1
|
Mori J, Kawabata A, Tang H, Tadagaki K, Mizuguchi H, Kuroda K, Mori Y. Human Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular Protein, EDD. PLoS One 2015; 10:e0137420. [PMID: 26340541 PMCID: PMC4560387 DOI: 10.1371/journal.pone.0137420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
The human herpesvirus-6 (HHV-6) infection induces cell-cycle arrest. In this study, we found that the HHV-6-encoded U14 protein induced cell-cycle arrest at G2/M phase via an association with the cellular protein EDD, a mediator of DNA-damage signal transduction. In the early phase of HHV-6 infection, U14 colocalized with EDD dots in the nucleus, and similar colocalization was also observed in cells transfected with a U14 expression vector. When the carboxyl-terminal region of U14 was deleted, no association of U14 and EDD was observed, and the percentage of cells in G2/M decreased relative to that in cells expressing wild-type U14, indicating that the C-terminal region of U14 and the U14-EDD association are critical for the cell-cycle arrest induced by U14. These results indicate that U14 is a G2/M checkpoint regulator encoded by HHV-6.
Collapse
Affiliation(s)
- Junko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Akiko Kawabata
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Huamin Tang
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
- Department of Immunology, Nanjing Medical University, Nanjing, 210029, China
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 6028566, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 5650871, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 1738610, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
- Laboratory of Virology and Vaccinology, National Institute of Biomedical Innovation, Osaka, 5670085, Japan
- * E-mail:
| |
Collapse
|
2
|
Ubiquitination and degradation of the ORF34 gene product of equine herpesvirus type 1 (EHV-1) at late times of infection. Virology 2014; 460-461:11-22. [PMID: 25010266 DOI: 10.1016/j.virol.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/21/2014] [Accepted: 05/07/2014] [Indexed: 11/23/2022]
Abstract
The equine herpesvirus type 1 (EHV-1) open reading frame 34 (ORF34) is predicted to encode a polypeptide of 161 amino acids. We show that an ORF34 deletion mutant exhibited a significant growth defect in equine peripheral blood mononuclear cells taken directly ex vivo during early but not late times of infection. ORF34 protein (pORF34)-specific antibodies specifically reacted with a 28-kDa early polypeptide present in the cytosol of infected cells. From 10h post infection, multiple smaller pORF34-specific protein moieties were detected indicating that expression of a late viral gene product(s) caused pORF34 degradation. Proteasome inhibitors blocked pORF34 degradation as did treatment of infected cells with a ubiquitin-activating enzyme (E1) inhibitor. Finally, kinetic studies showed that pORF34 is modified by addition of multiple copies of ubiquitin. Taken together, our findings suggest that the ubiquitin proteasome pathway is required for pORF34 degradation that may modulate protein activity in the course of infection.
Collapse
|
3
|
Alibek K, Baiken Y, Kakpenova A, Mussabekova A, Zhussupbekova S, Akan M, Sultankulov B. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infect Agent Cancer 2014; 9:3. [PMID: 24438207 PMCID: PMC3904197 DOI: 10.1186/1750-9378-9-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022] Open
Abstract
All human herpesviruses (HHVs) have been implicated in immune system evasion and suppression. Moreover, two HHV family members, i.e. EBV and KSHV, are recognised as oncogenic viruses. Our literature review summarises additional examples of possible oncogenic mechanisms that have been attributed to other HHVs. In general, HHVs affect almost every cancer-implicated branch of the immune system, namely tumour-promoting inflammation, immune evasion, and immunosuppression. Some HHVs accomplish these effects by inhibiting apoptotic pathways and by promoting proliferation. Mechanisms related to immunosupression and low grade chronic inflammation could eventually result in the initiation and progression of cancer. In this article we open a discussion on the members of Herpesviridae, their immune evasion and suppression mechanisms, and their possible role in cancer development. We conclude that discerning the mechanisms of interplay between HHV, immune system, and cancer is essential for the development of novel preventative and therapeutic approaches for cancer treatment and prophylaxis.
Collapse
Affiliation(s)
| | | | - Ainur Kakpenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | | | | | | | | |
Collapse
|
4
|
Kofod-Olsen E, Møller JML, Schleimann MH, Bundgaard B, Bak RO, Øster B, Mikkelsen JG, Hupp T, Höllsberg P. Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B. PLoS One 2013; 8:e59223. [PMID: 23555634 PMCID: PMC3608612 DOI: 10.1371/journal.pone.0059223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 01/20/2023] Open
Abstract
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.
