1
|
Cui J, Li X, Lu Z, Jin B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. TREE PHYSIOLOGY 2024; 44:tpae002. [PMID: 38196002 DOI: 10.1093/treephys/tpae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Ancient trees are natural wonders because of their longevity, having lived for hundreds or thousands of years, and their ability to withstand changing environments and a variety of stresses. These long-lived trees have sophisticated defense mechanisms, such as the production of specialized plant metabolites (SPMs). In this review, we provide an overview of the major biotic and abiotic stresses that long-lived trees often face, as well as an analysis of renowned ancient tree species and their unique protective SPMs against environmental stressors. We also discuss the synthesis and accumulation of defensive SPMs induced by environmental factors and endophytes in these trees. Furthermore, we conducted a comparative genomic analysis of 17 long-lived tree species and discovered significant expansions of SPM biosynthesis gene families in these species. Our comprehensive review reveals the crucial role of SPMs in high resistance in long-lived trees, providing a novel natural resource for plant defense, crop improvement and even the pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiang Li
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou, China
| |
Collapse
|
2
|
Habib A, Bibi Y, Qayyum I, Farooq M. Hierarchical plant extracts in silver nanoparticles preparation: Minuscular survey to achieve enhanced bioactivities. Heliyon 2024; 10:e24303. [PMID: 38293495 PMCID: PMC10824772 DOI: 10.1016/j.heliyon.2024.e24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Extracts obtained from M. longifolia (Lamiaceae) and R. ellipticus (Rosaceae) were selected to utilize in the reduction and stabilization of silver nanoparticles (AgNPs) for achieving remarkable bioactivities. In brief, the cytotoxic potential of the as synthesize AgNPs was high at higher concentrations. In DPPH assay, maximum antioxidant potential was shown by AgNPs synthesized from M. longifolia. Meanwhile, Methanolic extracts exhibited more antioxidant potential than chloroform based extracts. Further, brine shrimp lethality assay was carried out to achieve 34.6 μg/mL & 25.65 μg/mL LD50 values against the NPs prepared from M. and R., respectively. In addition, antioxidant activities were carried by ABTS Radical cation assay where 38.6 μg/mL and 47 μg/mL IC50 values were obtained for the NPs obtained from M. longifolia and R. ellipticus, respectively. Reducing power assay (0.370-0.15 and 0.37-0.26 mean absorbance) and DPPH (% scavenging: 88.91-46.48 and 88.91-44.78) percentages were recorded for M. and R. synthesized AgNPs, respectively. In brief, M. longifolia functionalized particles performed better in comparison to R. ellipticus treated particles. In addition, the nano assembly dispersed in polar solvent demonstrated better results in comparison to non-polar solvents. In conclusion, the as synthesized AgNPs were better in bioactivities than crude extracts of the selected plants. In future, this work could be extended to isolating active components for the nanofabrication of biologically intelligent nanoparticles for pharmacological interest. In the proposed investigation, the purified bioactivities fractions would be highlighted for further consideration in various medical treatments.
