1
|
Teigen M, Ølnes ÅS, Bjune K, Leren TP, Bogsrud MP, Strøm TB. Functional characterization of missense variants affecting the extracellular domains of ABCA1 using a fluorescence-based assay. J Lipid Res 2024; 65:100482. [PMID: 38052254 PMCID: PMC10792246 DOI: 10.1016/j.jlr.2023.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Excess cholesterol originating from nonhepatic tissues is transported within HDL particles to the liver for metabolism and excretion. Cholesterol efflux is initiated by lipid-free or lipid-poor apolipoprotein A1 interacting with the transmembrane protein ABCA1, a key player in cholesterol homeostasis. Defective ABCA1 results in reduced serum levels of HDL cholesterol, deposition of cholesterol in arteries, and an increased risk of early onset CVD. Over 300 genetic variants in ABCA1 have been reported, many of which are associated with reduced HDL cholesterol levels. Only a few of these have been functionally characterized. In this study, we have analyzed 51 previously unclassified missense variants affecting the extracellular domains of ABCA1 using a sensitive, easy, and low-cost fluorescence-based assay. Among these, only 12 variants showed a distinct loss-of-function phenotype, asserting their direct association with severe HDL disorders. These findings emphasize the crucial role of functional characterization of genetic variants in pathogenicity assessment and precision medicine. The functional rescue of ABCA1 loss-of-function variants through proteasomal inhibition or by the use of the chemical chaperone 4-phenylbutyric acid was genotype specific. Genotype-specific responses were also observed for the ability of apolipoprotein A1 to stabilize the different ABCA1 variants. In view of personalized medicine, this could potentially form the basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Marianne Teigen
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Åsa Schawlann Ølnes
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Cholesterol and its reciprocal association with prion infection. Cell Tissue Res 2022; 392:235-246. [PMID: 35821439 DOI: 10.1007/s00441-022-03669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.
Collapse
|
4
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
5
|
Abstract
The development of multiple cell culture models of prion infection over the last two decades has led to a significant increase in our understanding of how prions infect cells. In particular, new techniques to distinguish exogenous from endogenous prions have allowed us for the first time to look in depth at the earliest stages of prion infection through to the establishment of persistent infection. These studies have shown that prions can infect multiple cell types, both neuronal and nonneuronal. Once in contact with the cell, they are rapidly taken up via multiple endocytic pathways. After uptake, the initial replication of prions occurs almost immediately on the plasma membrane and within multiple endocytic compartments. Following this acute stage of prion replication, persistent prion infection may or may not be established. Establishment of a persistent prion infection in cells appears to depend upon the achievement of a delicate balance between the rate of prion replication and degradation, the rate of cell division, and the efficiency of prion spread from cell to cell. Overall, cell culture models have shown that prion infection of the cell is a complex and variable process which can involve multiple cellular pathways and compartments even within a single cell.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
6
|
Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells. J Virol 2017; 91:JVI.01862-16. [PMID: 28077650 DOI: 10.1128/jvi.01862-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear.IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and several proteins, including abnormal PrP in prion disease and the Aβ oligomer in Alzheimer's disease. In the present study, melanin, a main determinant of skin color, was newly found to interact with this N-terminal region and inhibits abnormal PrP formation in prion-infected cells. However, the data for prion infection in mice lacking melanin production suggest that melanin is not associated with the prion disease mechanism, although the incidence of prion disease is reportedly much higher in white people than in black people. Thus, the roles of the PrP-melanin interaction remain to be further elucidated, but melanin might be a useful competitive tool for evaluating the functions of other ligands at the N-terminal region.
Collapse
|
7
|
Dong X, Liu T, Xu S, Zhu L, Zhang P, Cheng A, Qian Q. The relevance of ABCA1 R219K polymorphisms and serum ABCA1 protein concentration to Parkinson’s disease pathogenesis and classification: a case–control study. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 2015; 72:4409-27. [PMID: 26047659 PMCID: PMC11113226 DOI: 10.1007/s00018-015-1945-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.
