1
|
Castel G, Monchatre-Leroy E, López-Roig M, Murri S, Couteaudier M, Boué F, Augot D, Sauvage F, Pontier D, Hénaux V, Marianneau P, Serra-Cobo J, Tordo N. Puumala Virus Variants Circulating in Forests of Ardennes, France: Ten Years of Genetic Evolution. Pathogens 2021; 10:pathogens10091164. [PMID: 34578197 PMCID: PMC8472060 DOI: 10.3390/pathogens10091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
In Europe, Puumala virus (PUUV) transmitted by the bank vole (Myodes glareolus) is the causative agent of nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome. In France, very little is known about the spatial and temporal variability of the virus circulating within bank vole populations. The present study involved monitoring of bank vole population dynamics and PUUV microdiversity over a ten-year period (2000–2009) in two forests of the Ardennes region: Elan and Croix-Scaille. Ardennes region is characterised by different environmental conditions associated with different NE epidemiology. Bank vole density and population parameters were estimated using the capture/marking/recapture method, and blood samples were collected to monitor the overall seroprevalence of PUUV in rodent populations. Phylogenetic analyses of fifty-five sequences were performed to illustrate the genetic diversity of PUUV variants between forests. The pattern of the two forests differed clearly. In the Elan forest, the rodent survival was higher, and this limited turn-over resulted in a lower seroprevalence and diversity of PUUV sequences than in the Croix-Scaille forest. Uncovering the links between host dynamics and virus microevolution is improving our understanding of PUUV distribution in rodents and the NE risk.
Collapse
Affiliation(s)
- Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université Montpellier, 34000 Montpellier, France
- Correspondence: (G.C.); (E.M.-L.)
| | - Elodie Monchatre-Leroy
- Nancy Laboratory for Rabies and Wildlife, ANSES, 54220 Malzeville, France;
- Correspondence: (G.C.); (E.M.-L.)
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.L.-R.); (J.S.-C.)
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Séverine Murri
- Lyon Laboratory, ANSES, Virology Unit, University of Lyon, 69007 Lyon, France; (S.M.); (P.M.)
| | - Mathilde Couteaudier
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, ANSES, SEEpiAS Unit, 54220 Malzéville, France;
| | - Denis Augot
- Nancy Laboratory for Rabies and Wildlife, ANSES, 54220 Malzeville, France;
- USC Vecpar, ANSES-LSA, EA 7510, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51096 Reims, France
| | - Frank Sauvage
- SEENOVATE, 69002 Lyon, France;
- UMR–CNRS 5558 Biométrie et Biologie Evolutive, Université C. Bernard Lyon-1, 69622 Villeurbanne, France;
| | - Dominique Pontier
- UMR–CNRS 5558 Biométrie et Biologie Evolutive, Université C. Bernard Lyon-1, 69622 Villeurbanne, France;
- LabEx Ecofect, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, 69622 Lyon, France
| | - Viviane Hénaux
- Lyon Laboratory, ANSES, Epidemiology and support to Surveillance Unit, University of Lyon, 69007 Lyon, France;
| | - Philippe Marianneau
- Lyon Laboratory, ANSES, Virology Unit, University of Lyon, 69007 Lyon, France; (S.M.); (P.M.)
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.L.-R.); (J.S.-C.)
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Noël Tordo
- Institut Pasteur, Antiviral Strategies Unit, Department of Virology, 75015 Paris, France;
- Institut Pasteur de Guinée, Conakry BP 4416, Guinea
| |
Collapse
|
2
|
Madrières S, Tatard C, Murri S, Vulin J, Galan M, Piry S, Pulido C, Loiseau A, Artige E, Benoit L, Leménager N, Lakhdar L, Charbonnel N, Marianneau P, Castel G. How Bank Vole-PUUV Interactions Influence the Eco-Evolutionary Processes Driving Nephropathia Epidemica Epidemiology-An Experimental and Genomic Approach. Pathogens 2020; 9:E789. [PMID: 32993044 PMCID: PMC7599775 DOI: 10.3390/pathogens9100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases is heterogeneous and NE endemic and non-endemic areas have been reported. In this study we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological differences. We performed crossed-experimental infections using wild bank voles from French endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these areas. The serological response and dynamics of PUUV infection were compared between the four cross-infection combinations. Due to logistical constraints, this study was based on a small number of animals. Based on this experimental design, we saw a stronger serological response and presence of PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover, the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the small number of rodents included, our results showed that genetically different PUUV strains and in a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity. This could impact PUUV excretion/transmission between rodents and to humans and in turn at least partly shape NE epidemiology in France.