Collapse
Affiliation(s)
- Aroosa Habib
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Iqra Qayyum
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), Ministry of Science and Technology, 1-Constitution Avenue, Sector G-5/2, Islamabad, 44000, Pakistan
| |
Collapse
|
3
|
Roman H, Niculescu AG, Lazăr V, Mitache MM. Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics. Antibiotics (Basel) 2023; 12:1635. [PMID: 37998837 PMCID: PMC10669310 DOI: 10.3390/antibiotics12111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Medicinal plants with multiple targets of action have become one of the most promising solutions in the fight against multidrug-resistant (MDR) bacterial infections. Tanacetum vulgare (Tansy) is one of the medicinal plants with antibacterial qualities that deserve to be studied. Thus, this research takes a closer look at tansy extract's composition and antibacterial properties, aiming to highlight its potential against clinically relevant bacterial strains. In this respect, the antibacterial test was performed against several drug-resistant pathogenic strains, and we correlated them with the main isolated compounds, demonstrating the therapeutic properties of the extract. The essential oil was extracted via hydrodistillation, and its composition was characterized via gas chromatography. The main isolated compounds known for their antibacterial effects were α-Thujone, β-Thujone, Eucalyptol, Sabinene, Chrysanthenon, Camphor, Linalool oxide acetate, cis-Carveol, trans-Carveyl acetate, and Germacrene. The evaluation of the antibacterial activity was carried out using the Kirby-Bauer and binary microdilution methods on Gram-positive and Gram-negative MDR strains belonging to the ESKAPE group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Tansy essential oil showed MIC values ranging from 62.5 to 500 μg/mL against the tested strains. Synergistic activity with different classes of antibiotics (penicillins, cephalosporins, carbapenems, monobactams, aminoglycosides, and quinolones) has also been noted. The obtained results demonstrate that tansy essential oil represents a promising lead for developing new antimicrobials active against MDR alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Horațiu Roman
- Interdisciplinary School of Doctoral Studies (ISDS), University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Veronica Lazăr
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | | |
Collapse
|
4
|
Owczarek M, Herczyńska L, Sitarek P, Kowalczyk T, Synowiec E, Śliwiński T, Krucińska I. Chitosan Nanoparticles-Preparation, Characterization and Their Combination with Ginkgo biloba Extract in Preliminary In Vitro Studies. Molecules 2023; 28:4950. [PMID: 37446611 DOI: 10.3390/molecules28134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles (NPs), due to their size, have a key position in nanotechnology as a spectrum of solutions in medicine. NPs improve the ability of active substances to penetrate various routes: transdermal, but also digestive (active endocytosis), respiratory and injection. Chitosan, an N-deacetylated derivative of chitin, is a natural biodegradable cationic polymer with antioxidant, anti-inflammatory and antimicrobial properties. Cross-linked chitosan is an excellent matrix for the production of nanoparticles containing active substances, e.g., the Ginkgo biloba extract (GBE). Chitosan nanoparticles with the Ginkgo biloba extract (GBE) were obtained by ion gelation using TPP as a cross-linking agent. The obtained product was characterized in terms of morphology and size based on SEM and Zeta Sizer analyses as well as an effective encapsulation of GBE in nanoparticles-FTIR-ATR and UV-Vis analyses. The kinetics of release of the active substance in water and physiological saline were checked. Biological studies were carried out on normal and cancer cell lines to check the cytotoxic effect of GBE, chitosan nanoparticles and a combination of the chitosan nanoparticles with GBE. The obtained nanoparticles contained and released GBE encapsulated in research media. Pure NPs, GBE and a combination of NPs and the extract showed cytotoxicity against tumor cells, with no cytotoxicity against the physiological cell line.
Collapse
Affiliation(s)
- Monika Owczarek
- Łukasiewicz Research Network-Lodz Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Institute of Materials Science of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Lucyna Herczyńska
- Institute of Materials Science of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 90-001 Lodz, Poland
| | - Izabella Krucińska
- Institute of Materials Science of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Patel CN, Jani SP, Prasanth Kumar S, Modi KM, Kumar Y. Computational investigation of natural compounds as potential main protease (M pro) inhibitors for SARS-CoV-2 virus. Comput Biol Med 2022; 151:106318. [PMID: 36423529 PMCID: PMC9673090 DOI: 10.1016/j.compbiomed.2022.106318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (Mpro) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants.
