1
|
Ojha R, Pareek A, Pandey RK, Prusty D, Prajapati VK. Strategic Development of a Next-Generation Multi-Epitope Vaccine To Prevent Nipah Virus Zoonotic Infection. ACS OMEGA 2019; 4:13069-13079. [PMID: 31460434 PMCID: PMC6705194 DOI: 10.1021/acsomega.9b00944] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Nipah virus (NiV) is an emerging zoonotic pathogen, reported for the recent severe outbreaks of encephalitis and respiratory illness in humans and animals, respectively. Many antiviral drugs have been discovered to inhibit this pathogen, but none of them were that much efficient. To overcome the complications associated with this severe pathogenic virus, we have designed a multi-epitope subunit vaccine using computational immunology strategies. Identification of structural and nonstructural proteins of Nipah virus assisted in the vaccine designing. The selected proteins are known to be involved in the survival of the virus. The antigenic binders (B-cell, HTL, and CTL) from the selected proteins were prognosticated. These antigenic binders will be able to generate the humoral as well as cell-mediated immunity. All the epitopes were united with the help of suitable linkers and with an adjuvant at the N-terminal of the vaccine, for the enhancement of immunogenicity. The physiological characterization, along with antigenicity and allergenicity of the designed vaccine candidates, was estimated. The 3D structure prediction and its validation were performed. The validated vaccine model was then docked and simulated with the TLR-3 receptor to check the stability of the docked complex. This next-generation approach will provide a new vision for the development of a high immunogenic vaccine against the NiV.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Aditi Pareek
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rajan K. Pandey
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Dhaneswar Prusty
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay K. Prajapati
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
2
|
Sawatsky B, Bente DA, Czub M, von Messling V. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly. J Gen Virol 2016; 97:1066-1076. [PMID: 26813519 PMCID: PMC7482510 DOI: 10.1099/jgv.0.000415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins
include trafficking signals that influence protein processing and cell surface
expression. To characterize the role of the cytoplasmic domain in protein expression,
fusion support and particle assembly in more detail, we constructed chimeric Nipah
virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H)
proteins carrying the respective heterologous cytoplasmic domain, as well as a series
of mutants with progressive deletions in this domain. CDV H retained fusion function
and was normally expressed on the cell surface with a heterologous cytoplasmic
domain, while the expression and fusion support of NiV G was dramatically decreased
when its cytoplasmic domain was replaced with that of CDV H. The cell surface
expression and fusion support functions of CDV H were relatively insensitive to
cytoplasmic domain deletions, while short deletions in the corresponding region of
NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H
cytoplasmic domain strongly influence its incorporation into virus-like particles
formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had
no significant effect on incorporation of G into particles. The cytoplasmic domains
of both the CDV H and NiV G proteins thus contribute differently to the virus life
cycle.
Collapse
Affiliation(s)
- Bevan Sawatsky
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada.,Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Dennis A Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Markus Czub
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Veronika von Messling
- INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada.,Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
3
|
Abstract
ABSTRACT Within the Paramyxoviridae family, Henipaviruses are the deadliest human pathogens. Nipah and Hendra viruses comprise the genus Henipavirus, zoonotic pathogens which cause encephalitis and respiratory disease in humans with mortality rates that can exceed 70%. Henipaviruses are the only Paramyxoviruses classified as biosafety level 4 pathogens due to their extreme pathogenicity, potential for bioterrorism and lack of available licensed vaccines or therapeutic modalities. Both viruses emerged from their natural reservoir, Asian fruit bats, during the last decade of the 20th century. They caused severe disease and mortality in humans, horses and swine. They also infected a number of other mammalian species. With significant progress in understanding the biology of these deadly pathogens, including the discovery of a Hendra virus vaccine and a potential neutralizing antibody, have we really won the war against the Henipavirus?
Collapse
|
4
|
Hendra and Nipah infection: emerging paramyxoviruses. Virus Res 2013; 177:119-26. [PMID: 23954578 DOI: 10.1016/j.virusres.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Since their first emergence in mid 1990s henipaviruses continued to re emerge in Australia and South East Asia almost every year. In total there has been more than 12 Nipah and 48 Hendra virus outbreaks reported in South East Asia and Australia, respectively. These outbreaks are associated with significant economic and health damages that most high risks countries (particularly in South East Asia) cannot bear the burden of such economical threats. Up until recently, there were no actual therapeutics available to treat or prevent these lethal infections. However, an international collaborative research has resulted in the identification of a potential equine Hendra vaccine capable of providing antibody protection against Hendra virus infections. Consequently, with the current findings and after nearly 2 decades since their first detection, are we there yet? This review recaps the chronicle of the henipavirus emergence and briefly evaluates potential anti-henipavirus vaccines and antivirals.