Collapse
Affiliation(s)
- Sarah Madrières
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Séverine Murri
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Johann Vulin
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Maxime Galan
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Sylvain Piry
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Coralie Pulido
- ANSES—Laboratoire de Lyon, Plateforme d’Expérimentation Animale, 69007 Lyon, France; (C.P.); (L.L.)
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Emmanuelle Artige
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Laure Benoit
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Nicolas Leménager
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Latifa Lakhdar
- ANSES—Laboratoire de Lyon, Plateforme d’Expérimentation Animale, 69007 Lyon, France; (C.P.); (L.L.)
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Philippe Marianneau
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| |
Collapse
|
3
|
Murri S, Madrières S, Tatard C, Piry S, Benoit L, Loiseau A, Pradel J, Artige E, Audiot P, Leménager N, Lacôte S, Vulin J, Charbonnel N, Marianneau P, Castel G. Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica. Pathogens 2020; 9:pathogens9090721. [PMID: 32882953 PMCID: PMC7559001 DOI: 10.3390/pathogens9090721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022] Open
Abstract
Puumala virus (PUUV) in Europe causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). The incidence of NE is highly heterogeneous spatially, whereas the geographic distribution of the wild reservoir of PUUV, the bank vole, is essentially homogeneous. Our understanding of the processes driving this heterogeneity remains incomplete due to gaps in knowledge. Little is known about the current distribution and genetic variation of PUUV in the areas outside the well-identified zones of NE endemicity. We trapped bank voles in four forests in French regions in which NE is considered non-endemic, but sporadic NE cases have been reported recently. We tested bank voles for anti-PUUV IgG and characterized the S segment sequences of PUUV from seropositive animals. Phylogenetic analyses revealed specific amino-acid signatures and genetic differences between PUUV circulating in non-endemic and nearby NE-endemic areas. We also showed, in temporal surveys, that the amino-acid sequences of PUUV had undergone fewer recent changes in areas non-endemic for NE than in endemic areas. The evolutionary history of the current French PUUV clusters was investigated by phylogeographic approaches, and the results were considered in the context of the history of French forests. Our findings highlight the need to monitor the circulation and genetics of PUUV in a larger array of bank vole populations, to improve our understanding of the risk of NE.
Collapse
Affiliation(s)
- Séverine Murri
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Sarah Madrières
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Sylvain Piry
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Laure Benoit
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Julien Pradel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Emmanuelle Artige
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Nicolas Leménager
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Sandra Lacôte
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Johann Vulin
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Philippe Marianneau
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
- Correspondence:
| |
Collapse
|
4
|
The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses 2019; 11:v11070664. [PMID: 31331096 PMCID: PMC6669540 DOI: 10.3390/v11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
Due to their large geographic distribution and potential high mortality rates in human infections, hantaviruses constitute a worldwide threat to public health. As such, they have been the subject of a large array of clinical, virological and eco-evolutionary studies. Many experiments have been conducted in vitro or on animal models to identify the mechanisms leading to pathogenesis in humans and to develop treatments of hantavirus diseases. Experimental research has also been dedicated to the understanding of the relationship between hantaviruses and their reservoirs. However, these studies remain too scarce considering the diversity of hantavirus/reservoir pairs identified, and the wide range of issues that need to be addressed. In this review, we present a synthesis of the experimental studies that have been conducted on hantaviruses and their reservoirs. We aim at summarizing the knowledge gathered from this research, and to emphasize the gaps that need to be filled. Despite the many difficulties encountered to carry hantavirus experiments, we advocate for the need of such studies in the future, at the interface of evolutionary ecology and virology. They are critical to address emerging areas of research, including hantavirus evolution and the epidemiological consequences of individual variation in infection outcomes.