Collapse
Affiliation(s)
- Chirag N Patel
- Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA; Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Siddhi P Jani
- Institute of Science, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Krunal M Modi
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 2155/3, 182 23 Prague 8, Czech Republic; Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India.
| | - Yogesh Kumar
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| |
Collapse
|
6
|
Chen NWG, Ruh M, Darrasse A, Foucher J, Briand M, Costa J, Studholme DJ, Jacques M. Common bacterial blight of bean: a model of seed transmission and pathological convergence. MOLECULAR PLANT PATHOLOGY 2021; 22:1464-1480. [PMID: 33942466 PMCID: PMC8578827 DOI: 10.1111/mpp.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Xanthomonas citri pv. fuscans (Xcf) and Xanthomonas phaseoli pv. phaseoli (Xpp) are the causal agents of common bacterial blight of bean (CBB), an important disease worldwide that remains difficult to control. These pathogens belong to distinct species within the Xanthomonas genus and have undergone a dynamic evolutionary history including the horizontal transfer of genes encoding factors probably involved in adaptation to and pathogenicity on common bean. Seed transmission is a key point of the CBB disease cycle, favouring both vertical transmission of the pathogen and worldwide distribution of the disease through global seed trade. TAXONOMY Kingdom: Bacteria; phylum: Proteobacteria; class: Gammaproteobacteria; order: Lysobacterales (also known as Xanthomonadales); family: Lysobacteraceae (also known as Xanthomonadaceae); genus: Xanthomonas; species: X. citri pv. fuscans and X. phaseoli pv. phaseoli (Xcf-Xpp). HOST RANGE The main host of Xcf-Xpp is the common bean (Phaseolus vulgaris). Lima bean (Phaseolus lunatus) and members of the Vigna genus (Vigna aconitifolia, Vigna angularis, Vigna mungo, Vigna radiata, and Vigna umbellata) are also natural hosts of Xcf-Xpp. Natural occurrence of Xcf-Xpp has been reported for a handful of other legumes such as Calopogonium sp., Pueraria sp., pea (Pisum sativum), Lablab purpureus, Macroptilium lathyroides, and Strophostyles helvola. There are conflicting reports concerning the natural occurrence of CBB agents on tepary bean (Phaseolus acutifolius) and cowpea (Vigna unguiculata subsp. unguiculata). SYMPTOMS CBB symptoms occur on all aerial parts of beans, that is, seedlings, leaves, stems, pods, and seeds. Symptoms initially appear as water-soaked spots evolving into necrosis on leaves, pustules on pods, and cankers on twigs. In severe infections, defoliation and wilting may occur. DISTRIBUTION CBB is distributed worldwide, meaning that it is frequently encountered in most places where bean is cultivated in the Americas, Asia, Africa, and Oceania, except for arid tropical areas. Xcf-Xpp are regulated nonquarantine pathogens in Europe and are listed in the A2 list by the European and Mediterranean Plant Protection Organization (EPPO). GENOME The genome consists of a single circular chromosome plus one to four extrachromosomal plasmids of various sizes, for a total mean size of 5.27 Mb with 64.7% GC content and an average predicted number of 4,181 coding sequences. DISEASE CONTROL Management of CBB is based on integrated approaches that comprise measures aimed at avoiding Xcf-Xpp introduction through infected seeds, cultural practices to limit Xcf-Xpp survival between host crops, whenever possible the use of tolerant or resistant bean genotypes, and chemical treatments, mainly restricted to copper compounds. The use of pathogen-free seeds is essential in an effective management strategy and requires appropriate sampling, detection, and identification methods. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPH, https://gd.eppo.int/taxon/XANTFF, and http://www.cost.eu/COST_Actions/ca/CA16107.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Mylène Ruh
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Armelle Darrasse
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Justine Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Martial Briand
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Joana Costa
- University of Coimbra, Centre for Functional Ecology ‐ Science for People & the Planet, Department of Life SciencesCoimbraPortugal