Collapse
|
5
|
Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression. J Virol 2012; 86:3658-66. [PMID: 22278252 DOI: 10.1128/jvi.06414-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression.
Collapse
|
6
|
Canine distemper viruses expressing a hemagglutinin without N-glycans lose virulence but retain immunosuppression. J Virol 2009; 84:2753-61. [PMID: 20042514 DOI: 10.1128/jvi.01813-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxovirus glycoproteins are posttranslationally modified by the addition of N-linked glycans, which are often necessary for correct folding, processing, and cell surface expression. To establish the contribution of N glycosylation to morbillivirus attachment (H) protein function and overall virulence, we first determined the use of the potential N-glycosylation sites in the canine distemper virus (CDV) H proteins. Biochemical characterization revealed that the three sites conserved in all strains were N glycosylated, whereas only two of the up to five additional sites present in wild-type strains are used. A wild-type virus with an H protein reproducing the vaccine strain N-glycosylation pattern remained lethal in ferrets but with a prolonged course of disease. In contrast, introduction of the vaccine H protein in the wild-type context resulted in complete attenuation. To further characterize the role of N glycosylation in CDV pathogenesis, the N-glycosylation sites of wild-type H proteins were successively deleted, including a nonstandard site, to ultimately generate a nonglycosylated H protein. Despite reduced expression levels, this protein remained fully functional. Recombinant viruses expressing N-glycan-deficient H proteins no longer caused disease, even though their immunosuppressive capacities were retained, indicating that reduced N glycosylation contributes to attenuation without affecting immunosuppression.
Collapse
|
7
|
Nipah virus entry can occur by macropinocytosis. Virology 2009; 395:298-311. [PMID: 19854459 DOI: 10.1016/j.virol.2009.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 08/27/2009] [Accepted: 09/14/2009] [Indexed: 11/22/2022]
Abstract
Nipah virus (NiV) is a zoonotic biosafety level 4 paramyxovirus that emerged recently in Asia with high mortality in man. NiV is a member, with Hendra virus (HeV), of the Henipavirus genus in the Paramyxoviridae family. Although NiV entry, like that of other paramyxoviruses, is believed to occur via pH-independent fusion with the host cell's plasma membrane we present evidence that entry can occur by an endocytic pathway. The NiV receptor ephrinB2 has receptor kinase activity and we find that ephrinB2's cytoplasmic domain is required for entry but is dispensable for post-entry viral spread. The mutation of a single tyrosine residue (Y304F) in ephrinB2's cytoplasmic tail abrogates NiV entry. Moreover, our results show that NiV entry is inhibited by constructions and drugs specific for the endocytic pathway of macropinocytosis. Our findings could potentially permit the rapid development of novel low-cost antiviral treatments not only for NiV but also HeV.
Collapse
|
8
|
Thiel L, Diederich S, Erbar S, Pfaff D, Augustin HG, Maisner A. Ephrin-B2 expression critically influences Nipah virus infection independent of its cytoplasmic tail. Virol J 2008; 5:163. [PMID: 19108727 PMCID: PMC2628893 DOI: 10.1186/1743-422x-5-163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/24/2008] [Indexed: 11/11/2022] Open
Abstract
Background Cell entry and cell-to-cell spread of the highly pathogenic Nipah virus (NiV) requires binding of the NiV G protein to cellular ephrin receptors and subsequent NiV F-mediated fusion. Since expression levels of the main NiV entry receptor ephrin-B2 (EB2) are highly regulated in vivo to fulfill the physiological functions in axon guidance and angiogenesis, the goal of this study was to determine if changes in the EB2 expression influence NiV infection. Results Surprisingly, transfection of increasing EB2 plasmid concentrations reduced cell-to-cell fusion both in cells expressing the NiV glycoproteins and in cells infected with NiV. This effect was attributed to the downregulation of the NiV glycoproteins from the cell surface. In addition to the influence on cell-to-cell fusion, increased EB2 expression significantly reduced the total amount of NiV-infected cells, thus interfered with virus entry. To determine if the negative effect of elevated EB2 expression on virus entry is a result of an increased EB2 signaling, receptor function of a tail-truncated and therefore signaling-defective ΔcEB2 was tested. Interestingly, ΔcEB2 fully functioned as NiV entry and fusion receptor, and overexpression also interfered with virus replication. Conclusion Our findings clearly show that EB2 signaling does not account for the striking negative impact of elevated receptor expression on NiV infection, but rather that the ratio between the NiV envelope glycoproteins and surface receptors critically influence cell-to-cell fusion and virus entry.
Collapse
Affiliation(s)
- Lena Thiel
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|