Collapse
Affiliation(s)
- Didier Vilette
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France.
| | - Karine Laulagnier
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
- Inserm, U836, Neurodégénérescence et Plasticité, Institute of Neuroscience, Grenoble, France
| | - Alvina Huor
- UMR INRA/ENVT 1225, Interactions Hôte Agent Pathogène, Toulouse, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, UCBL, ENS Lyon, Lyon, France
| | - Sabrina Simoes
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Romao Maryse
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Monique Provansal
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | - Sylvain Lehmann
- Institut de Médecine Régénératrice et de Biothérapie (I.M.R.B.), Physiopathologie, diagnostic et thérapie cellulaire des affections neurodégénératives, INSERM Université Montpellier 1 U1040 CHU de Montpellier, Université Montpellier 1, Montpellier, France
| | | | - Laurent Schaeffer
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France
| | - Graça Raposo
- Institut Curie, CNRS-UMR144-Structure and Membrane Compartments, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Pascal Leblanc
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule (LBMC), ENS Lyon, 46 allée d'Italie, 69364, Lyon 7, France.
| |
Collapse
|
9
|
Hamanaka T, Nishizawa K, Sakasegawa Y, Teruya K, Doh-ura K. Structure-activity analysis and antiprion mechanism of isoprenoid compounds. Virology 2015; 486:63-70. [PMID: 26402376 DOI: 10.1016/j.virol.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/18/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
The prion strain-specific mechanism by which normal prion protein is converted to abnormal prion protein remains largely unknown. This study found that insect juvenile hormone III reduced abnormal prion protein levels only in cells infected with the RML prion. We conducted a structure-activity analysis using juvenile hormone III biosynthetic intermediates in the isoprenoid pathway. Both farnesol and geranylgeraniol, the most potent inhibitors of abnormal prion protein formation, behaved in an RML prion-dependent fashion. Neither of them modified cellular and cell surface prion protein levels. Events downstream of this pathway include cholesterol biosynthesis and protein prenylation. However, neither of these isoprenoid compounds modified lipid raft microdomains and cellular cholesterol levels and neither affected the representative prenylated protein expression levels of prenylation pathways. Therefore, these isoprenoid compounds are a new class of prion strain-dependent antiprion compounds. They are useful for exploring strain-specific prion biology.
Collapse
Affiliation(s)
- Taichi Hamanaka
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Sendai 980-8575, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Sendai 980-8575, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Sendai 980-8575, Japan
| | - Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Sendai 980-8575, Japan
| | - Katsumi Doh-ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryocho, Sendai 980-8575, Japan.
| |
Collapse
|
10
|
Cholesterol balance in prion diseases and Alzheimer's disease. Viruses 2014; 6:4505-35. [PMID: 25419621 PMCID: PMC4246236 DOI: 10.3390/v6114505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/08/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.
Collapse
|
11
|
Anderson SR, Lee I, Ebeling C, Stephenson DA, Schweitzer KM, Baxter D, Moon TM, LaPierre S, Jaques B, Silvius D, Wegner M, Hood LE, Carlson G, Gunn TM. Disrupted SOX10 function causes spongiform neurodegeneration in gray tremor mice. Mamm Genome 2014; 26:80-93. [PMID: 25399070 DOI: 10.1007/s00335-014-9548-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 12/01/2022]
Abstract
Mice homozygous for the gray tremor (gt) mutation have a pleiotropic phenotype that includes pigmentation defects, megacolon, whole body tremors, sporadic seizures, hypo- and dys-myelination of the central nervous system (CNS) and peripheral nervous system, vacuolation of the CNS, and early death. Vacuolation similar to that caused by prions was originally reported to be transmissible, but subsequent studies showed the inherited disease was not infectious. The gt mutation mapped to distal mouse chromosome 15, to the same region as Sox10, which encodes a transcription factor with essential roles in neural crest survival and differentiation. As dominant mutations in mouse or human SOX10 cause white spotting and intestinal aganglionosis, we screened the Sox10 coding region for mutations in gt/gt DNA. An adenosine to guanine transversion was identified in exon 2 that changes a highly conserved glutamic acid residue in the SOX10 DNA binding domain to glycine. This mutant allele was not seen in wildtype mice, including the related GT/Le strain, and failed to complement a Sox10 null allele. Gene expression analysis revealed significant down-regulation of genes involved in myelin lipid biosynthesis pathways in gt/gt brains. Knockout mice for some of these genes develop CNS vacuolation and/or myelination defects, suggesting that their down-regulation may contribute to these phenotypes in gt mutants and could underlie the neurological phenotypes associated with peripheral demyelinating neuropathy-central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, caused by mutations in human SOX10.