Collapse
|
5
|
Hall RN, Capucci L, Matthaei M, Esposito S, Kerr PJ, Frese M, Strive T. An in vivo system for directed experimental evolution of rabbit haemorrhagic disease virus. PLoS One 2017; 12:e0173727. [PMID: 28288206 PMCID: PMC5348035 DOI: 10.1371/journal.pone.0173727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
The calicivirus Rabbit haemorrhagic disease virus (RHDV) is widely used in Australia as a biocontrol agent to manage wild European rabbit (Oryctolagus cuniculus) populations. However, widespread herd immunity limits the effectiveness of the currently used strain, CAPM V-351. To overcome this, we developed an experimental platform for the selection and characterisation of novel RHDV strains. As RHDV does not replicate in cell culture, variant viruses were selected by serially passaging a highly virulent RHDV field isolate in immunologically naïve laboratory rabbits that were passively immunised 18–24 hours post-challenge with a neutralising monoclonal antibody. After seven passages, two amino acid substitutions in the P2 domain of the capsid protein became fixed within the virus population. Furthermore, a synonymous substitution within the coding sequence of the viral polymerase appeared and was also maintained in all subsequent passages. These findings demonstrate proof-of-concept that RHDV evolution can be experimentally manipulated to select for virus variants with altered phenotypes, in this case partial immune escape.
Collapse
Affiliation(s)
- Robyn N. Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Lorenzo Capucci
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Markus Matthaei
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Simona Esposito
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Peter J. Kerr
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Frese
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
6
|
Yashina LN, Zaykovskaya AV, Protopopova EV, Babkin IV, Malyshev BS, Tovpinets NN, Evstafiev IL. Tula hantavirus in Crimea. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2015. [DOI: 10.3103/s0891416815040138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
7
|
Weber de Melo V, Sheikh Ali H, Freise J, Kühnert D, Essbauer S, Mertens M, Wanka KM, Drewes S, Ulrich RG, Heckel G. Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus. Evol Appl 2015; 8:545-59. [PMID: 26136821 PMCID: PMC4479511 DOI: 10.1111/eva.12263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.
Collapse
Affiliation(s)
- Vanessa Weber de Melo
- Computational and Molecular Population Genetics (CMPG), Institute of Ecology and Evolution, University of BernBern, Switzerland
| | - Hanan Sheikh Ali
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
- College of Veterinary Medicine, Sudan University of Science and TechnologyKhartoum, Sudan
| | - Jona Freise
- Fachbereich Schädlingsbekämpfung, Niedersächsisches Landesamt für Verbraucherschutz und LebensmittelsicherheitWardenburg, Germany
| | - Denise Kühnert
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule ZürichZürich, Switzerland
| | - Sandra Essbauer
- Department of Virology & Rickettsiology, Bundeswehr Institute of MicrobiologyMunich, Germany
| | - Marc Mertens
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| | - Konrad M Wanka
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| | - Stephan Drewes
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| | - Gerald Heckel
- Computational and Molecular Population Genetics (CMPG), Institute of Ecology and Evolution, University of BernBern, Switzerland
- Swiss Institute of BioinformaticsLausanne, Switzerland
| |
Collapse
|
8
|
Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations. Nucleic Acids Res 2015; 43:3256-71. [PMID: 25765644 PMCID: PMC4381058 DOI: 10.1093/nar/gkv128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 01/03/2023] Open
Abstract
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.
Collapse
Affiliation(s)
- Sushama Telwatte
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Adam Johnson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Katie Moore
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul Agius
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Mary Tachedjian
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z1Y6, Canada
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Changes in diversification patterns and signatures of selection during the evolution of murinae-associated hantaviruses. Viruses 2014; 6:1112-34. [PMID: 24618811 PMCID: PMC3970142 DOI: 10.3390/v6031112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space.
