysis and tests for differential selection pressure within sites and across tree branches of the viral genomes were carried out. Three well-supported clades in BCMNV and one supported clade for CABMNV were resolved and in agreement with individual gene trees. Selection pressure analysis within sites and across phylogenetic branches suggested both viruses were evolving independently, but under strong purifying selection, with a slow evolutionary rate. These findings provide valuable insights on the evolution of BCMNV and CABMV genomes and their relationship to other viral genomes globally. The results will contribute greatly to the knowledge gap involving the phylogenomic relationship of these viruses, particularly for CABMV, for which there are few genome sequences available, and inform the current breeding efforts towards resistance for BCMNV and CABMV.
Collapse
Affiliation(s)
- James M Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura Kubatko
- Ohio State University, Columbus, OH, United States of America
| | - Jagger Harvey
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University, Manhattan, KS, United States of America
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - David Karanja
- Kenya Agricultural and Livestock Research Organization (KARLO), Machakos, Kenya
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monica A Kehoe
- Plant Pathology, Department of Primary Industries and Regional Development Diagnostic Laboratory Service, South Perth, Australia
| |
Collapse
|
48
|
Rose H, Döring I, Vetten HJ, Menzel W, Richert-Pöggeler KR, Maiss E. Complete genome sequence and construction of an infectious full-length cDNA clone of celery latent virus - an unusual member of a putative new genus within the Potyviridae. J Gen Virol 2019; 100:308-320. [PMID: 30667354 DOI: 10.1099/jgv.0.001207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Celery latent virus (CeLV) is an incompletely described plant virus known to be sap and seed transmissible and to possess flexuous filamentous particles measuring about 900 nm in length, suggesting it as a possible member of the family Potyviridae. Here, an Italian isolate of CeLV was transmitted by sap to a number of host plants and shown to have a single-stranded and monopartite RNA genome being 11 519 nucleotides (nts) in size and possessing some unusual features. The RNA contains a large open reading frame (ORF) that is flanked by a short 5' untranslated region (UTR) of 13 nt and a 3' UTR consisting of 586 nt that is not polyadenylated. CeLV RNA shares nt sequence identity of only about 40 % with other members of the Potyviridae (potyvirids). The CeLV polyprotein is notable in that it starts with a signal peptide, has a putative P3N-PIPO ORF and shares low aa sequence identity (about 18 %) with other potyvirids. Although potential cleavage sites were not identified for the N-terminal two-thirds of the polyprotein, the latter possesses a number of sequence motifs, the identity and position of which are characteristic of other potyvirids. Attempts at constructing an infectious full-length cDNA clone of CeLV were successful following Rhizobium radiobacter infiltration of Nicotiana benthamiana and Apium graveolens. CeLV appears to have the largest genome of all known potyvirids and some unique genome features that may warrant the creation of a new genus, for which we propose the name 'celavirus'.
Collapse
Affiliation(s)
- Hanna Rose
- 1Department Phytomedicine, Leibniz University Hannover, Institute of Horticultural Production Systems, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ines Döring
- 1Department Phytomedicine, Leibniz University Hannover, Institute of Horticultural Production Systems, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | | | - Wulf Menzel
- 3Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124 Braunschweig, Germany
| | - Katja R Richert-Pöggeler
- 4Julius Kühn Institut JKI, Federal Research Centre for Cultivated Plants, Institute of Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Edgar Maiss
- 1Department Phytomedicine, Leibniz University Hannover, Institute of Horticultural Production Systems, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
49
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
50
|
Nigam D, LaTourrette K, Souza PFN, Garcia-Ruiz H. Genome-Wide Variation in Potyviruses. FRONTIERS IN PLANT SCIENCE 2019; 10:1439. [PMID: 31798606 PMCID: PMC6863122 DOI: 10.3389/fpls.2019.01439] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 05/07/2023]
Abstract
Potyviruses (family Potyviridae, genus Potyvirus) are the result of an initial radiation event that occurred 6,600 years ago. The genus currently consists of 167 species that infect monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted in a non-persistent way by more than 200 species of aphids. As indicated by their wide host range, worldwide distribution, and diversity of their vectors, potyviruses have an outstanding capacity to adapt to new hosts and environments. However, factors that confer adaptability are poorly understood. Viral RNA-dependent RNA polymerases introduce nucleotide substitutions that generate genetic diversity. We hypothesized that selection imposed by hosts and vectors creates a footprint in areas of the genome involved in host adaptation. Here, we profiled genomic and polyprotein variation in all species in the genus Potyvirus. Results showed that the potyviral genome is under strong negative selection. Accordingly, the genome and polyprotein sequence are remarkably stable. However, nucleotide and amino acid substitutions across the potyviral genome are not randomly distributed and are not determined by codon usage. Instead, substitutions preferentially accumulate in hypervariable areas at homologous locations across potyviruses. At a frequency that is higher than that of the rest of the genome, hypervariable areas accumulate non-synonymous nucleotide substitutions and sites under positive selection. Our results show, for the first time, that there is correlation between host range and the frequency of sites under positive selection. Hypervariable areas map to the N terminal part of protein P1, N and C terminal parts of helper component proteinase (HC-Pro), the C terminal part of protein P3, VPg, the C terminal part of NIb (RNA-dependent RNA polymerase), and the N terminal part of the coat protein (CP). Additionally, a hypervariable area at the NIb-CP junction showed that there is variability in the sequence of the NIa protease cleavage sites. Structural alignment showed that the hypervariable area in the CP maps to the N terminal flexible loop and includes the motif required for aphid transmission. Collectively, results described here show that potyviruses contain fixed hypervariable areas in key parts of the genome which provide mutational robustness and are potentially involved in host adaptation.
Collapse
|