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
7
|
Chao G, Zhang S. The characteristics of intestinal flora of IBS-D with different syndromes. Immun Inflamm Dis 2020; 8:615-628. [PMID: 32940426 PMCID: PMC7654421 DOI: 10.1002/iid3.348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To study the distribution of fecal microbiota in diarrhea-predominant irritable bowel syndrome (IBS-D) patients of spleen-kidney-yang deficiency and liver depression and spleen deficiency, to make an objective foundation for dialectics of different type of IBS-D. And to provide the clinical doctors an experimental basis for medication by regulating dysbacteriosis. METHODS We collected feces from the control group, spleen-kidney-yang deficiency IBS-D group, and liver-depression and spleen-deficiency IBS-D group. After the extraction of fecal DNA, global DNA was isolated from every sample, and 16S ribosomal RNA was sequenced, and then we analyzed the results for bacteria such as Alpha diversity, community composition, LEfSe, and partial least squares discriminant analysis. RESULTS We compared the changes among the fecal bacteria in the intestine of the IBS-D patients and healthy controls and found the specificity of spleen-kidney-yang deficiency syndrome and liver-depression and spleen-deficiency syndrome. The control group has the highest flora diversity (control group > liver-depression and spleen-deficiency > spleen-kidney-yang deficiency group). The control group, spleen-kidney-yang deficiency group, and liver-depression and spleen-deficiency group are different in phylum (Actinobacteria, Fusobacteria), class (Actinobacteria, Fusobacteria), order (Enterobacteriales, Bifidobacteriales, Fusobacteriales), and family (Bifidobacteriaceae, Ruminococcaceae, Enterobacteriaceae, Acidaminococcaceae, Veillonellaceae, Fusobacteriaceae). Bifidobacteriaceae and Ruminococcaceae in the control group, Enterobacteriales, Fusobacteriales, Acidaminococcaceae, and Phascolarctobacterium in the spleen-kidney-yang deficiency group, and streptococcus are the specific bacteria in the liver-depression and spleen-deficiency group. Intestinal flora disturbance is closely related to IBS-D. CONCLUSIONS There is a correlation between traditional Chinese medicine syndrome type and intestinal flora. The control group, the spleen-kidney-yang deficiency group, and the liver-depression and spleen-deficiency group have specific bacteria.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Properties of Ginkgo biloba L.: Antioxidant Characterization, Antimicrobial Activities, and Genomic MicroRNA Based Marker Fingerprints. Int J Mol Sci 2020; 21:ijms21093087. [PMID: 32349345 PMCID: PMC7247675 DOI: 10.3390/ijms21093087] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to characterize extracts from the leaves of Ginkgo biloba L. from selected Slovakian localities in terms of the content of bioactive constituents, antioxidants and their antimicrobial properties. The results indicated that the content of antioxidants was sample-specific, and this specificity was statistically significant. Ginkgo biloba L. from the locality of Košice had the best activity determined by the free radical scavenging activity (DPPH) (1.545 mg Trolox equivalent antioxidant capacity (TEAC)/g fresh matter (FM)) as well as the molybdenum-reducing antioxidant power (35.485 mg TEAC/g FM) methods. The highest content of total polyphenols (2.803 mg gallic acid equivalent (GAE)/g FM) and flavonoids (4.649 μg quercetin equivalent (QE)/g FM) was also detected in this sample. All samples of G. biloba leaf extracts showed significant antimicrobial activity against one or more of the examined bacterial species, and Staphylococcus aureus subsp. aureus CCM 2461 was found to be the most susceptible (minimal inhibition concentration MIC50 and MIC90 values of 64.2 and 72.2 µg/mL, respectively). Based on the results it was concluded that Ginkgo biloba L. extracts can be used as antimicrobial and antioxidant additives. Selected miRNA-based molecular markers were used to examine the environmental adaptability of Ginkgo biloba L. An almost-complete genotype clustering pattern based on locality was determined in the analysis that involved a species-specific gb-miR5261 marker. Morphologically specific exemplar, cv. Ohatsuki, was excluded.