Collapse
Affiliation(s)
| | | | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bodil Øster
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Ted Hupp
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
5
|
Induction and activation of the p53 pathway: a role for the protein kinase CK2? Mol Cell Biochem 2011; 356:133-8. [DOI: 10.1007/s11010-011-0966-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 02/02/2023]
|
6
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|
7
|
Flamand L, Komaroff AL, Arbuckle JH, Medveczky PG, Ablashi DV. Review, part 1: Human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J Med Virol 2010; 82:1560-8. [PMID: 20648610 DOI: 10.1002/jmv.21839] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
8
|
Mukerjee R, Claudio PP, Chang JR, Del Valle L, Sawaya BE. Transcriptional regulation of HIV-1 gene expression by p53. Cell Cycle 2010; 9:4569-78. [PMID: 21088492 DOI: 10.4161/cc.9.22.13836] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several reports have pointed to the negative involvement of p53 in transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). However, the mechanisms of this negative effect remain unclear. In here, we showed that over expression of p53 wild type prevented the phosphorylation of serine 2 in the carboxyl terminal domain (CTD) of RNA polymerase II. As a result of this inhibition, p53 stalled transcriptional elongation on the HIV-1 LTR leading to a significant reduction of HIV-1 replication in primary microglia and astrocytes. However, despite the delay/pause caused by p53, viral transcription and replication decreased and then salvaged. These studies suggest that the negative effect of p53 is alleviated by a third factor. In this regard, our Preliminary Data point to the involvement of the Pirh2 protein in p53 inhibition. Therefore, we suggest that p53 may be a novel therapeutic target for the inhibition of HIV-1 gene expression and replication and the treatment of AIDS.
Collapse
Affiliation(s)
- Ruma Mukerjee
- Molecular Virology Lab, Department of Neurology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
9
|
Lacroix A, Collot-Teixeira S, Mardivirin L, Jaccard A, Petit B, Piguet C, Sturtz F, Preux PM, Bordessoule D, Ranger-Rogez S. Involvement of human herpesvirus-6 variant B in classic Hodgkin's lymphoma via DR7 oncoprotein. Clin Cancer Res 2010; 16:4711-21. [PMID: 20858841 DOI: 10.1158/1078-0432.ccr-10-0470] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hodgkin's lymphoma (HL) is associated with the presence of EBV in Reed-Sternberg (RS) cells in ∼40% of cases. Here, we studied the presence of human herpesvirus type 6 (HHV-6) variant B in RS cells of HL patients and correlated results with clinical parameters. We then examined the implication of HHV-6 DR7B protein in cell deregulation. EXPERIMENTAL DESIGN HHV-6 DR7B protein was produced in a Semliki Forest virus system. Polyclonal antibodies were then generated and used for immunochemical HHV-6 localization in HL biopsies. Binding between DR7B and p53 was studied using a double-hybrid system. Transactivation of NFκB was observed after transient transfection using reporter gene assays. We looked for Id2 factor expression after stable transfection of the BJAB cell line by reverse transcription-PCR and Western blot analysis. RESULTS HHV-6 was more common in nodular sclerosis subtype HL, and DR7B oncoprotein was detected in RS cells for 73.7% of EBV-negative patients. Colocalization of EBV and HHV-6 was observed in RS cells of doubly infected patients. DR7B protein bound to human p53 protein. p105-p50/p65 mRNA expression and activation of the NFκB complex were increased when DR7B was expressed. Stable expression of DR7B exhibited a strong and uniform expression of Id2. A slightly higher percentage of remission was observed in patients with RS cells testing positive for DR7B than in those testing negative. CONCLUSIONS Collectively, these data provide evidence for the implication of a novel agent, HHV-6, in cases of nodular sclerosis HL.
Collapse
|
10
|
Cox ML, Meek DW. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 2010; 22:564-71. [PMID: 19932175 DOI: 10.1016/j.cellsig.2009.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Post-translational modifications play important roles during the stabilisation and activation of p53 by various genotoxic and non-genotoxic stresses. Ser392 has been reported to be a major UV-stimulated phosphorylation site that is modified through the p38 MAPK pathway in a manner that may involve recruitment of CK2. Here we show that phosphorylation of Ser392 is an integral event that occurs not only in response to UV, but also during the induction of p53 by a range of stimuli including treatment of cells with the MDM2 inhibitor, Nutlin 3a. Strikingly, phosphorylation of Ser392 and Ser33 was also observed following induction of the p53 pathway by ARF which has previously been thought to induce p53 in a phosphorylation-independent manner. The induction of Ser392 phosphorylation by diverse stimuli can be explained by a common mechanism in which its phosphorylation at a low rate, coupled with the rapid turnover of p53, limits the accumulation of phosphorylated molecules until a stimulus stabilises p53 and allows the Ser392-phosphorylated p53 to accumulate. We also provide biological evidence that Ser392 phosphorylation is not mediated by a UV-associated route involving p38 MAPK, either directly or indirectly via CK2. These data suggest that, physiologically, Ser392 may be phosphorylated by an, as yet, unidentified protein kinase.