Collapse
|
10
|
Gaibani P, Cavrini F, Gould EA, Rossini G, Pierro A, Landini MP, Sambri V. Comparative genomic and phylogenetic analysis of the first Usutu virus isolate from a human patient presenting with neurological symptoms. PLoS One 2013; 8:e64761. [PMID: 23741387 PMCID: PMC3669420 DOI: 10.1371/journal.pone.0064761] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus, belonging to the Japanese encephalitis antigenic complex, that circulates among mosquitoes and birds. We describe and analyze the complete genome sequence of the first USUV strain isolated from an immunocompromised patient with neuroinvasive disease. This USUV isolate showed an overall nucleotide identity of 99% and 96%, respectively, with the genomes of isolates from Europe and Africa. Comparison of the human USUV complete polyprotein sequence with bird-derived strains, showed two unique amino acid substitutions. In particular, one substitution (S595G) was situated in the DIII domain of the viral Envelope protein that is recognized by flavivirus neutralizing antibodies. An additional amino acid substitution (D3425E) was identified in the RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein. This substitution is remarkable since E3425 is highly conserved among the other USUV isolates that were not associated with human infection. However, a similar substitution was observed in Japanese encephalitis and in West Nile viruses isolated from humans. Phylogenetic analysis of the human USUV strain revealed a close relationship with an Italian strain isolated in 2009. Analysis of synonymous nucleotide substitutions (SNSs) among the different USUV genomes showed a specific evolutionary divergence among different countries. In addition, 15 SNSs were identified as unique in the human isolate. We also identified four specific nucleotide substitutions in the 5' and 3' untranslated regions (UTRs) in the human isolate that were not present in the other USUV sequences. Our analyses provide the basis for further experimental studies aimed at defining the effective role of these mutations in the USUV genome, their potential role in the development of viral variants pathogenic for humans and their evolution and dispersal out of Africa.
Collapse
Affiliation(s)
- Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies-CRREM, St.Orsola-Malpighi University Hospital, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J Virol 2012; 86:8546-58. [PMID: 22647702 DOI: 10.1128/jvi.00736-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ∼75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.
Collapse
|
12
|
Abstract
Hantaviruses are enzootic viruses that maintain persistent infections in their rodent hosts without apparent disease symptoms. The spillover of these viruses to humans can lead to one of two serious illnesses, hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and natural history of these viruses following an increase in the number of outbreaks in the Americas. In this review, current concepts regarding the ecology of and disease associated with these serious human pathogens are presented. Priorities for future research suggest an integration of the ecology and evolution of these and other host-virus ecosystems through modeling and hypothesis-driven research with the risk of emergence, host switching/spillover, and disease transmission to humans.
Collapse
|
13
|
Guivier E, Galan M, Malé PJG, Kallio ER, Voutilainen L, Henttonen H, Olsson GE, Lundkvist A, Tersago K, Augot D, Cosson JF, Charbonnel N. Associations between MHC genes and Puumala virus infection in Myodes glareolus are detected in wild populations, but not from experimental infection data. J Gen Virol 2010; 91:2507-12. [PMID: 20573856 DOI: 10.1099/vir.0.021600-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We analysed the influence of MHC class II Dqa and Drb genes on Puumala virus (PUUV) infection in bank voles (Myodes glareolus). We considered voles sampled in five European localities or derived from a previous experiment that showed variable infection success of PUUV. The genetic variation observed in the Dqa and Drb genes was assessed by using single-strand conformation polymorphism and pyrosequencing methods, respectively. Patterns were compared with those obtained from 13 microsatellites. We revealed significant genetic differentiation between PUUV-seronegative and -seropositive bank voles sampled in wild populations, at the Drb gene only. The absence of genetic differentiation observed at neutral microsatellites confirmed the important role of selective pressures in shaping these Drb patterns. Also, we found no significant associations between infection success and MHC alleles among laboratory-colonized bank voles, which is explained by a loss of genetic variability that occurred during the captivity of these voles.
Collapse
Affiliation(s)
- Emmanuel Guivier
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Morrill JC, Ikegami T, Yoshikawa-Iwata N, Lokugamage N, Won S, Terasaki K, Zamoto-Niikura A, Peters CJ, Makino S. Rapid accumulation of virulent rift valley Fever virus in mice from an attenuated virus carrying a single nucleotide substitution in the m RNA. PLoS One 2010; 5:e9986. [PMID: 20376320 PMCID: PMC2848673 DOI: 10.1371/journal.pone.0009986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/10/2010] [Indexed: 12/17/2022] Open
Abstract
Background Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, while in livestock it causes fever and high abortion rates. Methodology/Principal Findings Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice. Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected mice. Conclusions/Significance These data demonstrated that the single nucleotide substitution in the Gn protein substantially affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and became the major viral population within a few days in mice that were inoculated with the attenuated virus.