Collapse
|
12
|
Shott RH, Majer A, Frost KL, Booth SA, Schang LM. Activation of pro-survival CaMK4β/CREB and pro-death MST1 signaling at early and late times during a mouse model of prion disease. Virol J 2014; 11:160. [PMID: 25183307 PMCID: PMC4168054 DOI: 10.1186/1743-422x-11-160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background The signaling pathways most critical to prion disease pathogenesis are as yet incompletely characterized. We have developed a kinomics approach to identify signaling pathways that are dysregulated during prion pathogenesis. The approach is sensitive and specific enough to detect signaling pathways dysregulated in a simple in vitro model of prion pathogenesis. Here, we used this approach to identify signaling pathways dysregulated during prion pathogenesis in vivo. Methods Mice intraperitoneally infected with scrapie (strain RML) were euthanized at 70, 90, 110, 130 days post-infection (dpi) or at terminal stages of disease (155–190 dpi). The levels of 139 protein kinases in brainstem-cerebellum homogenates were analyzed by multiplex Western blots, followed by hierarchical clustering and analyses of activation states. Results Hierarchical and functional clustering identified CaMK4β and MST1 signaling pathways as potentially dysregulated. Targeted analyses revealed that CaMK4β and its downstream substrate CREB, which promotes neuronal survival, were activated at 70 and 90 dpi in cortical, subcortical and brainstem-cerebellum homogenates from scrapie-infected mice. The activation levels of CaMK4β/CREB signaling returned to those in mock-infected mice at 110 dpi, whereas MST1, which promotes neuronal death, became activated at 130 dpi. Conclusion Pro-survival CaMK4β/CREB signaling is activated in mouse scrapie at earlier times and later inhibited, whereas pro-death MST1 signaling is activated at these later times. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-160) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Luis M Schang
- Department of Biochemistry and Centre for Prions and Protein Folding Diseases (CPPFD), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Efficacy and mechanism of a glycoside compound inhibiting abnormal prion protein formation in prion-infected cells: implications of interferon and phosphodiesterase 4D-interacting protein. J Virol 2014; 88:4083-99. [PMID: 24453367 DOI: 10.1128/jvi.03775-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED A new type of antiprion compound, Gly-9, was found to inhibit abnormal prion protein formation in prion-infected neuroblastoma cells, in a prion strain-independent manner, when the cells were treated for more than 1 day. It reduced the intracellular prion protein level and significantly modified mRNA expression levels of genes of two types: interferon-stimulated genes were downregulated after more than 2 days of treatment, and the phosphodiesterase 4D-interacting protein gene, a gene involved in microtubule growth, was upregulated after more than 1 day of treatment. A supplement of interferon given to the cells partly restored the abnormal prion protein level but did not alter the normal prion protein level. This interferon action was independent of the Janus activated kinase-signal transducer and activator of transcription signaling pathway. Therefore, the changes in interferon-stimulated genes might be a secondary effect of Gly-9 treatment. However, gene knockdown of phosphodiesterase 4D-interacting protein restored or increased both the abnormal prion protein level and the normal prion protein level, without transcriptional alteration of the prion protein gene. It also altered the localization of abnormal prion protein accumulation in the cells, indicating that phosphodiesterase 4D-interacting protein might affect prion protein levels by altering the trafficking of prion protein-containing structures. Interferon and phosphodiesterase 4D-interacting protein had no direct mutual link, demonstrating that they regulate abnormal prion protein levels independently. Although the in vivo efficacy of Gly-9 was limited, the findings for Gly-9 provide insights into the regulation of abnormal prion protein in cells and suggest new targets for antiprion compounds. IMPORTANCE This report describes our study of the efficacy and potential mechanism underlying the antiprion action of a new antiprion compound with a glycoside structure in prion-infected cells, as well as the efficacy of the compound in prion-infected animals. The study revealed involvements of two factors in the compound's mechanism of action: interferon and a microtubule nucleation activator, phosphodiesterase 4D-interacting protein. In particular, phosphodiesterase 4D-interacting protein was suggested to be important in regulating the trafficking or fusion of prion protein-containing vesicles or structures in cells. The findings of the study are expected to be useful not only for the elucidation of cellular regulatory mechanisms of prion protein but also for the implication of new targets for therapeutic development.