Collapse
|
9
|
Wang L, Zhao X, Yang F, Wu W, Liu Y, Wang L, Wang L, Wang Z. Enhanced bioaccessibility
in vitro
and bioavailability of Ginkgo biloba extract nanoparticles prepared by liquid anti‐solvent precipitation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lingling Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Fengjian Yang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Weiwei Wu
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Yanjie Liu
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Li Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Lu Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Zijian Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| |
Collapse
|
10
|
Shukla S, Park J, Park JH, Lee JS, Kim M. Development of novel Meju starter culture using plant extracts with reduced Bacillus cereus counts and enhanced functional properties. Sci Rep 2017; 7:11409. [PMID: 28900166 PMCID: PMC5595882 DOI: 10.1038/s41598-017-09551-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
We developed a novel type of Meju starter culture using single and combined extracts of Allium sativum (garlic clove), Nelumbo nucifera (lotus leaves), and Ginkgo biloba (ginkgo leaves) to improve the quality and functionality of Meju-based fermented products. Meju samples fermented with plant extracts (10 mg/ml) showed phenolic contents of 11.4-31.6 mg/g (gallic acid equivalents). Samples of extracts (garlic clove, lotus leaves, ginkgo leaves and their combination) fermented with Meju strongly inhibited tyrosinase, α-glucosidase, and elastase activities by 36.43-64.34%, 45.08-48.02%, and 4.52-10.90%, respectively. Specifically, ginkgo leaves extract added to fermented Meju samples at different concentrations (1% and 10%) strongly inhibited tyrosinase, α-glucosidase, and elastase activities and exhibited a potent antibacterial effect against Bacillus cereus with a significant reduction in bacterial counts compared with the effects observed for garlic clove and lotus leaf added to Meju samples. Scanning electron microscopy revealed severe morphological alterations of the B. cereus cell wall in response to ginkgo leaf extracts. Gas chromatographic mass spectroscopic analysis of plant extract-supplemented Meju samples and control Meju samples identified 113 bioactive compounds representing 98.44-99.98% total extract. The proposed approach may be useful for the development of various fermented functional foods at traditional and commercial levels.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Juyeon Park
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Jung Hyun Park
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Jong Suk Lee
- Department of Food, Nutrition and Cooking, Taegu Science University, Daegu, 41453, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
11
|
Niu Y, Wan XL, Zhang XH, Zhao LG, He JT, Zhang JF, Zhang LL, Wang T. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality, and antioxidant status of breast and thigh muscles in broiler chickens. Poult Sci 2017; 96:869-877. [PMID: 27664198 DOI: 10.3382/ps/pew313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/03/2016] [Indexed: 01/30/2023] Open
Abstract
The present study was conducted to investigate the influence of dietary supplementation with different levels of fermented Ginkgo biloba leaves (FGBL) on growth performance, slaughter performance, meat quality, antioxidant enzyme capacity, and free radical scavenging activities of muscles in broiler chickens. A total of 648 one-d-old broiler chickens were randomly allocated into six dietary treatments, including control group (CON group: basal diet), FGBL1, FGBL2, FGBL3, FGBL4, and FGBL5 groups (basal diet containing 1.5, 2.5, 3.5, 4.5, and 5.5 g/kg FGBL, respectively). Body weight gain and feed intake were recorded at 1, 21, and 42 d. At 42 d, 2 birds from each replicate were slaughtered. The results indicated that 3.5 g/kg FGBL diet significantly increased (P < 0.05) ADFI and ADG in 1 to 42 d and ADFI in 22 to 42 d compared with the CON group. In 1 to 21 d, 4.5 g/kg FGBL diet improved (P < 0.05) ADFI and ADG. With dietary FGBL increasing, the feed: gain ratio (F/G) in 1 to 21 d was significantly decreased (P < 0.05). However, birds fed with 5.5 g/kg FGBL had a higher (P < 0.05) F/G compared with other groups in 22 to 42 d and 1 to 42 d. In addition, FGBL3 and FGBL4 showed lower (P < 0.05) L* value in breast muscle, cooking loss in thigh muscle and lower 24 h and 48 h drip loss in both breast and thigh muscles than those of other groups. Furthermore, birds in the FGBL3 and FGBL4 groups increased (P < 0.05) the activity of total superoxide dismutase and total antioxidant capability in muscles, and the scavenging activities of 2,2΄-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid radical, OH•, and O2•- in thigh muscle, decreased (P < 0.05) malondialdehyde concentration in thigh muscle, as compared to the CON group. In conclusion, FGBL had the potential to improve the growth performance, meat quality and antioxidant status of broiler chickens. The optimal dose in the present study of FGBL in broiler diets was from 3.5 to 4.5 g/kg.