Collapse
Affiliation(s)
- John C. Morrill
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Naoko Yoshikawa-Iwata
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Sungyong Won
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Aya Zamoto-Niikura
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - C. J. Peters
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (CJP); (SM)
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail: (CJP); (SM)
| |
Collapse
|
15
|
Ramsden C, Holmes EC, Charleston MA. Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol 2008; 26:143-53. [PMID: 18922760 DOI: 10.1093/molbev/msn234] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses are considered one of the best examples of a long-term association between RNA viruses and their hosts. Based on the appearance of strong host specificity, it has been suggested that hantaviruses cospeciated with the rodents and insectivores they infect since these mammals last shared a common ancestor, approximately 100 million years ago. We tested this hypothesis of host-virus codivergence in two ways: 1) we used cophylogenetic reconciliation analysis to assess the fit of the virus tree onto that of the host and 2) we estimated the evolutionary rates and divergence times for the Hantavirus genus using a Bayesian Markov Chain Monte Carlo method and similarly compared these with those of their hosts. Our reconciliation analysis provided no evidence for a history of codivergence between hantaviruses and their hosts. Further, the divergence times for the Hantavirus genus were many orders of magnitude too recent to correspond with the timescale of their hosts' speciation. We therefore propose that apparent similarities between the phylogenies of hantaviruses and their mammalian hosts are the result of a more recent history of preferential host switching and local adaptation. Based on the presence of clade-defining amino acids in all genomic segments, we propose that the patterns of amino acid replacement in these viruses are also compatible with a history of host-specific adaptation.
Collapse
Affiliation(s)
- Cadhla Ramsden
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, The Pennsylvania State University, USA.
| | | | | |
Collapse
|
16
|
Razzauti M, Plyusnina A, Henttonen H, Plyusnin A. Accumulation of point mutations and reassortment of genomic RNA segments are involved in the microevolution of Puumala hantavirus in a bank vole (Myodes glareolus) population. J Gen Virol 2008; 89:1649-1660. [PMID: 18559935 DOI: 10.1099/vir.0.2008/001248-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genetic diversity of Puumala hantavirus (PUUV) was studied in a local population of its natural host, the bank vole (Myodes glareolus). The trapping area (2.5 x 2.5 km) at Konnevesi, Central Finland, included 14 trapping sites, at least 500 m apart; altogether, 147 voles were captured during May and October 2005. Partial sequences of the S, M and L viral genome segments were recovered from 40 animals. Seven, 12 and 17 variants were detected for the S, M and L sequences, respectively; these represent new wild-type PUUV strains that belong to the Finnish genetic lineage. The genetic diversity of PUUV strains from Konnevesi was 0.2-4.9 % for the S segment, 0.2-4.8 % for the M segment and 0.2-9.7 % for the L segment. Most nucleotide substitutions were synonymous and most deduced amino acid substitutions were conservative, probably due to strong stabilizing selection operating at the protein level. Based on both sequence markers and phylogenetic clustering, the S, M and L sequences could be assigned to two groups, 'A' and 'B'. Notably, not all bank voles carried S, M and L sequences belonging to the same group, i.e. S(A)M(A)L(A) or S(B)M(B)L(B). A substantial proportion (8/40, 20 %) of the newly characterized PUUV strains possessed reassortant genomes such as S(B)M(A)L(A), S(A)M(B)L(B) or S(B)M(A)L(B). These results suggest that at least some of the PUUV reassortants are viable and can survive in the presence of their parental strains.
Collapse
Affiliation(s)
- Maria Razzauti
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, FI-01301 Vantaa, Finland.,Department of Virology, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| | - Angelina Plyusnina
- Department of Virology, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| | - Heikki Henttonen
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, FI-01301 Vantaa, Finland
| | - Alexander Plyusnin
- Department of Virology, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Finland
| |
Collapse
|