Collapse
|
14
|
Cui HL, Guo B, Scicluna B, Coleman BM, Lawson VA, Ellett L, Meikle PJ, Bukrinsky M, Mukhamedova N, Sviridov D, Hill AF. Prion infection impairs cholesterol metabolism in neuronal cells. J Biol Chem 2013; 289:789-802. [PMID: 24280226 PMCID: PMC3887205 DOI: 10.1074/jbc.m113.535807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.
Collapse
Affiliation(s)
- Huanhuan L Cui
- From the Baker Heart and Diabetes Institute, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ehsani S, Salehzadeh A, Huo H, Reginold W, Pocanschi CL, Ren H, Wang H, So K, Sato C, Mehrabian M, Strome R, Trimble WS, Hazrati LN, Rogaeva E, Westaway D, Carlson GA, Schmitt-Ulms G. LIV-1 ZIP ectodomain shedding in prion-infected mice resembles cellular response to transition metal starvation. J Mol Biol 2012; 422:556-574. [PMID: 22687393 DOI: 10.1016/j.jmb.2012.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
We recently documented the co-purification of members of the LIV-1 subfamily of ZIP (Zrt-, Irt-like Protein) zinc transporters (LZTs) with the cellular prion protein (PrP(C)) and, subsequently, established that the prion gene family descended from an ancestral LZT gene. Here, we begin to address whether the study of LZTs can shed light on the biology of prion proteins in health and disease. Starting from an observation of an abnormal LZT immunoreactive band in prion-infected mice, subsequent cell biological analyses uncovered a surprisingly coordinated biology of ZIP10 (an LZT member) and prion proteins that involves alterations to N-glycosylation and endoproteolysis in response to manipulations to the extracellular divalent cation milieu. Starving cells of manganese or zinc, but not copper, causes shedding of the N1 fragment of PrP(C) and of the ectodomain of ZIP10. For ZIP10, this posttranslational biology is influenced by an interaction between its PrP-like ectodomain and a conserved metal coordination site within its C-terminal multi-spanning transmembrane domain. The transition metal starvation-induced cleavage of ZIP10 can be differentiated by an immature N-glycosylation signature from a constitutive cleavage targeting the same site. Data from this work provide a first glimpse into a hitherto neglected molecular biology that ties PrP to its LZT cousins and suggest that manganese or zinc starvation may contribute to the etiology of prion disease in mice.
Collapse
Affiliation(s)
- Sepehr Ehsani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Ashkan Salehzadeh
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Hairu Huo
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - William Reginold
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Cosmin L Pocanschi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Hezhen Ren
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Kelvin So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert Strome
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - William S Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Lili-Naz Hazrati
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Medicine, University of Toronto, Toronto, ON, Canada M5G 2C4
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada T6G 2M8
| | | | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
16
|
Reboulleau A, Robert V, Vedie B, Doublet A, Grynberg A, Paul JL, Fournier N. Involvement of cholesterol efflux pathway in the control of cardiomyocytes cholesterol homeostasis. J Mol Cell Cardiol 2012; 53:196-205. [PMID: 22668787 DOI: 10.1016/j.yjmcc.2012.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/10/2012] [Accepted: 05/26/2012] [Indexed: 11/16/2022]
Abstract
Although cholesterol-rich microdomains are highly involved in the functions of cardiomyocytes, the cholesterol homeostasis is largely unknown in these cells. We developed experimental procedures to assess cholesterol synthesis, cholesterol masses and cholesterol efflux from primary cultures of cardiac myocytes obtained from 2 to 4 days old Wistar rats. We first observed that cardiomyocytes poorly internalized exogenously supplied native or modified LDL and that free cholesterol (FC) efflux to free apolipoprotein AI (apo AI) and to HDL was mediated by ATP binding cassette transporter A1 (ABCA1) and likely by ATP binding cassette transporter G1 (ABCG1), respectively, which are both upregulated by liver X receptor/retinoid X receptor (LXR/RXR) activation. We then investigated the consequences of cholesterol synthesis inhibition on cholesterol homeostasis using an HMGCoA reductase inhibitor (pravastatin, 90% effective concentration (EC90): 0.11 mM, 18 h). We observed no impact of cholesterol synthesis inhibition on the FC or cholesteryl ester (CE) masses. Consistently with no FC mass changes, pravastatin treatment had no notable impact on LDL receptors mRNA expression or on the capacity of cardiomyocytes to uptake radiolabeled LDL. Conversely, pravastatin treatment induced a significant decrease of cholesterol efflux to both apo AI and HDL whereas the passive aqueous diffusion remained unchanged. The cholesterol efflux pathway reductions induced by cholesterol synthesis inhibition were not caused by a reduction of ABC transporter expression (mRNA or protein). These results show that cardiac myocytes down-regulate active cholesterol efflux processes when endogenous cholesterol synthesis is inhibited, allowing them to preserve cholesterol homeostasis.