Collapse
Affiliation(s)
- Miranda L Cox
- Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | |
Collapse
|
11
|
|
12
|
Batlle A, Papadopoulou V, Gomes AR, Willimott S, Melo JV, Naresh K, Lam EWF, Wagner SD. CD40 and B-cell receptor signalling induce MAPK family members that can either induce or repress Bcl-6 expression. Mol Immunol 2009; 46:1727-35. [PMID: 19268365 DOI: 10.1016/j.molimm.2009.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
Bcl-6 is essential for germinal centre development and normal antibody responses, and has major roles in controlling B-cell proliferation and differentiation. Bcl-6 expression is tightly controlled, but neither the nature of all the regulatory signals nor their interactions are known. Bcl-6 expression is induced in Bcr-Abl expressing lymphoid cell lines by the tyrosine kinase inhibitor, imatinib. We show that p38 MAPK mediates induction of Bcl-6 following inhibition of Bcr-Abl by imatinib. Next we analyze p38 function in a germinal centre B-cell line, Ramos. p38 is phosphorylated under basal conditions, and studies with p38 inhibitors show that it induces Bcl-6 expression. Membrane bound CD40 ligand activates p38 but also other MAPK pathways that strongly repress Bcl-6 and the overall effect is reduction in Bcl-6 expression. Surprisingly soluble CD40 ligand induces Bcl-6 by activating p38 without activating the repressive pathways. Hence different types of CD40 signalling are associated with varying effects on Bcl-6 expression. Transcription reporter assays demonstrate p38 responsive sequences at about 4.5 kb from the transcription start site. Immunocytochemistry of tonsil sections show phosphorylated p38 in a minor population of germinal centre B-cells. We demonstrate for the first time that p38 induces Bcl-6 transcription, but increased protein expression occurs only when the strong pathways repressing Bcl-6 are not activated.
Collapse
Affiliation(s)
- Ana Batlle
- Department of Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
MacLaine NJ, Oster B, Bundgaard B, Fraser JA, Buckner C, Lazo PA, Meek DW, Höllsberg P, Hupp TR. A central role for CK1 in catalyzing phosphorylation of the p53 transactivation domain at serine 20 after HHV-6B viral infection. J Biol Chem 2008; 283:28563-73. [PMID: 18669630 DOI: 10.1074/jbc.m804433200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at Ser20 whose modification stabilizes the binding of the transcriptional co-activator p300 and whose mutation in murine transgenics induces B-cell lymphoma. Although the checkpoint kinase CHK2 is implicated in promoting Ser20 site phosphorylation after irradiation, the enzyme that triggers this phosphorylation after DNA viral infection is undefined. Using human herpesvirus 6B (HHV-6B) as a virus that induces Ser20 site phosphorylation of p53 in T-cells, we sought to identify the kinase responsible for this virus-induced p53 modification. The p53 Ser20 kinase was fractionated and purified using cation, anion, and dye-ligand exchange chromatography. Mass spectrometry identified casein kinase 1 (CK1) and vaccinia-related kinase 1 (VRK1) as enzymes that coeluted with virus-induced Ser20 site kinase activity. Immunodepletion of CK1 but not VRK1 removed the kinase activity from the peak fraction, and bacterially expressed CK1 exhibited Ser20 site kinase activity equivalent to that of the virus-induced native CK1. CK1 modified p53 in a docking-dependent manner, which is similar to other known Ser20 site p53 kinases. Low levels of the CK1 inhibitor D4476 selectively inhibited HHV-6B-induced Ser20 site phosphorylation of p53. However, x-ray-induced Ser20 site phosphorylation of p53 was not blocked by D4476. These data highlight a central role for CK1 as the Ser20 site kinase for p53 in DNA virus-infected cells but also suggest that distinct stresses may selectively trigger different protein kinases to modify the transactivation domain of p53 at Ser20.
Collapse
Affiliation(s)
- Nicola J MacLaine
- University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|