Collapse
Affiliation(s)
- Y Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - X L Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - X H Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, P.R. China
| | - L G Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - J T He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - J F Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - L L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - T Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
12
|
Wu Y, Park KC, Choi BG, Park JH, Yoon KS. The Antibiofilm Effect ofGinkgo bilobaExtract AgainstSalmonellaandListeriaIsolates from Poultry. Foodborne Pathog Dis 2016; 13:229-38. [DOI: 10.1089/fpd.2015.2072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Yan Wu
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Republic of Korea
| | - Keun Cheol Park
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Republic of Korea
| | - Beom Geun Choi
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Hwa Park
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Tao R, Wang CZ, Ye JZ, Zhou H, Chen HX, Zhang YS. Antibacterial/antifungal activity and synergistic interactions between C70–C120 polyprenol homologs from Ginkgo Biloba L. leaves and the corresponding synthetic derivatives. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Tao R, Wang C, Kong Z. Antibacterial Activity of Polyprenols and Other Lipids from Ginkgo biloba L. Leaves. PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON APPLIED BIOTECHNOLOGY (ICAB 2012) 2014. [DOI: 10.1007/978-3-642-37925-3_169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Antimicrobial effects of herbal extracts on Streptococcus mutans and normal oral streptococci. J Microbiol 2013; 51:484-9. [PMID: 23990300 DOI: 10.1007/s12275-013-3312-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.
Collapse
|
16
|
Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. leaves. Molecules 2013; 18:2166-82. [PMID: 23434869 PMCID: PMC6269727 DOI: 10.3390/molecules18022166] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
Abstract
Polyprenols separated from lipids are promising new components from Ginkgo biloba L. leaves (GBL). In this paper, ginkgo lipids were isolated by extraction with petroleum ether, saponification, and molecular distillation. Eight known compounds: isophytol (1), nerolidol (2), linalool (3), β-sitosterol acetate (4), β-sitosterol (5), stigmasterol (6), ergosterol (7), β-sitosterol-3-O-β-D-glucopyranoside (8) and Ginkgo biloba polyprenols (GBP) were separated from GBL by chromatography and identified mainly by NMR. The separated and identified compounds 1, 2 and 3 are reported here for the first time in GBL. The 3D-DAD-HPLC-chromatogram (190–232 nm) of GBP was recorded. This study provides new evidence as there are no previous reports on antibacterial/antifungal activities and synergistic interactions between GBP and the compounds separated from GBL lipids against Salmonella enterica, Staphylocococus aureus and Aspergillus niger. Nerolidol (2) showed the highest activity among all the tested samples and of all mixture groups tested the GBP with isophytol (1) mixture had the strongest synergistic effect against Salmonella enterica among the three tested strains. A proportion of isophytol and GBP of 38.19%:61.81% (wt/wt) was determined by mixture design as the optimal proportion for the synergistic effect of GBP with isophytol against Salmonella enterica.
Collapse
|
17
|
Mukherjee S, De A, Ghosh P, Dey A. In vitro antibacterial activity of various tissue types of Dumortiera hirsuta (Sw) Nees from different altitudes of eastern Himalaya. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60167-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|