Collapse
Affiliation(s)
- Anne Reboulleau
- Univ Paris-Sud, EA 4529, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Juan T, Véniant MM, Helmering J, Babij P, Baker DM, Damore MA, Bass MB, Gyuris T, Chhoa M, Li CM, Ebeling C, Amato J, Carlson GA, Lloyd DJ. Identification of three loci affecting HDL-cholesterol levels in a screen for chemically induced recessive mutations in mice. J Lipid Res 2008; 50:534-545. [PMID: 18974039 DOI: 10.1194/jlr.m800471-jlr200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We conducted a genome-wide screen using the mutagen N-ethyl-N-nitrosourea to identify recessive mutations in genes that lead to altered lipid traits in mice. We screened 7,546 G3 mice that were of mixed C57BL/6J (B6) x C3.SW-H2(b)/SnJ (C3) genomes and identified three pedigrees with differences in plasma HDL-cholesterol. Genome scan analyses mapped three distinct loci to chromosomes 3, 4, and 7. An S1748L missense mutation was identified in ABCA1 in one pedigree with undetectable levels of HDL-cholesterol and resulted in reduced protein levels. This phenotype was completely penetrant, semi-dominant, and cosegregated with high plasma triglycerides. Mice in a second pedigree had very high levels of plasma total cholesterol and HDL-cholesterol (up to 800 mg/dl total cholesterol). Despite a high degree of phenotype lability and reduced penetrance, an I68N missense mutation was identified in the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). Finally, a second high HDL-cholesterol pedigree of mice, again with a highly labile phenotype and reduced penetrance, was mapped to a 7 Mb locus on chromosome 3. These results illustrate the use of a hybrid background for simultaneous screening and mapping of mutagenized pedigrees of mice and identification of three novel alleles of HDL-cholesterol phenotypes.
Collapse
Affiliation(s)
- Todd Juan
- Department of Protein Sciences, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Murielle M Véniant
- Department of Metabolic Disorders, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Joan Helmering
- Department of Metabolic Disorders, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Philip Babij
- Department of Metabolic Disorders, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Daniel M Baker
- Department of Molecular Sciences, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Michael A Damore
- Department of Molecular Sciences, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Michael B Bass
- Department of Computational Biology, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Tibor Gyuris
- Department of Protein Sciences, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Mark Chhoa
- Department of Protein Sciences, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Chi-Ming Li
- Department of Protein Sciences, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320
| | - Chris Ebeling
- McLaughlin Research Institute, 1520 23rd Street South, Great Falls, MT 59405
| | - Julie Amato
- McLaughlin Research Institute, 1520 23rd Street South, Great Falls, MT 59405
| | - George A Carlson
- McLaughlin Research Institute, 1520 23rd Street South, Great Falls, MT 59405
| | - David J Lloyd
- Department of Metabolic Disorders, Amgen, Inc., One Amgen Centre Drive, Thousand Oaks, CA 91320.
| |
Collapse
|